Sistemi lineari a due Equazioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi lineari a due Equazioni"

Transcript

1 Sistemi lineari a due Equazioni Significato Grafico Posizioni reciproche Tecniche Risolutive: I Metodo Metodo del Confronto diretto (Transitivo) II Metodo Metodo di Sostituzione III Metodo Metodo di Riduzione (Addizione e Sottrazione) IV Metodo Metodo di Cramer - 0

2 Sistemi lineari a due Equazioni Quando due o più equazioni valgono contemporaneamente, si parla si sistema di equazioni. Un sistema di equazioni è risolvibile se il numero delle incognite è uguale (o inferiore) al numero delle equazioni indipendenti. Se il numero delle incognite supera il numero di equazioni, allora il sistema non è risolvibile, ossia, non è possibile attribuire dei valori univoci per le incognite, che quindi, per definizione non sono delle incognite ma bensì delle variabili. L esempio più semplice è quello della retta cartesiana, dove è presente una sola equazione ma contenente due variabili, la e la, che non assumono quindi un valore specifico ma hanno la caratteristica di disporsi lungo una retta. Significato Grafico Intersezione Retta Retta Intersezione Retta Parabola Sistema lineare Sistema non lineare Posizioni Reciproche Due rette possono essere reciprocamente: Incidenti Sistema Determinato Due rette incidenti sono complanari, la loro intersezione genera un punto e il sistema ha una soluzione reale. Parallele Sistema Impossibile Due rette parallele sono complanari, non hanno nessun punto in comune e il sistema non ha alcuna soluzione, si parla di equazioni linearmente dipendenti la cui risoluzione non è possibile. Coincidenti Sistema Indeterminato Due rette coincidenti sono collineari, hanno tutti i loro punti in comune e il sistema non ha una soluzione determinata - 1

3 TECNICHE RISOLUTIVE I Metodo Metodo del Confronto (Proprietà Transitiva) Questo metodo è indicato quando le due rette sono date in forma esplicita Consiste nel risolvere entrambe le equazioni rispetto ad una incognita. In virtù della proprietà transitiva possiamo eguagliare i membri delle due equazioni. Es. Dato il seguente sistema di equazioni rappresentante due rette date nella loro forma esplicita: =4 2 =3 +3 possiamo eguagliare tra loro i membri destri delle equazione ottenendo un equazione polinomiale di primo grado: 4 2 = che si risolve portando a sinistra dell uguale i monomi con l incognita e a destra i termini noti 4 3 = per poi giungere al valore dell incognita = una volta trovato il valore dell incognita x il sistema non è ancora risolto, occorre trovare anche il valore dell altra incognita. A tale scopo occorre prendere il valore della appena trovato ed inserirlo in una delle due equazioni iniziali. È importante considerare che sia una che l altra equazione dovranno portare allo stesso valore per, dunque, si sceglie di considerare la più semplice delle due equazioni, ed eventualmente, si può utilizzare l altra come verifica. con la prima equazione =4 2 h =5 =4 5 2 =18 oppure con la seconda =3 +3 h =5 =3 5+3 =18 le due rette di equazione rispettivamente =4 2, e =3 +3, si incontrano nel punto = 5,18 la soluzione del sistema può quindi essere espressa nel modo seguente: = 5,18-2

4 II Metodo Metodo di Sostituzione Questo metodo è indicato quando una retta è data in forma esplicita e una in forma implicita Consiste nel risolvere un equazione rispetto a una delle due incognite e sostituire l incognita ricavata nell altra equazione. Rimane solo un equazione ad una incognita, si risolve e si ottiene il valore. Sostituendo nel risultato parziale precedente, si ottiene il valore dell altra incognita. Es. = =3 si inserisce la prima equazione nella seconda: = 3 ottenendo un equazione con una incognita, e si risolve: dunque: = 3 ; 3 = 3 6 ; 3 = 3 = Si trova poi l altra incognita inserendo il valore trovato nell equazione ricavata precedentemente: dunque: = 5 2 ; = ; = 5 2 = le due rette si incontrano nel punto: = 1, 7 si esprime quindi la soluzione: = 1, 7-3

5 III Metodo Metodo di Riduzione (Addizione e Sottrazione) Questo metodo è indicato quando le due rette sono date in forma implicita Questa tecnica consiste nel sommare i termini simili tra loro, in modo da ottenere l annullamento di uno dei due termini con l incognita. Es = =3 si può moltiplicare la prima equazione per = = = 5 sommando membro a membro, la sparisce e rimane l equazione ad una incognita: = 5 = per ricavare la seconda incognita, partendo nuovamente dal sistema iniziale 3 +2 = =3 moltiplichiamo la prima per 3 e la seconda per = = =6 sommando membro a membro, la y sparisce e rimane 3 = 6 = 2 le due rette si incontrano nel punto = 2,5 per cui, la soluzione del sistema = 2,5-4

6 IV Metodo Metodo di Cramer Questo metodo è indicato quando le due rette sono date in forma implicita Il metodo di Cramer, nome dato in onore dell omonimo matematico del 700 (Gabriel Cramer ) dà una soluzione esplicita del sistema, attraverso una tecnica che sfrutta le proprietà delle matrice e dei determinati. Questa tecnica ha il vantaggio di essere molto meccanica ed è particolarmente facile da programmare al calcolatore, ad esempio con un foglio elettronico. Dato il seguente sistema di equazioni: + = + = lo si risolve col modo seguente: costruzione delle matrici e calcolo del determinante: = = = = = = si ricavano le incognite x e y nel seguente modo = = Es. Dato il seguente sistema di due equazioni lineari 8 +7 = = 1 si costruiscono le seguenti matrici = = =25 = = =35 = = =15 = = la soluzione è dunque = 5 3,7 3-5

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

PROBLEMI DI SCELTA dipendenti da due variabili d azione

PROBLEMI DI SCELTA dipendenti da due variabili d azione prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)

Dettagli

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio.

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio. Problema 1 Un'industria calzaturiera produce scarpe da tennis che vende a 40 il paio e scarponi da trekking che vende a 50 il paio. Ogni paio di scarpe richiede 6 minuti di lavorazione a macchina e 5 minuti

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Le sezioni coniche: parabole e circonferenze.

Le sezioni coniche: parabole e circonferenze. Le sezioni coniche: parabole e circonferenze. Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. un pò di storia... 2 Menecmo...............................................................

Dettagli

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

Problemi di scelta ESEMPI

Problemi di scelta ESEMPI ESEMPI Risolvere i seguenti problemi 1. Una ditta deve effettuare delle spedizioni di un certo tipo di merce. Ha la possibilità di scegliere una o l altra delle due tariffe seguenti: a) 2.500 lire al quintale

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

Matematica con il foglio di calcolo

Matematica con il foglio di calcolo Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Diversamente dal caso precedente, che si concentrava sullo schema della trave appoggiata, affrontiamo ora il dimensionamento di una trave a sbalzo.

Diversamente dal caso precedente, che si concentrava sullo schema della trave appoggiata, affrontiamo ora il dimensionamento di una trave a sbalzo. Come nell esercitazione precedente cerchiamo di dimensionare una trave, per la quale sono state scelte 3 soluzioni tipologiche: legno, acciaio e cemento armato. Diversamente dal caso precedente, che si

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

WINDOWS95. 1. Avviare Windows95. Avviare Windows95 non è un problema: parte. automaticamente all accensione del computer. 2. Barra delle applicazioni

WINDOWS95. 1. Avviare Windows95. Avviare Windows95 non è un problema: parte. automaticamente all accensione del computer. 2. Barra delle applicazioni WINDOWS95 1. Avviare Windows95 Avviare Windows95 non è un problema: parte automaticamente all accensione del computer. 2. Barra delle applicazioni 1 La barra delle applicazioni permette di richiamare le

Dettagli

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE L MISUR DI GRNDI DISTNZE ON L TRINGOLZIONE ome si può misurare l altezza di un lampione senza doversi arrampicare su di esso? Se è una giornata di sole, è possibile sfruttare l ombra del lampione. on un

Dettagli

Lezione 3: Il problema del consumatore:

Lezione 3: Il problema del consumatore: Corso di Economica Politica prof. S.Papa Lezione 3: Il problema del consumatore: scelta ottimale Facoltà di Economia Università di Roma La Sapienza Lucidi liberamente tratti dai lucidi del prof. Rodano

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

DIPARTIMENTO MATEMATICO-INFORMATICO anno scolastico 2013/2014 Testo in uso: Matematica.verde, vol I e II Ediz. Zanichelli

DIPARTIMENTO MATEMATICO-INFORMATICO anno scolastico 2013/2014 Testo in uso: Matematica.verde, vol I e II Ediz. Zanichelli ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE ELENA DI SAVOIA PIERO CALAMANDREI BARI ISTITUTO TECNOLOGICO CHIMICO Ambientale e Sanitario DIPARTIMENTO MATEMATICO-INFORMATICO anno scolastico 2013/2014 Testo

Dettagli

La Prova Invalsi 2014. per la scuola secondaria di 2 grado

La Prova Invalsi 2014. per la scuola secondaria di 2 grado La Prova Invalsi 2014 MATHES - Sezione di Roma per la scuola secondaria di 2 grado Il test che l Invalsi ha utilizzato nell anno 2014 per la rilevazione degli apprendimenti in matematica conseguiti nelle

Dettagli

Esercizi svolti. Elettrotecnica

Esercizi svolti. Elettrotecnica Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

Definizione unitaria delle coniche

Definizione unitaria delle coniche Autore/i: M.Maddalena Bovetti docente di matematica della Scuola Media Superione Titolo: Definizione unitaria delle coniche Collocazione: Difficoltà: Livello di scolarità: Periodo scolastico: Abstract:

Dettagli

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi CALCOLO COMBINATORIO DISPOSIZIONI PERMUTAZIONI COMBINAZIONI Probabilità Esercitazione n. 1 Pagina 1 1) In quanti modi 8 persone possono sedersi su

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

CINEMATICA DEL PUNTO: Caduta gravi

CINEMATICA DEL PUNTO: Caduta gravi CINEMATICA DEL PUNTO: Caduta gravi 1. Un proiettile viene sparato da un cannone a un angolo di 35 rispetto al piano orizzontale. Esso colpisce il suolo a 4 km dal cannone. Calcolare: (a) la velocità iniziale

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

RIDUZIONE DELLE DISTANZE

RIDUZIONE DELLE DISTANZE RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,

Dettagli

1 Esercizi di Riepilogo sui piani di ammortamento

1 Esercizi di Riepilogo sui piani di ammortamento 1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.

Dettagli

I costi d impresa (R. Frank, Capitolo 10)

I costi d impresa (R. Frank, Capitolo 10) I costi d impresa (R. Frank, Capitolo 10) COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Il metodo delle coordinate: vantaggi e pericoli. (schema della lezione)

Il metodo delle coordinate: vantaggi e pericoli. (schema della lezione) Il metodo delle coordinate: vantaggi e pericoli. (schema della lezione) Riferimenti: V. Villani, Cominciamo dal punto, 13. Quali sono i pregi di una trattazione della geometria per via analitica? E quali

Dettagli

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I 1 Esercizio Un automobile sfreccia alla velocità costante v A = 180 Km/h lungo una strada, passando per un punto di appostamento di una volante della polizia stradale. La volante, dopo un tempo tecnico

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Appunti sull utilizzo di Excel per la soluzione di problemi di matematica finanziaria.

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella)

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella) Dipartimento di Economia, Statistica e Finanza Corso di Laurea in ECONOMIA Esercizio 1 Macroeconomia Equilibrio in Economia Aperta Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Psiche e complessità. 4. L approccio bottom-up ai problemi

Psiche e complessità. 4. L approccio bottom-up ai problemi Psiche e complessità 4. L approccio bottom-up ai problemi Complessità della mente FENOMENI LINEARI (LOGICA, RAZIONALITA, CONTENUTI ESPLICITI) FENOMENI NON LINEARI (ASSOCIAZIONI ANALOGICHE, CONTENUTI IMPLICITI)

Dettagli

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne

Dettagli

Infrastruttura telematica: visione d insieme Mauro Nanni

Infrastruttura telematica: visione d insieme Mauro Nanni Infrastruttura telematica: visione d insieme Mauro Nanni Si sono fin qui presi in considerazione i singoli elementi che costituiscono l infrastruttura telematica delle scuole. Per utilizzare in modo semplice

Dettagli

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra. Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto

Dettagli

Alimentatore stabilizzato con tensione di uscita variabile

Alimentatore stabilizzato con tensione di uscita variabile Alimentatore stabilizzato con tensione di uscita variabile Ivancich Stefano Classe 4 EA a.s. 2013/2014 Docenti: E. Minosso R. Bardelle Tecnologia e Progettazione di Sistemi Elettronici ed Elettrotecnici

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Calibrazione di modelli matematici

Calibrazione di modelli matematici Capitolo 4 Calibrazione di modelli matematici Supponiamo che siano disponibili conteggi o stime di una data popolazione in stagioni successive. Ad esempio, consideriamo i dati per la quantità di piante

Dettagli

G1. Generalità sulle funzioni

G1. Generalità sulle funzioni G. Generalità sulle funzioni G. Notazioni utilizzate Dati due numeri detti estremi dell intervallo, l intervallo è l insieme dei numeri reali compresi tra essi. Per esempio con la notazione

Dettagli

Manuale cliente finale portale accertamenti delibera 40

Manuale cliente finale portale accertamenti delibera 40 Manuale cliente finale portale accertamenti delibera 40 Il presente manuale è indirizzato al cliente, per inoltrare la documentazione per l attivazione/riattivazione della fornitura con Accertamento Documentale.

Dettagli

Filtri passa alto, passa basso e passa banda

Filtri passa alto, passa basso e passa banda Filtri passa alto, passa basso e passa banda Valerio Toso Introduzione In elettronica i ltri sono circuiti che processano un segnale modicandone alcune caratteristiche come l'ampiezza e la fase. Essi si

Dettagli

ELENCHI DEL PERSONALE

ELENCHI DEL PERSONALE ELENCHI DEL PERSONALE Cineca CSA Pagina 1 di 23 Funzione di menu: ELENCHI DEL PERSONALE. Percorso di menu (previa necessaria autorizzazione all uso): PERSONALE > ELENCHI DEL PERSONALE Nelle pagine successive

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10 UNIVERSITÀ DEGLI STUDI DI PDOV Facoltà di Ingegneria Corso di Disegno Tecnico Industriale per i Corsi di Laurea triennale in Ingegneria Meccanica e in Ingegneria dell Energia Costruzioni geometriche in

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

Il comportamento del consumatore

Il comportamento del consumatore Il comportamento del consumatore Le preferenze del consumatore I vincoli di bilancio La scelta del consumatore Utilità marginale e scelta del consumatore 1 L obiettivo è quello di descrivere come i consumatori

Dettagli

Trust Predator Manuale dell'utente

Trust Predator Manuale dell'utente Trust Predator Manuale dell'utente IT-1 Copyright Nessuna parte del presente manuale può essere riprodotta o trasmessa con qualsiasi mezzo e in qualsiasi forma (elettronica o meccanica, compresa la fotocopia,

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

Esercizi sulle funzioni classi IV e V (indirizzo afm)

Esercizi sulle funzioni classi IV e V (indirizzo afm) (questi esercizi sono stati scelti da una dispensa del dipartimento di Matematica Applicata dell università di Venezia e adattati al programma che abbiamo svolto fino ad ora) Esercizi sulle funzioni classi

Dettagli

Statistica. Esercitazione 16. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 16. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 16 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 24 Studio della relazione tra due variabili Commonly Asked Questions Qual è la relazione tra la spesa

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO %

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % 1 U.D. 1 CALCOLI PERCENTUALI A PPLICATI A LLE A ZIENDE SVOLGIMENTO DEGLI ESERCIZI I passaggi per impostare e risolvere

Dettagli

Torino 20 marzo 2013 Corso di Metrologia applicata alla Meteorologia

Torino 20 marzo 2013 Corso di Metrologia applicata alla Meteorologia Taratura di sensori meteorologici e stazioni automatiche Analisi delle incertezze Taratura Costruire la curva di taratura di uno strumento significa dare riferibilità metrologica alle misure prese da tale

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

Capitolo 9. Esercizio 9.1. Esercizio 9.2

Capitolo 9. Esercizio 9.1. Esercizio 9.2 Capitolo 9 Esercizio 9.1 Considerare lo relazione in figura 9.19 e individuare le proprietà della corrispondente applicazione. Individuare inoltre eventuali ridondanze e anomalie nella relazione. Docente

Dettagli

Metodi matematici 2 9 giugno 2011

Metodi matematici 2 9 giugno 2011 Metodi matematici giugno 0 TEST 6CFU Cognome Nome Matricola Si indichi la soluzione senza procedimento. Nel caso si intenda annullare una risposta crocettare la risposta ritenuta errata. Risultati corretti

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

CAPITOLO V. DATABASE: Il modello relazionale

CAPITOLO V. DATABASE: Il modello relazionale CAPITOLO V DATABASE: Il modello relazionale Il modello relazionale offre una rappresentazione matematica dei dati basata sul concetto di relazione normalizzata. I principi del modello relazionale furono

Dettagli

Piano di lavoro di Matematica

Piano di lavoro di Matematica ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico ALDO MORO Istituto to Tecnico Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Tel 0124 454511 - Fax 0124 454545 - Cod. Fiscale 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

I problemi di questa prova

I problemi di questa prova I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione

Dettagli

Ai fini della comprensione e risoluzione corretta de problema risulta molto utile rappresentarne la trasformazione su un diagramma SY.

Ai fini della comprensione e risoluzione corretta de problema risulta molto utile rappresentarne la trasformazione su un diagramma SY. Silvia Tosini matr. 146697 Lezione del 31/1/3 ora 1:3-1:3 (6(5&,,' (6$( &RQVLJOLSHUXQDJLXVWDOHWWXUDGHLGDWL Si ricorda che le cifre in lettere: A B C D E F dei dati si riferiscono rispettivamente al primo,

Dettagli

Banchi ortogonali Casi importanti

Banchi ortogonali Casi importanti anchi ortogonali anchi ortogonali Casi importanti Trasformata a blocchi (JPEG, MPEG) anchi a due canali (JPEG 000) anchi modulati Trasformata di Fourier a blocchi (OFDM) anchi coseno-modulati (AC3, MUSICAM)

Dettagli

ANALISI MULTIVARIATA

ANALISI MULTIVARIATA ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

E-Shop : Gestione Fidelizzazione Clienti

E-Shop : Gestione Fidelizzazione Clienti E-Shop : Gestione Fidelizzazione Clienti La fidelizzazione è oggi uno dei mezzi più utilizzati per effettuare statistiche sul venduto a chi, nonché un mezzo ormai collaudato con cui attirare clienti che

Dettagli

Introduzione alle macchine a stati (non definitivo)

Introduzione alle macchine a stati (non definitivo) Introduzione alle macchine a stati (non definitivo) - Introduzione Il modo migliore per affrontare un problema di automazione industriale (anche non particolarmente complesso) consiste nel dividerlo in

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

Programma (piano di lavoro) preventivo

Programma (piano di lavoro) preventivo ISTITUTO TECNICO INDUSTRIALE STATALE Guglielmo Marconi Verona Programma (piano di lavoro) preventivo Anno Scolastico 2015/16 Materia MATEMATICA Classe prima Docenti Tutti Materiali didattici Obbligatorio

Dettagli

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE Costruzione del triangolo equilatero circonferenza e scegliere un punto 1, che risulterà opposto al vertice A. Con la medesima apertura e puntando in 1, tracciare

Dettagli

Appendice B Esempi di item di matematica

Appendice B Esempi di item di matematica Appendice B Esempi di item di matematica Esempi di item di matematica Classe quarta primaria 1 Osserva la seguente sequenza di numeri. 100, 1, 99, 2, 98, C, C, C Quali numeri devono andare nei tre riquadri?

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli