La tecnica deve essere compatibile con la scala dei tempi della reazione e la possibilità di introduzione e mescolamento dei reagenti.

Documenti analoghi
Chimica Fisica Biologica

Reazioni opposte. Reazioni opposte o reversibili A + B 2C (k 1 e k -1 )

Cinetica Chimica. Cinetica chimica

REAZIONI CHIMICHE: LEGGI CINETICHE, MECCANISMI DI REAZIONE E BILANCI DI MASSA

Lezione n. 11. Reazioni enzimatiche Michaelis-Menten Dipendenza di k da T. Antonino Polimeno 1

Legge dell azione di massa. Misura sperimentale della costante di equilibrio. Corso di Studi di Fisica Corso di Chimica

Esistono reazioni energeticamente favorite (ΔH<0) che non avvengono.es. C(diamante) à C(grafite)

Laboratorio 29.1 CINETICA DI IDROLISI ALCALINA DELL ACETATO DI ETILE

Modellistica dei Sistemi Biologici. Lezione 1 Introduzione alla Cinetica Chimica Fabio Mavelli

Reazioni Organiche 1

Cinetica chimica. Capitolo 13

Cinetica chimica E lo studio della velocità delle reazioni chimiche, delle leggi di velocità e dei meccanismi di reazione.

Università degli Studi Mediterranea di Reggio Calabria Facoltà di Agraria Sez. Lamezia Terme A.A

CINETICA CHIMICA. Ogni reazione chimica però impiega un certo tempo per raggiungere le condizioni di equilibrio.

Velocità di reazione Una trasformazione chimica modifica completamente la natura delle sostanze iniziali ( i reagenti), formando altre specie (i prodo

Le reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

SIMULAZIONE - 29 APRILE QUESITI

ESERCIZI ESERCIZI. 3) Data la reazione chimica: H 2

Determinazione di parametri cinetici di una reazione di dissociazione mediante spettroscopia UV-visibile

Esercizi e problemi tratti dal libro La chimica di Rippa Cap. 14 L'equilibrio chimico

Analisi quantitativa dell interazione proteina-proteina

Le reazioni chimiche

Cinetica Chimica. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

STUDIO SPERIMENTALE DELLA CINETICA DI UNA REAZIONE CHIMICA PER VIA CONDUTTOMETRICA

Laboratorio Chimica Bioorganica. Studio di meccanismi di reazione in Chimica Bioorganica. St. 344

Appendice cap. 29: applicazioni

Gli equilibri di solubilità

La stechiometria di una reazione chimica relaziona le masse di reagenti e prodotti tenendo conto della legge di conservazione della massa.

CORRELAZIONI LINEARI DI ENERGIA LIBERA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

Precorsi Test AMMISSIONE Medicina e Chirurgia - Professioni Sanitarie Università degli Studi di Perugia. a.a

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi

ESERCITAZIONI CHIMICA-FISICA I a.a. 2012/2013. Metodo differenziale. Problema

UNITÀ DIDATTICA 5 LA RETTA

Acidi e basi sono sostanze note da molto tempo e diverse classificazioni sono state fatte nel corso del tempo in base alle loro proprietà.

2. Indicare l'affermazione che descrive più accuratamente il comportamento di un catalizzatore:

Gli enzimi sono i catalizzatori dei processi biologici. Possono essere proteine globulari oppure acidi nucleici (ribozimi)

ASPETTI CINETICI E DI SICUREZZA DI PROCESSI DI NITRAZIONI DI ESTERI AROMATICI

Liberamente tratto da Prima Legge di Ohm

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

Termodinamica e termochimica

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

VELOCITA DI REAZIONE

Scritto chimica generale

Limiti del criterio della variazione entropia

La cinetica chimica. Si occupa dello studio dei meccanismi di reazione con i quali i reagenti si trasformano in prodotti (kinesis = movimento)

Equilibri e Principio di Le Chatelier

L EQUILIBRIO CHIMICO: EQUILIBRI IN FASE GASSOSA

L equilibrio chimico. Se una reazione è reversibile, al suo termine i reagenti non sono del tutto consumati

Cinetica chimica. 2 H 2 (g) + O 2 (g) 2 H 2 O (g)

CINETICA CHIMICA. ChimicaGenerale_lezione21 1

LE COORDINATE CARTESIANE

Equilibri ionici in soluzione. M. Pasquali

Esploriamo la chimica

La Concentrazione. C i = m i / M,

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Equilibri chimici. Consideriamo la seg. reazione chimica in fase omogenea: aa + bb î cc + dd Definiamo, in ogni istante della reazione:

Combustione. Energia chimica. Energia termica Calore. Combustibili fossili

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016

Chimica e laboratorio

Chimica Biologica A.A Cinetica Enzimatica. Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Appunti di matematica per le Scienze Sociali Parte 1

Trasformazioni chimiche degli inquinanti Cenni su stratosfera e troposfera Dinamica degli inquinanti A.A

INTERPOLAZIONE. Introduzione

Catalisi e catalizzatori

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO

La cinetica chimica. Velocità media di reazione

L equilibrio chimico

rappresenta la cinetica del processo: se è grande il processo è lento

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

Acidi Poliprotici. Si definiscono acidi poliprotici, le sostanze in grado di donare più di un protone all acqua:

Massa degli atomi e delle molecole

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto

Termodinamica. studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro.

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato.

Minimi quadrati: esempi di termodinamica, cinetica e chimica analitica

Tempo di risposta di un termometro a mercurio

Termodinamica e termochimica

Grandezze e Misure 1

costruire un equazione che potesse descrivere in generale il comportamento cinetico degli enzimi e quindi di determinare parametri cinetici più

Corso di Laboratorio Integrato di Chimica Generale BIOTEC-2011 Esercizi Svolti su Equilibri acido-base

SOLUZIONI derivate da: Acido debole/ sale (CH 3 COOH/CH 3 COONa) Base debole/ suo sale (NH 4 OH/NH 4 Cl)

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

Equazioni lineari con due o più incognite

LA VELOCITA DELLE REAZIONI

Le coniche: circonferenza, parabola, ellisse e iperbole.

1. Le teorie sugli acidi e sulle basi 2. La ionizzazione dell acqua 3. Il ph 4. La forza degli acidi e delle basi 5. Come calcolare il ph di

Esercizi svolti. delle matrici

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

TECNICHE SPETTROSCOPICHE

CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l)

SOLUZIONI TAMPONE SOLUZIONI TAMPONE

CHIMICA ORGANICA I con Elementi di Laboratorio Corso di Laurea in CHIMICA, Chimica Applicata, Scienza dei Materiali (L.T.)

ISIS A PONTI Gallarate

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

Anno accademico

Calcolo degli integrali indefiniti

( pi + σ ) nds = 0 (3)

Il meccanismo d azione degli enzimi può essere trattato: -analizzando i cambiamenti energetici che si verificano nel corso della reazione -

Transcript:

METODI PER SEGUIRE LE CINETICHE Qualunque sia la legge della velocità di una reazione, è necessario disporre di una tecnica sperimentale che permetta di rilevare la concentrazione in funzione del tempo. La tecnica deve essere compatibile con la scala dei tempi della reazione e la possibilità di introduzione e mescolamento dei reagenti. Sono state sviluppate tecniche sperimentali per l analisi di reazioni relativamente lente e per quelle molto veloci. Reazioni con tempi di dimezzamento da secondi a minuti E possibile mescolare i reagenti e registrare abbastanza dati di concentrazione prima che la reazione sia finita. Metodi di analisi cromatografici (GC, HPLC) o spettroscopici (UVvis, NMR) Misure di ph o titolazioni Polarimetria Tecniche per cinetiche veloci Reazioni con tempi di dimezzamento inferiori a qualche secondo sono finite nel tempo necessario per mescolare i reagenti con i metodi convenzionali. problema particolarmente importante per reazioni limitate dalla diffusione, in cui ogni collisione dà reazione (k ~ 0 0 M s ) Qualche volta è sufficiente aumentare la viscosità del solvente per rallentare la reazione Quando si vuole studiare la reattività di intermedi reattivi, è necessario generarli con una reazione più veloce della loro trasformazione

a. Tecniche di flusso Il metodo permette un mescolamento rapido e la possibilità di misurare il procedere della reazione a tempi diversi Il metodo più semplice per un mescolamento rapido usa due tubi di flusso che si uniscono, permettendo il mescolamento solo in quel punto. La reazione viene analizzata in punti diversi del tubo e, conoscendo la velocità dei flussi, si conosce il tempo trascorso. In alternativa, il flusso viene fermato rapidamente sempre nello stesso punto, ma a tempi diversi (stoppedflow) Con le tecniche di flusso si possono seguire reazioni con tempi di dimezzamento dei millisecondi. b. Flash Fotolisi E uno dei metodi usati per generare intermedi molto reattivi, in una miscela non di equilibrio, che vengono seguiti per tempi molto brevi. Si usa per preparare concentrazioni relativamente alte di molecole elettronicamente eccitate Si usa il sistema pumpprobe : Un raggio intenso di luce (pump) si usa per fare iniziare una reazione fotochimica, che produce gli intermedi reattivi. durata dell impulso: inferiore al tempo di vita dell intermedio in esame intensità dell impulso: sufficiente per generare abbastanza intermedio da poterlo osservare con qualche metodo spettroscopico La tecnica di osservazione è di solito la spettroscopia ottica (assorbanza o fluorescenza) usando una seconda luce (sorgente continua o impulso di sonda, probe pulse). Variando il tempo di delay tra gli impulsi di pump e pulse, si ricavano informazioni sul tempo di formazione dell intermedio Il tempo di vita dell intermedio si ottiene seguendo la sua scomparsa nel tempo 2

Due tracce di decadimento: uno più breve ed uno più lungo Le tecniche di cinetiche veloci permettono di analizzare reazioni multiple di intermedi reattivi. c. Pulse Radiolisi Un impulso di elettroni della durata di picosecondi viene spinto in una soluzione, riducendone vari componenti e formando anioni radicali, che possono essere seguiti in funzione del tempo. A e A. si usa per studiare reazioni radicaliche esempio: L introduzione di elettroni in una soluzione di acetofenone genera l anione radicale chetile, che si protona O O OH.. e H Le variazioni degli spettri di assorbimento del chetile e del suo anione in funzione del ph permettono di calcolare il pk a del chetile pk a 0.5 Metodi di rilassamento La perturbazione di un equilibrio chimico (variazione di temperatura, di pressione, di ph o di concentrazione) è seguita da un rilassamento del sistema ad un nuovo stato di equilibrio. tecniche di jump OH. Ọ Se le variazioni sono abbastanza veloci, si possono seguire reazioni con tempi di dimezzamento di μs. 3

CINETICHE DI REAZIONI COMPLESSE. REAZIONI REVERSIBILI Il caso più semplice è quello di due composti in equilibrio, interrelati da cinetiche del primo ordine: A B Nel corso della reazione le concentrazioni convergono verso le concentrazioni finali (o di equilibrio), [A] e [B] : [B] K [A] all'equilibrio [A] [B] Il bilancio delle masse richiede che, in qualsiasi istante (t 0, t i, t ), la somma delle concentrazioni di A e B sia costante: [A] 0 [B] 0 [A] [B] [A] [B] d[b] [A] [B] ricavando [B] dal bilancio delle masse: [B] [A] 0 [B] 0 [A] k (k [A] ([A] 0 [B] 0 [A]) ) [A] ([A] 0 [B] 0 ) mettendo in evidenza ( ) { k ( k ) [A] ([A] 0 [B] 0 )} ( ) termine costante, m m ([A] 0 [B] 0 ) ( ) [A] 0 [B] 0 [A] 0 [B] 0 K m m [A] 0 [B] 0 [A] 0 [B] 0 K [B] [A] [A] [A] [A] 0 [B] 0 [B] [A] [A] 0 [B] 0 [B] [A] [A] 4

( ) } {[A] [A] La concentrazione relativa ([A] [A] ) si vede in figura: per integrare [A] [A] ( ) L'equazione integrata diventa: ln { [A] [A] [A] 0 [A] } ( ) t [A] 0 [A] [A] [A] ( ) ( ) k oss 0 t del tutto analoga all'espressione per una reazione irreversibile del primo ordine Quando si raggiunge l'equilibrio, la velocità di andata sarà numericamente uguale alla velocità di ritorno [A] [B] ne consegue che la costante di equilibrio è uguale al rapporto delle costanti di velocità k K [B] [A] k exp K ( ) K Dai misurati di k exp e K, si possono calcolare e 5

Reazioni reversibili di ordine superiore reazione di andata del primo ordine e reazione di ritorno del secondo ordine A B C [A] [B][C] Se inizialmente non ci sono i prodotti [B] 0 [C] 0 0 Se i prodotti si formano in rapporto : [B] [C] l'equazione differenziale può essere integrata per il processo di andata: ln { 2 [A] } ([B] [B])[A] 0 { 0 } ([A] 0 [B] )[B] [A] 0 [B] [B] Per il processo di ritorno, quando le condizioni iniziali sono: [A] 0 0 si ottiene: [B] 0 [C] 0 > 0 ln { 2 ([B] 0 [A] [A]) [A] 2 2 ([B] 0 [A] ) ([A] [A]) [B] 0 2 } [A] t t reazione del secondo ordine in entrambe le direzioni A B C D [A][B] [C][D] assumendo le seguenti condizioni iniziali, che permettono di semplificare: [A] 0 [B] 0 > 0 [C] 0 [D] 0 0 [C] [D] > 0 { ([A] ln 0 2 [C] ) [C] [A] 0 [C] } 2 ([A] 0 [C] )[A] 0 k [C] t ([C] [C]) [A] 0 vale sempre la relazione K 6

2. REAZIONI PARALLELE Un solo composto di partenza si trasforma in due prodotti diversi, con reazioni del primo ordine X A Y Se si assume che le velocità di formazione dei prodotti siano diverse per esempio > i prodotti si formano in quantità diverse [Y] > [X] come rappresentato dai profili delle concentrazioni in funzione del tempo e dai profili dell'energia potenziale [A] [A] ( )[A] k[a] k L'equazione integrata, che mostra la diminuzione del primo ordine del reagente ha la forma: [A] [A] o e kt Le equazioni differenziali che descrivono la formazione dei prodotti si possono esprimere come: d[x] k [A] [A] o e kt d[y] k 2 [A] [A] o e kt 7

Assumendo le condizioni iniziali [X] 0 [Y] 0 0 si possono ottenere le seguenti equazioni integrate: [X] [A] ( e kt ) [Y] ( e kt ) k o ; [A] k o Da queste due equazioni si può calcolare la distribuzione dei prodotti, che conviene ottenere come rapporto delle concentrazioni: [X] [Y] Reazioni di ordine superiore A B C X Y l'equazione differenziale ha la forma: [A][B][C] [A][B][C] k 3 [A][B][C] ( k 3 )[A] k[a][b][c] dove k 3 Z k k 3 [X] [Y] [X] ; ; [Z] k 3 [Y] [Z] k 3 Reazioni parallele di ordine diverso A A B X Y La velocità con cui si consuma il reagente è data dalla equazione differenziale seguente: k [A] [A][B] Assumendo che B sia in forte eccesso, possiamo ritenere [B] praticamente costante [B] ~ [B] 0 equazione differenziale di pseudoprimo ordine ( [B] 0 ) [A] k ψ [A] 8

Eseguendo numerosi esperimenti, con diverse concentrazioni iniziali di B e misurando in ogni caso k ψ, si possono determinare e. k ψ [B] 0 k ψ in funzione di [B] 0 : intercetta, : pendenza Le equazioni differenziali per la formazione dei prodotti hanno la forma: d[x] d[y] k [A] k 2 [A] [B] Se B si usa in grande eccesso, [B] ~ [B] 0 costante d[x] Dividendo membro a membro: d[y] [B] 0 Assumendo zero le concentrazioni iniziali dei prodotti [X] o [Y] o l'integrazione va da 0 a X e da 0 a Y e porta alla seguente equazione integrata: [X] [Y]. [B] 0 Il rapporto dei prodotti è indipendente dal tempo di reazione; dipende solo dal rapporto delle costanti di velocità del e del 2 ordine ed è inversamente proporzionale alla concentrazione iniziale di B. Se le concentrazioni di A e B sono confrontabili, l'equazione integrata diventa più complicata e non è molto utile per determinare le costanti di velocità: ([B] 0 [A] 0 ) ln{ [A] 0 ( [B]) [A] ( [B]) } t E' più pratico partire dall'equazione diferenziale e linearizzarla, dividendo entrambi i membri per [A]. k 2 [B] [A] [A] [A][B] Il termine di sinistra si ottiene per differenziazione grafica e si riporta in grafico in funzione della concentrazione di B : intercetta, : pendenza 9

Due composti sono in equilibrio e ciascuno reagisce dando un prodotto diverso: K A B k A A X k B B Y Es.: A e B sono due diverse conformazioni del reagente, e X e Y possono essere due prodotti isomeri formati dalle due diverse conformazioni. Se l'equilibrio si stabilisce rapidamente, il rapporto delle concentrazioni di A e B è determinato dalla costante di equilibrio K [B] [A] Per le velocità di formazione si possono scrivere le equazioni differenziali: d[x] k A [A] d[y] k B [B] k B K [A] dalle quali si ottiene il rapporto dei prodotti: [X] [Y] k A k B K Principio di CurtinHammett Il rapporto dei prodotti non dipende dalla popolazione relativa di A e B, ma dalla differenza di energia libera degli stati di transizione che portano ai prodotti. In tutti i casi in cui si abbia prima l'equilibrio tra A e B, la variazione di energia libera (ΔG E ) associata a K e l'energia libera di attivazione dell'equilibrio (ΔG E ) sono piccole in confronto alle energie libere di attivazione (ΔG AX e ΔG BY ) delle reazioni di formazione dei prodotti. Diagramma dell'energia libera che illustra il principio di CurtinHammett G 0 ΔG f (AX ) ΔG AX 0 ΔG f (A) 0 0 ΔG f (AX ) ΔG f (BY ) 0 ΔG f (BY ) ΔG BY 0 ΔG f (AB ) ΔG E 0 ΔG E 0 ΔG f (B) 0 0 ΔG f (X) ΔG f (Y) X k A A B k B Y 0

Si può dimostrare che / ΔG AX (AX / ) [X] [Y] e (ΔG 0 AX ΔG BY ΔG E )/RT 0 ( ΔG BY ΔG E ) 0 ΔG f (AX ) 0 ΔG f (BY ) Il rapporto dei prodotti non dipende dalla popolazione relativa degli stati in equilibrio, A e B, ma dipende dalla differenza di energia libera dei due stati di transizione che portano ai prodotti non si devono trarre analogie tra il rapporto delle specie all'equilibrio [A]/[B] ed il rapporto dei prodotti [X]/[Y], perché non è detto che il prodotto che si forma più velocemente venga dal reagente più stabile. Nel grafico A è più stabile di B, ma Y si forma da B con velocità maggiore. 3. REAZIONI CONSECUTIVE La più semplice delle reazioni consecutive è quella in cui il reagente A forma un intermedio B e poi il prodotto finale C con reazioni del primo ordine k A k B 2 C E ΔE AB (AB) (BC) ΔE BC coordinata di reazione il problema si semplifica con le condizioni iniziali [B] 0 [C] 0 0 Il bilancio delle masse richiede che [A] [B] [C] [A] 0

Sulla base del meccanismo, si possono scrivere le equazioni differenziali d[b] d[c] k [A] k [A] [B] [B] la soluzione di / è la forma integrata già nota [A] [A] o e kt per risolvere d[b]/ bisogna conoscere la forma analitica esplicita per [B] [B] dipende sia dalla sua velocità di formazione ( ) sia dalla sua velocità di decomposizione ( ). La soluzione dell'equazione differenziale avrà la forma: [B] z e t z 2 e k t 2 d[b] z e t z 2 e e la derivata in funzione del tempo è: t Sostituendo nell'equazione differenziale d[b] k [A] [B] [A], [B] e d[b]/ z e t z 2 e t [A] o e t z e t z 2 e t dopo semplificazione: z [A] k 0 Ora che si ha z, la soluzione prende la forma: [B] [A] k 0 e t z 2 e t Per determinare z 2, si possono usare le condizioni iniziali, cioè [B] 0 0 a t 0 0 [A] 0 z 2 z 2 [A] 0 Conoscendo z 2, si può ottenere la forma esplicita di [B] [B] [A] 0 (e t e t ) Per ottenere [C] in funzione del tempo, non è necessario integrare: basta usare l'espressione del bilancio delle masse [C] [A] 0 [A] [B] Mettendo al posto di [A] e [B] le espressioni trovate, si ottiene: [C] [A] 0 [A] 0 e t [A] k 0 (e t e t ) 2

Mettendo a fattor comune [A] 0 : [C] [A] 0 e t k { e t k e t } e per i termini esponenziali si può stabilire un denominatore comune: e t e [C] [A] 0 { t } La costante di velocità si può determinare dal grafico di ln[a] in funzione del tempo, sulla base dell'equazione [A] [A] 0 e t Se ci si pone nella situazione in cui [B] è massima, si può determinare il rapporto / [B] 0 [A] [B] max max [A] vale solo quando [B] max [B] si può determinare, da e dal rapporto delle concentrazioni Le proporzioni relative di A, B e C dipendono dalla grandezza relativa di e Se << B è presente in concentrazione molto bassa, perché viene istantaneamente trasformato in C Se >> A viene rapidamente trasformato in B e la trasformazione di B in C è predeterminata dalla grandezza di 3

Se ~ si hanno situazioni intermedie METODI APPROSSIMATI PER L'ANALISI DI REAZIONI COMPLESSE La maggior parte delle reazioni procedono con un meccanismo complesso, multistadio, che danno un insieme di equazioni differenziali non facili da integrare. Anche quando possono essere integrate, le equazioni risultanti sono così complesse da non essere di uso pratico per la determinazione delle singole costanti di velocità.. APPROSSIMAZIONE DEL PREEQUILIBRIO (PEA) necessità di approssimazioni Consideriamo un meccanismo di reazione in cui l'intermedio C si formi da A e B con un equilibrio e reagisca con D, per dare il prodotto (o i prodotti) finale A B C D K C X Se l'equilibrio del primo stadio si stabilisce molto velocemente, rispetto al secondo, il secondo stadio diventa lo stadio che determina la velocità (ratedetermining step o ratelimiting step) 4

il preequilibrio (K ) non perturba il secondo stadio ( ), perché la concentrazione di C è predeterminata del primo equilibrio. la concentrazione di C è sempre calcolabile con un elevato grado di approssimazione K [C] [A] [B] [A], [B] e [C] sono le concentrazioni all'equilibrio [A], [B] e [C] sono le concentrazioni al tempo t ~ [C] [A][B] il ratedetermining step è praticamente irreversibile (il ritorno è ancora più lento dell'andata e perciò trascurabile). di conseguenza la velocità della reazione è la velocità del primo stadio irreversibile d[x] k 2 [C][D] Nell'approssimazione PEA, la concentrazione di C, incognita e di solito non rilevabile, si esprime in funzione della costante di equilibrio [C] ~ [C] PEA K [A][B] d[x] [C][D] K [A][B][D] k exp [A][B][D] k exp K Profilo delle concentrazioni PEA mentre tutte le concentrazioni cambiano, il rapporto [C]/[A][B] rimane quasi costante per un tempo apprezzabile Profilo dell'energia 2 E pot / L'equilibrio può essere spostato a sinistra (K<) o a destra (K>) K k2 ABD CD X coordinata di reazione Il PEA è applicabile se lo stato di transizione del primo stadio ha energia molto più bassa dello stato di transizione del secondo stadio. 5

2. APPROSSIMAZIONE DELLO STATO STAZIONARIO (SSA) (Steadystate approssimation) Se il raggiungimento dell'equilibrio prima dello stadio ratedetermining è lento, PEA non è applicabile. k In questo caso il meccanismo si può rappresentare: A B C C D X Si possono scrivere le equazioni differenziali per la velocità di scomparsa di A e per la velocità di comparsa di C e X d[c] d[x] [A][B] [C] [A][B] [C] [C][D] [C][D] equazioni differenziali troppo complicate per dare soluzioni semplici necessità di approssimazioni << ~ E pot ABD CD X coordinata di reazione Se << ~ la concentrazione di C è sempre piccola e si può considerare quasi costante d[c] ~ 0 [A][B] [C] [C][D] [C] ~ [C] SSA [D] [A][B] 6

[D] k' exp non è veramente costante, perché include il solo modo di eliminare [D] da k' exp è scegliere delle condizionilimite Condizione << [D] Questa condizione è soddisfatta << oppure se ~ ma [D] è grande (per esempio, all'inizio della si può trascurare nel denominatore d[x] [A][B] la reazione diventa del secondo ordine Condizione 2 >> [D] Questa condizione è soddisfatta se >> oppure se ~ ma [D] è piccola (per esempio, alla fine della reazione) [D] si può trascurare nel denominatore d[x] [A][B][D] K [A][B][D] SSA si semplifica in PEA Se ~ [D] non si possono fare semplificazioni d[x] [D] [D] [A][B] k exp [A[[B] Se si può tenere [D] ~ costante durante una data reazione, si può linearizzare k exp k.. k exp [D] Si fa una serie di esperimenti, ciascuno con una diversa [D]. Riportando in grafico / k exp in funzione di /[D], si ha una retta con intercetta / e pendenza (/ )( / ) se si misura indipendentemente la costante di equilibrio K k si possono calcolare tutte le costanti di velocità 7

Le cinetiche di reazione forniscono molte informazioni sul meccanismo. Tutte le informazioni ottenute dalle cinetiche si riferiscono allo stato ratedetermining e per tutti quelli che lo precedono. Nessuna informazione si può ottenere sugli stadi che avvengono dopo quello ratedetermining. Il meccanismo della reazione definisce in modo univoco l'equazione della velocità. Non è vero il contrario: una data equazione cinetica può essere derivata per meccanismi diversi. Dalla espressione complessiva della velocità si possono trarre delle conclusioni: in una reazione monostadio l'equazione della velocità include le concentrazioni delle specie che formano lo stato di transizione (non quando si hanno reazioni di pseudoordine). Se il lato destro dell'equazione della velocità contiene più di un termine, si ha a che fare con meccanismi in competizione (reazioni parallele) se il lato destro di una equazione contiene due termini al denominatore ed in uno di questi c'è la concentrazione di uno dei reagenti, si ha la situazione dello stato stazionario. ESEMPI Per utilizzare l'approssimazione del preequilibrio o l'approssimazione dello stato stazionario occorre procedere nel modo seguente.. Proporre un meccanismo (sulla base delle osservazioni sperimentali) 2. Derivare una legge di velocità. 3. Esaminare possibili semplificazioni (variazione della concentrazione, velocità iniziale, velocità finale) 4. Progettare esperimenti per verificare la legge di velocità derivata. Uso di PEA Trasposizione del cloridrato di pinene a cloruro di isobornile k exp 8

Informazioni sperimentali: a) usando H* marcato isotopicamente, lo scambio di * nel composto organico avviene con una velocità 5 volte maggiore della stessa trasposizione molecolare k exch * H* k exch k rear 5 k rear * prova della formazione di un intermedio senza, che può tornare al prodotto di partenza 5 volte più velocemente di quanto trasponga Un intermedio del genere può essere un carbocatione H* [H*] b) la legge della velocità osservata empiricamente ha un ordine frazionario velocità k exp [pinene.h] 3/2 Determinazione del meccanismo:. Poiché H risulta un reagente necessario per la trasposizione, si deve formare per eliminazione dal substrato 2. Il carbocatione deve essere un intermedio chiave Viene proposto il seguente meccanismo: K H (A) (B) (A) H K 2 (C ) H 2 9

H k 3 2 (C ) H (D) Per illustrare questo meccanismo si possono usare le seguenti equazioni: K A B H A H K 2 C H 2 C H 2 k 3 D H E pot e con la figura: K K 2 k 3 coordinata di reazione 2. Si deriva la legge della velocità, usando l'approssimazione del preequilibrio velocità k 3 [C ][ H 2 ] K 2 [C ][ H 2 ] [A][H] [C ][ H 2 ] K 2 [A][H] velocità K 2 k 3 [A][ H] K [B][H] [A] [H] 2 [A] [H] K /2 [A] /2 velocità K /2 K2 k 3 [A] /2 3. Non è possibile nessuna semplificazione della legge di velocità derivata 4. La legge della velocità osservata sperimentalmente ha ordine frazionario, che è piuttosto raro, ed è riprodotta dalla legge derivata dall ipotesi di meccanismo: non sembrano necessarie altre prove 20

USO DI SSA Meccanismo di sostituzione nucleofila S N : idrolisi basecatalizzata del cloruro di terzbutile (CH OH k exp 3 ) 3 C (CH 3 ) 3 COH legge della velocità osservata sperimentalmente: e non: velocità k [tbu][oh ] velocità k exp [tbu] Determinazione del meccanismo:. Si propone il meccanismo: (CH (CH 3 ) 3 C 3 ) 3 C (CH OH 3 ) 3 C (CH 3 ) 3 COH 2. Si deriva la legge della velocità, sulla base di SSA velocità [tbu ][OH ] d[tbu ] k [tbu] [ ][tbu ] [OH ][tbu ] ~ 0 [tbu k ] SSA [] [OH [tbu] ] velocità k exp [ ] [OH [tbu][oh k ] [tbu] ] k [ ] k [OH ] k [ ] [OH ] 3. Si possono fare semplificazioni a t 0 e t a t 0 >> [OH ] velocità [tbu] legge di velocità iniziale del primo ordine, con log[conc] che varia linearmente con il tempo: 2

[ ] a t, << [OH ] velocità. [tbu][oh ] [ ] 4. Il modo migliore per verificare il meccanismo proposto è studiare la dipendenza dalla concentrazione di /k exp k exp [ ]. [OH ] Nitrazione aromatica del benzene (ArH) in presenza di acido solforico (BH) k exp ArH HNO 3 BH ArNO 2 H 2 O Determinazione del meccanismo:. Viene proposto il seguente meccanismo: H K H B H O NO 2 O NO 2 B H H O NO 2 H H 2 O NO 2 ArH NO 2 H Ar NO 2 E pot H B k Ar 3 NO 2 ArNO 2 BH k k K 3 coordinata di reazione 22

2. La velocità globale è la velocità del primo stadio irreversibile Usando SSA si ottiene: velocità [ArH][NO 2 ] d[no 2 ] [H 2 ONO 2 ] k [H 2 O][NO 2 ] k2 [ArH][NO 2 ] ~ 0 { [H 2 O] [ArH]}[NO 2 ] k [H 2 ONO 2 ] [NO 2 ]SSA [H 2 ONO 2 ] [H 2 O] [ArH] velocità [ArH][H 2 ONO 2 ] [H 2 O] [ArH] [H 2 ONO 2 ]PEA K [BH][HNO 3 ] [B ] K [B ][H 2 ONO 2 ] [BH][HNO 3 ] velocità K [BH][HNO 3 ] [H 2 O] [ArH] [B ] [ArH] 3. l'espressione della velocità si può semplificare In soluzione non acquosa, se [H 2 O] << [ArH] la reazione è di ordine zero velocità K [BH][HNO 3 ] [B ] k exp In soluzione acquosa, se [H 2 O] >> [ArH] la reazione è del primo ordine velocità K [BH][HNO 3 ] [B ] [H 2 O] [ArH] k exp [ArH] 4. Verifica: si esegue la reazione sia in solvente acquoso che in solvente non acquoso Sperimentalmente si è trovato che la nitrazione di tutti i composti aromatici segue una legge cinetica di ordine zero in soluzione non acquosa, ma di primo ordine in soluzione acquosa. 23

esempio: Complessi S reagiscono con cloruro di allile, formando solfuro allilico S N S All inizio vennero proposti due possibili meccanismi:. Meccanismo Associativo S N S N S. Meccanismo Dissociativo S N S N S E stata applicata SSA ai due possibili meccanismi: Cp 2 S py S All Cp 2 S py I S Cp 2 P velocità [S][All] / ( [ ] [ ]) k oss [S][All] Cp 2 S py S k 3 Cp 2 S py k 3 I' k 4 S Cp 2 P velocità k 3 k 4 [S][All] / (k 3 [py] [All]) k oss [S] Sperimentalmente è stata ottenuta una retta riportando in grafico /k oss in funzione di [py] 0 /[All] 0 Meccanismo Dissociativo 24

esempio: E stato riportato che la polimerizzazione del norbornene, a 73 C, catalizzata da titanaciclobutani segue una cinetica di ordine zero in norbornene n Consumo lineare (non esponenziale!) del norbornene L ordine zero osservato sperimentalmente è stato interpretato con uno stadio ratedetermining del catalizzatore, seguito da una reazione veloce con il norbornene. Applicando l approssimazione dello stato stazionario: A I B P d[p] [I][B] [A] [I][B] d[i] [A] [I][B] 0 d[p] [A] meccanismo: stadio lento apertura d'anello e cattura con il norbornene ripetute n volte n 25