Equazioni differenziali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni differenziali"

Transcript

1 Equazioni differenziali 1.1 Equazioni differenziali In analisi matematica un'equazione differenziale è una relazione tra una funzione u(x) non nota ed alcune sue derivate. Nel caso in cui u sia una funzione definita in un intervallo I dell'insieme dei numeri reali si parla di equazione differenziale ordinaria (abbreviato con EDO, o in alcuni testi ODE, acronimo di ordinary differential equation). La scrittura generale di un'equazione differenziale ordinaria, in una variabile x, di ordine n può essere espressa nella forma: Si chiama ordine o grado dell'equazione il grado della più alta derivata presente; ad esempio:. Oppure sono equazioni differenziali ordinarie (la funzione incognita u è funzione solo di x) del secondo ordine. Si chiama soluzione dell'equazione differenziale una funzione u (derivabile per un certo numero di volte) che soddisfi la relazione definita dall'equazione. In alcuni casi è possibile ricavare l'espressione analitica della soluzione. Alcuni permettono di trovare una soluzione esplicita, ossia, altri implicita, cioè nella forma che può essere portata in forma esplicita solo se f è invertibile, nel qual caso si ha Il problema di Cauchy Il problema di Cauchy associato ad una o più equazioni differenziali consiste nel risolvere il sistema formato dalle soluzioni delle equazioni e dalle condizioni iniziali. In formule: Il teorema di esistenza e unicità per un problema di Cauchy asserisce che esiste una sola funzione che soddisfa tutte queste ipotesi, se la funzione iniziale è sufficientemente regolare (ad esempio, se è differenziabile in un intorno di. La funzione dipende dai dati

2 iniziali per la funzione e le sue prime derivate: al variare di questi dati, chiamati condizioni al contorno, si ottiene quindi una classe di funzioni dipendenti da parametri. Equazioni differenziali alle derivate parziali Un'equazione differenziale alle derivate parziali (abbreviato con PDE, dalle iniziali delle parole del nome inglese: partial differential equation) è un'equazione che coinvolge derivate parziali di una funzione incognita. Nel caso in cui sia una funzione di variabili reali indipendenti, per cui, un'equazione differenziale alle derivate parziali di ordine avrà la forma generale: se la funzione dipende esplicitamente da almeno una delle derivate parziali di ordine di '. L'idea è di descrivere la funzione indirettamente attraverso una relazione fra sé stessa e le sue derivate parziali, invece di scrivere esplicitamente la funzione. La relazione deve essere locale: deve connettere la funzione e le sue derivate nello stesso punto. Una soluzione dell'equazione è una funzione che soddisfa la relazione 1.2 Equazioni differenziali del 1º ordine Le equazioni differenziali del primo ordine sono particolarmente importanti, in quanto è possibile ridurre un'equazione di grado n, superiore al primo, ad un sistema di equazioni del primo ordine, di cui almeno n-1 lineari. Il metodo è molto semplice. Sia data l'equazione di 3º grado Essa è equivalente al sistema ' Una volta trovate le soluzioni, tramite semplice integrazione si ottiene u. Equazioni differenziali lineari Le equazioni differenziali lineari del primo ordine hanno la forma canonica: dove la f è lineare in y. Pertanto l'equazione assume la forma: La soluzione generica venne trovata da uno dei Bernoulli, Jean. La soluzione generale è:

3 Equazioni differenziali a variabili separabili Sono tutte le equazioni differenziali espresse nella forma: dove le funzioni e sono definite e continue su intervalli. Si verifica immediatamente che, se, allora la funzione costante è soluzione dell'equazione. Se la funzione è derivabile con continuità, segue dal teorema di Picard che una soluzione, tale che sia diverso da 0 per un qualche ', non annullerà mai. È allora lecito dividere per, ottenendo: Integrando, si ha: Si può utilizzare il teorema di integrazione per sostituzione (, ottenendo: La soluzione soddisfa quindi, per una opportuna costante reale c, la condizione: dove B è una primitiva di 1/b e A di a, primitive che certamente esistono per la continuità di a e b. La formula precedente descrive una soluzione in forma implicita. Può essere difficile riuscire a trovare una formula che descriva la funzione inversa di B e quindi avere le soluzioni dell'equazione differenziale in forma "esplicita". Equazioni differenziali esatte Un terzo tipo di equazioni differenziali del primo ordine risolvibili analiticamente sono quelle riconducibili ad un differenziale esatto. Un'equazione di questo tipo può essere scritta come: dove p e q sono due funzioni qualunque. Consideriamo le derivate parziali di p rispetto ad y e di q rispetto a x: se queste due sono uguali, avremo un differenziale esatto. In simboli:

4 La soluzione generale è: oppure: Queste sono soluzioni implicite, per cui vale il discorso riguardo l'invertibilità della soluzione. Alcuni casi in cui le derivate miste non sono uguali, possono essere ricondotti a questo tramite un opportuno fattore d'integrazione µ per cui si abbia: Equazioni differenziali non lineari Consideriamo un'equazione differenziale di ordine n che indicheremo: Se l'equazione è lineare con coefficienti e termini noti continui in un determinato intervallo allora è possibile trovare una funzione reale dipendete da x e n parametri costanti c del tipo: detta anche integrale generale della funzione Se l'equazione è non lineare invece non è detto che si possa trovare una soluzione del tipo: che fornisca tutti gli integrali della funzione: e a tale scopo si definisce equazione non lineare la funzione: per la cui soluzione: detta integrale generale in forma esplicita, si hanno solo alcuni integrali di: e non necessariamente tutti gli integrali di essa.

5 Equazioni differenziali non lineari a variabili separabili del I ordine dove a(x) e b(x) sono funzioni continue rispettivamente nei propri intervalli di definizione, essa è non lineare se b non è un polinomio di I grado. Riconducendosi ad un problema di Cauchy imponendo una condizione iniziale ' è possibile risolvere il problema con il metodo di separazione delle variabili con la procedura enunciata precedentemente. 1.3 Equazioni differenziali del 2º ordine Un'equazione differenziale lineare ordinaria del secondo ordine è del tipo: dove sono funzioni continue in un intervallo reale. Per risolverla prendiamo prima in considerazione l'equazione differenziale omogenea associata: banale. Si cercano quindi soluzioni non banali della (2). ' che evidentemente ha come soluzione Se sono due soluzioni linearmente indipendenti di questa equazione allora anche: è soluzione per ogni valore delle costanti e, anzi tutte le soluzioni della (2) sono della forma (3). Ora, la differenza di due qualunque soluzioni della (1) deve essere soluzione della (2), quindi per trovare la soluzione generale dell'equazione (1) basterà trovare una soluzione particolare (1) e sommarle la generica soluzione dell'equazione omogenea associata: dell'equazione Ovviamente, invece di indicare la famiglia parametrica di tutte le soluzioni della (1), è possibile che venga chiesto di risolvere l'equazione (1) con dei valori iniziali assegnati (problema di Cauchy): ' In tal caso queste due condizioni serviranno a determinare i valori delle costanti arbitrarie associate alla (3') in modo da avere una soluzione particolare che verifica il suddetto "problema ai valori iniziali". L'equazione omogenea associata dove sono coefficienti costanti dati. La sua risoluzione consiste nel cercare una soluzione del tipo: Se sostituiamo nella (5), derivando, e mettiamo in evidenza :

6 Poiché l'esponenziale non si annulla mai, la (6) si annulla se e solo se: Le sue radici possono essere:reali e distinte:, allora la soluzione sarà del tipo: reali e coincidenti:, allora la soluzione sarà del tipo: complesse e coniugate: separatamente:, allora possiamo prendere la parte reale e immaginaria L'equazione completa Per determinare le soluzioni della (8) basta aggiungere alla generica soluzione dell'equazione omogenea associata una soluzione particolare della (8). Una tale soluzione particolare può essere trovata con il cosiddetto metodo della variazione delle costanti. Qui invece provvederemo a considerare alcuni casi particolari: dove particolare del tipo: dove è un è un polinomio di grado m. In questo caso cerchiamo una soluzione polinomio formale dello stesso grado m. Se però è soluzione (semplice) dell'equazione omogenea associata, allora dobbiamo cercare una soluzione del tipo: dove è un polinomio di grado m. In questo caso, se non è una radice dell'equazione (7), cerchiamo una soluzione particolare del tipo: dove è un polinomio formale dello stesso grado m. Se invece tipo: coincide con una delle radici della (7), allora cerchiamo una soluzione particolare del, dove r è la molteplicità della radice oppure oppure

7 dove sono costanti date. In questo caso, se non è una radice dell'equazione (7), cerchiamo una soluzione particolare del tipo: In caso contrario cerchiamo una soluzione del tipo:, dove sono costanti da determinare. oppure oppure dove In questo caso, se sono polinomi. non è una radice dell'equazione (7), cerchiamo una soluzione particolare del tipo:, dove ' e sono polinomi di grado rispettivamente uguale a quello di e. In caso contrario cerchiamo una soluzione del tipo: per la linearità dell'equazione possiamo risolvere separatamente: ed alla fine sommare le con soluzioni:. Esempi y (x) 3y (x)+2y(x)=0 (1) Il polinomio associato all'equazione differenziale (1) è λ 2 3 λ+ 2 = (λ 1)(λ 2). Questo polinomio ha due radici reali distinte λ 1 =1 e λ 2 =2. Dunque due soluzioni indipendenti di questa equazione sono y 1 (x)=e λ 1 x = e x e y2(x)=e λ 2 x =e 2x. Ogni

8 soluzione di questa equazione è dunque una combinazione lineare di queste due soluzione, cioè dove c 1 e c 2 sono costanti reali qualunque. y(x) = c 1 e x + c 2 e 2x Il polinomio associato è y 2y +2y=0 λ 2 2λ+2 Questo polinomio non ha radici reali ma le due soluzioni complesse sono date da λ 12 = α±βi. con α = 1 e β = 1. In questo caso due soluzioni reali indipendenti dell'equazione differenziale sono y 1 (x) = e αx sin(βx)=e x sinx, y 2 (x) = e αx cos(βx)=e x cosx Tutte le soluzioni reali sono quindi del tipo y(x) = c 1 e x sinx + c 2 e x cosx dove c 1 e c 2 sono costanti reali qualunque. 4y 4y +1=0 (3) Il polinomio associato è 4λ 2 4λ+1 che ha una unica radice doppia λ = 1/2. In questo caso due soluzioni indipendenti sono y1(x)=e λx = e x/2 e y2(x)=x e λx = xe x/2. L'insieme di tutte le soluzioni è dato quindi da y(x) = c 1 y 1 (x) + c 2 y 2 (x) = (c 1 + c 2 x) e x/2 In generale quando una radice λ ha ordine m, l'insieme delle soluzioni contiene le funzioni y(x) = p(x) e λx dove p è un polinomio di grado minore di m. y y =0 (4)

9 In questo caso il polinomio associato è λ 3 λ 2 =λ 2 (λ 1) che ha la radice λ 1 =0 di molteplicità 2 e la radice λ 2 =1 con molteplicità 1. Tre soluzioni indipendenti sono dunque y 1 (x)=e λ 1 x = 1, y 2 (x)=x e λ 1 x =x, y 3 =e λ 2 x = e x L'insieme di tutte le soluzioni è dato da y(x) = c 1 + c 2 x + c 3 e x y 3y +2y=x 2 e 3x (5) Ogni soluzione y(x) della equazione non omogenea può essere scritta nella forma y(x)=[ y](x) + y 0 (x) dove [ y](x) è una soluzione fissata dell'equazione non omogenea e y 0 (x) è la soluzione generica dell'equazione omogenea. Per quanto visto prima sappiamo che ogni soluzione y 0 dell'equazione omogenea associata (1) si può scrivere come y 0 (x) = c 1 e x + c 2 e 2x Non ci resta che trovare una soluzione particolare dell'equazione non omogenea. Un risultato generale ci dice che se il termine noto è del tipo q(x)e µ x dove q(x) è un polinomio e µ non è una radice del polinomio associato all'equazione omogenea, allora si può trovare una soluzione particolare della forma y (x) = p(x) e µx dove p(x) è un polinomio (da determinare) dello stesso grado di q. Nel nostro caso visto che λ 2 3λ+2 si ha λ 1 =1 ε λ 2 =2 possiamo dunque cercare una soluzione particolare della forma Si avrà dunque y (x) = (ax 2 +bx+c)e 3x y (x) = [2ax + b+3ax 2 +3bx+3c] e 3x = [3ax 2 +(2a+3b)x+b+3c] e 3x y (x) = (6ax + 2a + 3b +9ax 2 + (6a+9b)x+3b+9c) e 3x = (9ax 2 + (12a+9b)x + 2a + 6b + 9c) e 3x y 3y +2y = [(9a 9a+2a)x 2 + (12a+9b 6a 9b+2b)x +2a+6b+9c 3b 9c+2c] e 3x = [2ax 2 + (6a+2b)x + 2a + 3b + 2c] e 3x

10 Poiche y 3y +2y =x 2 e 3x 2a=1 6a+2b=0 2a+3b+2c=0 Risolto a= 2 1 b=- 2 3 c= 4 7 y(x) = 1 x x + e 4 3x + c 1 e x + c 2 e 2x Equazioni differenziali del secondo ordine a coefficienti variabili L'omogenea associata dove sono funzioni continue in un intervallo dell'asse reale. La sua risoluzione consiste nel cercare una soluzione del tipo (3) come già visto nella sezione precedente. L'equazione completa dove sono funzioni continue in un intervallo reale. Sappiamo che la soluzione particolare va sommata alla soluzione dell'omogenea associata. In questo caso si può usare il metodo delle variazioni delle costanti. Cerchiamo una soluzione dello stesso tipo di quella dell'omogenea considerando però le costanti come funzioni: dove e sono due soluzioni indipendenti dell'equazione omogenea associata (2) (due soluzioni sono tra loro indipendenti se il loro rapporto NON è costante). Dal momento che e sono note e le funzioni e incognite, queste ultime vanno determinate in modo che (9) soddisfi l'equazione completa (1). Inoltre, poiché le funzioni da determinare sono due, si può imporre una seconda condizione su e a proprio piacimento. Si scelga: Derivando la (9) due volte e utilizzando la (10):

11 Sostituendo nella (1): Abbiamo così un sistema nelle incognite : Una volta ricavati (è dimostrabile che questo risulta sempre fattibile data l'indipendenza delle soluzioni e ), si ricavano. Infine la soluzione sarà: e quella completa sarà: 1.4 metodo delle variazione delle costanti Il metodo delle variazione delle costanti (o di Lagrange) è un metodo generale che consente di determinare l'integrale generale di un'equazione differenziale lineare di qualunque ordine e qualunque sia la funzione continua che costituisce il termine noto. Questo metodo risulta applicabile laddove si riescano a determinare n soluzioni indipendenti dell'equazione omogenea associata e delle primitive di opportune funzioni che forniscono la soluzione di un sistema. Il metodo è qui illustrato inizialmente per equazioni del primo e del secondo ordine, e quindi generalizzato a equazioni di ordine narbitrario. La variabile da cui dipende la funzione incognita è chiamata in tutti gli esempi. Equazioni del primo ordine In una equazione differenziale del primo ordine in forma normale Il metodo di variazione delle costanti consiste nella ricerca di soluzioni del tipo ottenute a partire da una soluzione dell'equazione omogenea associata del tipo

12 dove è una primitiva di e è una costante arbitraria. Il motivo per cui il metodo si chiama così è dovuto al fatto che la costante viene trasformata in una funzione da determinare. Il metodo consiste essenzialmente nella sostituzione di nell'equazione differenziale originaria. Per effettuare la sostituzione, è necessario calcolare innanzitutto la derivata prima, usando la regola di Leibniz: Sostituendo quanto appena ricavato nell'equazione di partenza si ottiene: da cui, sostituendo: Semplificando si ottiene: Isolando ciò che ci interessa e integrando entrambi i membri: da cui l'integrale generale dell'equazione completa è: A questo punto l'unica difficoltà è il calcolo di un integrale che può non essere immediato, o addirittura, non risolvibile con metodi analitici. Equazioni del secondo ordine Una equazione differenziale del secondo ordine del tipo: Il metodo di variazione delle costanti in questo caso consiste nella ricerca di soluzioni del tipo: costruite a partire da due soluzioni: e dell'equazione omogenea associata: Poiché spesso l'equazione omogenea associata è di più semplice risoluzione, questo metodo risulta essere utile in molti casi concreti. Il metodo consiste essenzialmente nella sostituzione di nell'equazione differenziale originaria. Per effettuare la sostituzione, è necessario calcolare innanzitutto la derivata prima, usando la regola di Leibniz:

13 Al fine di semplificare i calcoli, si impone la condizione seguente: Questo fa sì che risulti: e di conseguenza: Sostituendo quanto appena ricavato nell'equazione di partenza si ottiene: e quindi I primi due addendi sono identicamente nulli, poiché e sono soluzioni dell'equazione omogenea, quindi il tutto si riduce a: Tutto ciò porta allo studio del sistema lineare di due equazioni nelle incognite e : Il determinante della matrice è il Wronskiano di e : questo è nullo se e solo se le due soluzioni sono dipendenti. Ne segue che in questo caso non è mai nullo, ed il sistema ha sempre una soluzione, data da: Integrando e si può ottenere a scelta o una soluzione particolare dell'equazione di partenza (integrando definitamente) o l'integrale generale dell'equazione di partenza (integrando indefinitamente). Equazioni di ordine n

14 Nel caso di equazioni di ordine n, il metodo di variazione delle costanti acquista la seguente forma: Si considerano le n soluzioni indipendenti dell'equazione omogenea: e si cerca una soluzione particolare dell'equazione nella forma:. Si risolve il seguente sistema lineare nelle n incognite Il determinante di questo sistema viene detto determinante wronskiano e, come sopra, si può dimostrare che è sempre non nullo a partire dall'indipendenza delle soluzioni dell'equazione omogenea. Si determinano le funzioni incognite integrando gli n termini soluzioni del sistema di cui sopra, per ricavare l'integrale generale dell'equazione. Esempi L'equazione omogenea associata è L'equazione caratteristica è. che ha. Quindi occorre trovare i numeri

15 L'integrale generale della omogenea è quindi y 1 (x) = e αx sin(βx)= sinx, y 2 (x) = cos(βx)= cosx Utilizziamo ora il metodo delle variazioni delle costanti. La forma della soluzione particolare è.le derivate di devono soddisfare il sistema: Con Cramer Ho ottenuto ora il valore di. Ma mi servono le primitive, quindi

16 Quindi, sostituendo la soluzione della non omogenea di partenza, è con e Iniziamo studiando l'omogenea associata: L'equazione caratteristica associata è: Abbiamo due soluzioni reali e coincidenti, la famiglia di soluzioni che soddisfa l'equazione differenziale omogenea è: con costanti da determinare. Adesso andiamo alla ricerca della soluzione particolare, che con in questo caso: Calcoliamo il Wronskiano

17 Di conseguenza: mentre Di conseguenza la soluzione particolare è:. L'integrale generale è: Imponiamo le condizioni iniziali:

18 La funzione soluzione del problema di Cauchy è:

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI 1 Primo ordine - variabili separabili Sia dato il problema di Cauchy seguente: { y = a(x)b(y) Si proceda come segue y(x 0 ) = y 0 (1) Si calcolino le radici dell equazione b(y)

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Equazioni differenziali

Equazioni differenziali 1 Equazioni differenziali Definizioni introduttive Una equazione differenziale è una uguaglianza che contiene come incognita una funzione f x, insieme con le sue derivate rispetto alla variabile indipendente

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Correzione del quarto compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del quarto compitino di Analisi 1 e 2 A.A. 2014/2015 Correzione del quarto compitino di Analisi e A.A. 04/05 Luca Ghidelli, Giovanni Paolini, Leonardo Tolomeo 4 maggio 05 Esercizio Testo. Risolvere il seguente problema di Cauchy: y = 3x e 8y y( ) = 0. Prima

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009 Alcune primitive Francesco Leonetti ) 5 giugno 009 Introduzione La risoluzione di alcune equazioni differenziali ci ha mostrato come sia importante la capacità di trovare le primitive di funzioni assegnate.

Dettagli

EQUAZIONI DIFFERENZIALI CAPITOLO 4 EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III)

EQUAZIONI DIFFERENZIALI CAPITOLO 4 EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III) EQUAZIONI DIFFERENZIALI LINEARI A COEFFICIENTI COSTANTI (III) EQUAZIONI NON OMOGENEE L'equazione, dove f y py qy f nome di equazione non omogenea è una funzione non identicamente nulla, prende il Dimostriamo

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Equazioni Differenziali (4)

Equazioni Differenziali (4) Equazioni Differenziali (4) Esercizio 1 Risolvere il problema di Cauchy y = e y x + y x, y(1) = 1. Esercizio 2 Risolvere il problema di Cauchy y = 2y 1 x 2 + 1 x, y(0) = 0. Esercizio 3 Risolvere il problema

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli

9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine

9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine 9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine 349 y = f(y, x), (9.23) allora la sostituzione z = y conduce all equazione del primo ordine z = f(z, x) nell incognita z = z(x).

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 Una volta stabilito che per ogni funzione continua f l equazione (4.23) è risolubile, ci interessa determinarne l integrale generale.

Dettagli

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini

ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A Prof. G.Cupini ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) A.A.2009-2010 - Prof. G.Cupini Equazioni differenziali ordinarie del primo ordine (lineari, a variabili separabili, di Bernoulli) ed

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti

appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a autore: Giovanni Alberti appunti per il corso di Analisi Matematica I corso di laurea in Ingegneria Gestionale, a.a. 2014-15 autore: Giovanni Alberti Equazioni differenziali [versione: 2 gennaio 2015] Richiamo delle nozioni fondamentali

Dettagli

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti

LEZIONI DI ANALISI MATEMATICA I. Equazioni Differenziali Ordinarie. Sergio Lancelotti LEZIONI DI ANALISI MATEMATICA I Equazioni Differenziali Ordinarie Sergio Lancelotti Anno Accademico 2006-2007 2 Equazioni differenziali ordinarie 1 Equazioni differenziali ordinarie di ordine n.................

Dettagli

1 Equazioni differenziali

1 Equazioni differenziali 1 Equazioni differenziali Iniziamo adesso lo studio di alcuni tipi di equazioni differenziali. Questo argomento è uno dei più importanti, se non il più importante dal punto di vista applicativo. Basti

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3)

ẋ + a 0 x = 0 (1) Dimostrazione. Risolvendo la (1) per separazione di variabili, troviamo x(t) = c 0 e a0t (2) φ :R S 1 ẍ + a 1 ẋ + a 0 x = 0 (3) Corso di laurea in Matematica - Anno Accademico 006/007 FM1 - Equazioni dierenziali e meccanica Il metodo della variazione delle costanti (Livia Corsi Il metodo della variazione delle costanti è una tecnica

Dettagli

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo

Equazioni differenziali del secondo ordine a coefficienti costanti Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo 9 Lezione Equazioni differenziali del secondo ordine a coefficienti costanti Def. (C) Un equazioni differenziale del secondo ordine a coefficienti costanti è del tipo u + au + bu = f(t), dove a e b sono

Dettagli

Raffaele D. Facendola

Raffaele D. Facendola Analisi 2 Argomenti Curve in Parametrizzazione e sostegno Parametrizzazioni equivalenti Lunghezza di una curva Parametro arco Campi vettoriali Definizione Linea di flusso Gradiente Operatore di Laplace

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI a cura di Michele Scaglia ESERCIZI SULLE EQUAZIONI DIFFERENZIALI LINEARI DEL PRIMO OR- DINE A VARIABILI SEPARABILI TRATTI DA TEMI D ESAME 3) [TE /0/00] Determinare

Dettagli

Appunti sulle equazioni differenziali lineari del secondo ordine

Appunti sulle equazioni differenziali lineari del secondo ordine Appunti sulle equazioni differenziali lineari del secondo ordine 10 maggio 2009 Dopo aver trattato delle equazioni differenziali lineari del primo ordine (cioè quelle in cui interviene la sola derivata

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

EQUAZIONI LINEARI DEL SECONDO ORDINE

EQUAZIONI LINEARI DEL SECONDO ORDINE EQUAZIONI LINEARI DEL SECONDO ORDINE Umberto Marconi Dipartimento di Matematica Università di Padova 1 Considerazioni generali Nel seguito le funzioni sono continue (e derivabili quanto basta) su un intervallo

Dettagli

Sistemi lineari a due Equazioni

Sistemi lineari a due Equazioni Sistemi lineari a due Equazioni Significato Grafico Posizioni reciproche Tecniche Risolutive: I Metodo Metodo del Confronto diretto (Transitivo) II Metodo Metodo di Sostituzione III Metodo Metodo di Riduzione

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ.

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19

Algebra Lineare Ingegneria Chimica Anno Accademico 2018/19 Algebra Lineare Ingegneria Chimica Anno Accademico 08/9 Caboara Esercitazione guidata 5 ottobre 08 Esercizio. Trovare le soluzioni in C dell equazione (z 4 + )(z + iz + i) = 0 Soluzione: Le soluzioni dell

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 2018 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 5 settembre 08 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCII SULLE EQUAIONI DIFFERENIALI PRIMA PARTE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica 2, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica,

Dettagli

Integrazione di equazioni differenziali lineari. Il metodo di Cauchy

Integrazione di equazioni differenziali lineari. Il metodo di Cauchy 1 EQUAZIONI DIFFERENZIALI LINEARI OMOGENEE Integrazione di equazioni differenziali lineari. Il metodo di Cauchy Marcello Colozzo 1 Equazioni differenziali lineari omogenee Sia data l equazione differenziale

Dettagli

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola:

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 1 Primo Appello 4 Febbraio 2019 Docente: Numero di iscrizione: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere motivate.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Esercizi di Geometria 1 - Foglio 1

Esercizi di Geometria 1 - Foglio 1 Esercizi di Geometria 1 - Foglio 1 Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso 22 dicembre 2017 Esercizio 1. Sia V uno spazio vettoriale sul

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

EQUAZIONI DI II GRADO

EQUAZIONI DI II GRADO RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------

Dettagli

Equazioni differenziali lineari di ordine n

Equazioni differenziali lineari di ordine n Equazioni differenziali lineari di ordine n Si tratta di equazioni del tipo u (n) (t) + a 1 (t)u (n 1) (t) +... + a n 1 (t)u (t) + a n (t)u(t) = f(t), t I, (1) con n intero 2 ed I R intervallo reale, in

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =

ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = = ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma.

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma. Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 6 Soluzioni. Esercizio Determinare l integrale generale dell equazione autonoma.. Soluzione. y = y(y )(y 2) y(y )(y 2) dy = Tenuto conto che y(y )(y

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Prof. Giuseppe Scippa [EQUAZIONI DIFFERENZIALI] Sintesi dei principali tipi dei equazioni differenziali.

Prof. Giuseppe Scippa [EQUAZIONI DIFFERENZIALI] Sintesi dei principali tipi dei equazioni differenziali. 2015 Prof. Giuseppe Scippa [EQUAZIONI DIFFERENZIALI] Sintesi dei principali tipi dei equazioni differenziali. EQUAZIONI DIFFERENZIALI ( pag. 2088) Si chiama equazione differenziale un equazione che ha

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

EQUAZIONI E SISTEMI DI 2 GRADO

EQUAZIONI E SISTEMI DI 2 GRADO EQUAZIONI E SISTEMI DI GRADO Prof. Domenico RUGGIERO In questa breve trattazione vengono esposti la formula risolutiva di equazioni di secondo grado ed il procedimento risolutivo, per sotituzione, di sistemi

Dettagli

Sistemi lineari 1 / 41

Sistemi lineari 1 / 41 Sistemi lineari 1 / 41 Equazioni lineari Una equazione lineare a n incognite, è una equazione del tipo: a 1 x 1 + a 2 x 2 + + a n x n = b, dove a 1,,a n,b sono delle costanti (numeri) reali. I simboli

Dettagli

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli