Convezione. Δx = diventa. Attenzione: t tempo T Temperatura. Isoterma: linea (superficie) lungo la quale T è costante

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Convezione. Δx = diventa. Attenzione: t tempo T Temperatura. Isoterma: linea (superficie) lungo la quale T è costante"

Transcript

1 Attenzione: t tempo T Temperatura. Convezione Ioterma: linea (uperficie) lungo la quale T è cotante T 4 > T 3 > T 2 > T 1 > T 0 Non immettiamo energia in alcun modo: olo aria i muove vero P. t t energia termi unità di tempo uantità di energia tramea per unità di tempo t t x t ( a) x x v diventa x x t t ( a) Velocità dell aria t Energia termi che i tramette nell unità di tempo CALORE v x

2 T c m x T c m v t Dato che i ha : (a) diventa: x T c m v t gradiente di temperatura x T L energia termi che i tramette nell unità di tempo CALORE t è proporzionale al ATTENZIONE non abbiamo coniderato ancora i egni: o +?

3 Giorno: Brezza di mare mct C T C pacità termi del mare elevata, di giorno per ldari impiega maggiore tempo degli trati uperficiali della terra Notte: Brezza di terra Il mare di notte per raffreddari impiega maggiore tempo degli trati uperficiali della terra. Le correnti d aria ripetto alla figura precedente i invertono. Rildamento per convezione naturale

4 Friendly Heating Sitema di rildamento confortevole per le perone ideato in modo compatibile con la conervazione delle opere d'arte conervate nelle chiee

5 Monitoraggio di S. Maria Maggiore di Roc Piétore

6 Riultati relativi al friendly heating termologia_05_pag 11.ppt

7 Tramiione del Calore Conduzione tramiione di energia per azione molecolare T c > T f A ( T c T ) t f 1 Cofficiente di conducibilità termi () A Materiale l/(m ºC) J/(m ºC) Aria Calcetruzzo Ferro A ( T ) t c T Lana di vetro f Malta Mattone uercia Pann. Sughero Vetro Coefficiente di conducibiltà termi Tabella da PJ. Nolan

8 T c 21.0 ºC A Eempio u conduzione ual è la quantità di energia che fluice in un giorno attavero una parete di quercia di peore 10.0 cm, lunga 3.00 m ed alta 2.40 m? T f ºC Da ( ) A T t c T f [ º C] 2 ( ) ( ) m 1 J h m º C 10 cm i ha cm 1h 1m J Watt h J 1000W 3600 W 25.3 Watt h potenza energia/tempo [W] [J / ec], Watt [energia] W ec W h Tale energia deve eere fornita dal itema di rildamento per mantenere la temperatura di 21 º C nell ambiente interno. o

9 Speore equivalente di varie pareti A A 1. A A ( ) T c T f t ( ) T c T f t ual è lo peore equivalente per avere lo teo iolamento? Lana di vetro 1. Calcetruzzo 1 c 1

10 Speore di lcetruzzo ( ) in otituzione di 10 cm di lana vetro ( ): 1.30 J/(m º C) J/(m º C ( 10.0 cm ) 3.14 m 2 Calcetruzzo m m otituend o gli opportuni valori 1.57 m Mattone v v otituend o gli opportuni valori 1.91 m Vetro q q otituend o gli opportuni valori 0.36 m Legno di quercia Al Al otituend o gli opportuni valori 565 m Alluminio La lana di vetro è la oluzione migliore.

11 Ciclo di convezione ulle pareti con intepedine Dalla tabella delle conducibilità termi i ha per l aria il minore, pertanto il migliore iolamento o la peggiore conducibilità termi. Putroppo i generano correnti convettive, che quindi trametto il lore dalla parete lda a quella fredda. Impedendo il movimento dell aria quindi i potrebbe ottenere un itema iolato in modo ottimale. L utilizzo della lana vetro oppone reitenza al movimento dell aria. Il buon iolamento della lana vetro è dovuto alle acche d aria che i formano nelle fibre di vetro.. Iolamento della finetre a vetromera non ottimale per l aria o ga peanti, preenti all interno con poibili correnti convettive..

12 Dettaglio ul gradiente di temperatura Prendiamo una porzione infiniteima lungo l etenzione della barra come dx Prendiamo una areola della ezione che indichiamo con ds Ricrivo ( T c T ) A f t Per dimenioni infiniteimali dim. piccole d quindi diventa dt dx ds dt Ci arà quindi una piccola quantità di lore (d) che paa attravero quet areola.per le proporzioni infiniteimali i ha:

13 d Il Calore va dalla zona a temperatura più alta Nella direzione della zona a temperatura più baa. > d dt dx ds dt T ( x + dx) T (x) ( x + dx) (x) definizione dx 0 dt dx > 0 uindi c è un egno - >

14 Irraggiamento Irraggiamento: Tramiione dell energia mediante onde elettromagnetiche. Infraroo da 0.72 a 1.5 μm VICINO Per lunghezze d onda uperiori a 0.72 μm da 1.5 a 5.6 μm MEDIO da 5.6 a 1000 μm Le onde elettromagnetiche hanno la tea velocità, la velocità della luce c λν. c m/. λ è la lunghezza d onda in metri. ν è la frequenza di ocillazione dell onda. LONTANO

15 Emiione di radiazione Legge di Stefan-Boltzmann: ogni corpo alla temperatura T emette una quantità di energia proporzionale alla quarta potenza della temperatura aoluta. 8 σ ε σ A T t tempo J 2 m K 4 uantità di energia tramea emittanza 0 1 cotante di Boltzmann Superficie del corpo Temperatura del corpo Un corpo emette olo le radiazioni che riece ad aorbire. Corpo nero (atrazione) aorbitore e emettitore perfetto ε 1

16 Aorbimento ed emiione Corpo ituato in un ambiente, l energia totale aorbita arà data dalla differenza tra l energia aorbita dall ambiente a e quella irragiata i a i 4 a ε σ A T t ε σ a i a c A T 4 c t Aumiamo iano corpi neri ε a ε c 1 4 a 4 c σ A ( T T ) t a i Eempio del corpo umano T 37 ºC di fronte ad una parete a 10 ºC, uanta energia viene ceduta al minuto? Aumiamo una uperficie di 2 m 2. T per σ A ( T muro 8 T J 2 m K 4 per 4 ) t 310 K T muro ( 2.00 m ) [( ) K ] J l K

17 Radiazione di corpo nero in funzione di λ. Legge di Planc: decrizione teori della legge di Boltzmann, aumendo che le onde elettromagnetiche poono eere aorbite o emee in modo dicreto (quanti). E hν Intenità ripetto a λ crece fino a λ max T h λ max, poi decrece. Legge di Wien dello potamento cotante 3 m 34 K J

18 Rivelatore di onde elettromagnetiche (una finetra): l occhio

19 T i ha lampade ad inndecenza λmax μm nm : Un corpo a temperatura ambiente ~ 300 K : λ max 10 m K μm 9660 nm 300 K T 5800 K i ha (temperatura del λmax μm 499 nm ole)

20 Emiività decrive quanto i avvicina un corpo al comportamento perfetto del corpo nero Emittanza è definita per un materiale reale, va miurata volta per volta, uare tabelle è poco opportuno.

21 Emiività Tabelle Come i nota dalla tabella i poono riportare degli intervalli Un occhiata a materiali di notro interee. Continua

Trasmissione del calore: convezione

Trasmissione del calore: convezione Traiione del lore: convezione ttenzione: t tepo T Teperatura. Iotera: linea (uperficie) lungo la quale T è cotante uantità di energia traea per unità di tepo T 4 > T 3 > T 2 > T 1 > T 0 Non iettiao energia

Dettagli

Equazione di Stato dei Gas perfetti

Equazione di Stato dei Gas perfetti Equazione di Stato dei Ga perfetti p1 V1 p V P= pv Preione cot ( ) V=Volume T1 T T T= Temperatura Le leggi delle proporzioni cotanti: 1 V di H + 1 V di Cl danno V di HCl e delle proporzioni multiple: V

Dettagli

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE

UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE ATTENZIONE U.21/0 UNITA' 21 SOMMARIO U.21 LE MODALITÀ DI TRASMISSIONE DEL CALORE 21.1. Introduzione 21.2. Conduzione 21.3. Convezione 21.4. Irraggiamento 21.5. Modalità imultanee di tramiione del calore ATTENZIONE

Dettagli

Irraggiamento. Emissione di radiazione

Irraggiamento. Emissione di radiazione Irraggiamento Irraggiamento: Trasmissione dell energia mediante onde elettromagnetihe. Infrarosso da 0.7 a 1.5 μm VICINO Per lunghezze d onda superiori a 0.7 μm da 1.5 a 5.6 μm MEDIO da 5.6 a 1000 μm LONTANO

Dettagli

UNIVERSITÀ IUAV DI VENEZIA CLAMARCH indirizzo Conservazione Laboratorio integrato 2 Modulo di impianti tecnici nell edilizia storica

UNIVERSITÀ IUAV DI VENEZIA CLAMARCH indirizzo Conservazione Laboratorio integrato 2 Modulo di impianti tecnici nell edilizia storica I MECCANISMI DI ASMISSIONE DEL CALOE Il calore è l energia tramea da un corpo ad un altro in virtù di una differenza di temperatura. Dall oervazione dei fenomeni termici, è poibile mettere in evidenza

Dettagli

Gas Reali. L umidità relativa: miscele di gas. C punto critico, e C curva critica al di sotto di questa curva il gas condensa

Gas Reali. L umidità relativa: miscele di gas. C punto critico, e C curva critica al di sotto di questa curva il gas condensa Ga eali C punto ritio, e C urva riti al di otto di queta urva il ga ondena ga opra il punto ritio (o urva riti C) ga peretti (iperbole di Boyle-Mariotte) Ga-aeriormi otto il punto ritio Ga reali ondenabili,

Dettagli

Trasmissione del calore:

Trasmissione del calore: Trasmissione del calore: - Conduzione - Convezione - Irraggiamento Cos è la Convezione: È lo scambio di calore che avviene tra una superficie e un fluido che si trovano a diversa temperatura e in movimento

Dettagli

LA TRASMISSIONE DEL CALORE

LA TRASMISSIONE DEL CALORE 08//0 Coro di Fiica e Materiali per il Diegno Indutriale: Fiica A.A. 0-0 prof. Franceca Cappelletti LA RASMISSIONE DEL CALORE I MECCANISMI DI RASMISSIONE DEL CALORE per contatto in aenza di moto relativo

Dettagli

Diffusione molecolare. Cambiamento di fase

Diffusione molecolare. Cambiamento di fase Conduzione Convezione Meccanimo Colliioni molecolari Diffuione molecolare Equazione generale ka ha T dt dx ( T ) Radiazione Evaporazione Fotoni Cambiamento di fae Calore (Joule) Fluo di calore (Joule m

Dettagli

0.005m. Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl RISOLUZIONI CAP.

0.005m. Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl RISOLUZIONI CAP. Termodinamica e tramiione del calore 3/ed Yunu A. Çengel 1-1 oyright 009 The McGraw-Hill omanie rl RISOUZIONI AP. 1 1.1 e uerfici interna ed eterna di una arete di mattoni ono mantenute a temeratura cotante.

Dettagli

FISICA TECNICA AMBIENTALE

FISICA TECNICA AMBIENTALE COSO DI LUE IN SCIENZE DELL CHITETTU FISIC TECNIC MIENTLE Tramiione del calore: La conduzione I parte Prof. Gianfranco Caruo.. 03/04 Il Calore Il Calore è una forma di energia in tranito: ad eempio un

Dettagli

Q Flusso di calore (Joule m -2 s -1 )

Q Flusso di calore (Joule m -2 s -1 ) Conduzione Convezione Meccanimo Colliioni molecolari Diffuione molecolare Equazione generale ka ha T dt dx ( T ) Radiazione Evaporazione Fotoni Cambiamento di fae Fluo di calore (Joule m -2-1 ) Calore

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica Seconda legge della dinamica: a forza riultante agente u un corpo è in relazione con la rapidità con cui quel corpo modifica la propria velocità (l accelerazione del corpo). ma Unità di miura: new ton

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica C.d.. Scienze oretali e Ambientali, A.A. 03/04, iica Seconda legge della dinamica: a forza riultante agente u un corpo è in relazione con la rapidità con cui quel corpo modifica la propria velocità (l

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO

CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO CONVEZIONE, CONDUZIONE E IRRAGGIAMENTO T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e La F i s i c a di A

Dettagli

Capitolo 13. La temperatura

Capitolo 13. La temperatura Capitolo 13 La temperatura Il termoscopio Il termoscopio è uno strumento che serve per decidere, in modo oggettivo, se un corpo è più caldo o più freddo di un altro. In quale vaschetta c è l acqua più

Dettagli

Temperatura. Temperatura

Temperatura. Temperatura TERMOMETRIA E CALORE Che cos è la? Grandezza che misura l energia accumulata da un corpo come energia 2 La regola molti processi chimico fisici, quali ad esempio la formazione delle calotte polari, le

Dettagli

TERMODINAMICA bilancio termico. TERMODINAMICA bilancio termico

TERMODINAMICA bilancio termico. TERMODINAMICA bilancio termico elio giroletti 1 UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 27100 Pavia, Italy tel. 038298.7905 - girolett@unipv.it - www.unipv.it/webgiro TERMODINAMICA FISICA MEDICA e

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso.

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso. Tenione Ø Le funi ono dipoitivi che permettono di tramettere l azione di una forza applicata in un dato punto ad un punto divero. Ø La fune viene coniderata inetenibile e priva di maa ed il modulo della

Dettagli

TERMOLOGIA CALORE CAPACITÀ TERMICA CALORE SPECIFICO

TERMOLOGIA CALORE CAPACITÀ TERMICA CALORE SPECIFICO CALORE CAPACITÀ TERMICA CALORE SPECIFICO Se si fornisce una quantità di calore Q ad un corpo, la sua temperatura varia in modo direttamente proporzione. Il coefficiente di proporzionalità si chiama capacità

Dettagli

Convezione Definizioni fondamentali

Convezione Definizioni fondamentali FISICA TECNICA Prof. Ing. Marina Mistretta Convezione Definizioni fondamentali a.a. 2011/2012 25/10/2011 Lezione 11/10/2011 Prof. Ing. Marina Mistretta Cos è la Convezione Il calore si disperde nel verso

Dettagli

UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Fisica Tecnica G. Grazzini. Superfici estese

UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Fisica Tecnica G. Grazzini. Superfici estese Superici etee Nella legge di Newton per la convezione compare la upericie di cambio inieme al coeiciente di convezione; perciò e non riuciamo ad aumentare quet'ultimo, tenteremo di accrecere la upericie

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia della Fisica Sulla Storia dell Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie. Asiago 22-26 Febbraio 2016 GLOSSARIO: Corpo Nero Biagio Buonaura GdSF & Liceo Scientifico

Dettagli

Fabio Peron. La trasmissione del calore: 3. radiazione termica. Le modalità di scambio del calore. La radiazione termica. Onde e oscillazioni

Fabio Peron. La trasmissione del calore: 3. radiazione termica. Le modalità di scambio del calore. La radiazione termica. Onde e oscillazioni Corso di Progettazione Ambientale prof. Fabio Peron Le modalità di scambio del calore Una differenza di temperatura costituisce uno squilibrio che la natura cerca di annullare generando un flusso di calore.

Dettagli

1. Teorema di reciprocità

1. Teorema di reciprocità 1. Teorema di reciprocità Conideriamo un mezzo in cui ono preenti le orgenti (J 1, M 1 ) che producono un campo (E 1, H 1 ) e le orgenti (J 2, M 2 ) che producono un campo (E 2, H 2 ). Determineremo una

Dettagli

Modi di Trasmissione del Calore

Modi di Trasmissione del Calore Modi di Trasmissione del Calore Trasmissione del Calore - 1 La Trasmissione del calore, fra corpi diversi, o all interno di uno stesso corpo, può avvenire secondo 3 diverse modalità: - Conduzione - Convezione

Dettagli

L irraggiamento termico

L irraggiamento termico L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

Metabolismo: trasformazione dell energia chimica in energia termica e lavoro

Metabolismo: trasformazione dell energia chimica in energia termica e lavoro Metabolismo: trasformazione dell energia chimica in energia termica e lavoro Uomo: stufetta da 100W Al giorno: Uomo 2500 kcal; Donna 1800 kcal 1 Metabolismo - (lavoro+evaporazione+respirazione+radiazione+convezione)

Dettagli

CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI ˆ = SULL INTERFACCIA TRA DUE MEZZI OMOGENEI

CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI ˆ = SULL INTERFACCIA TRA DUE MEZZI OMOGENEI CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI SULL INTERFACCIA TRA DUE MEZZI OMOGENEI Conideriamo le equazioni di Maxwell in una regione di pazio riempita da un mezzo omogeneo e iotropo caratterizzato

Dettagli

Diffusione e membrane

Diffusione e membrane Eercizi di fiica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Diffuione e membrane 1) Calcolare il fluo avvettivo di oluto in un tubicino di ezione 0.1 mm 2 in cui corrono 0.2 ml al

Dettagli

Calore specifico. Il calore che deve essere fornito per aumentare di un grado centigrado un chilogrammo della sostanza è il calore specifico:

Calore specifico. Il calore che deve essere fornito per aumentare di un grado centigrado un chilogrammo della sostanza è il calore specifico: Calore specifico L aumento (diminuzione) di temperatura in una sostanza è proporzionale all energia fornita (sottratta) alla sostanza sotto forma di calore: Il calore che deve essere fornito per aumentare

Dettagli

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci Coro di Laurea a ciclo Unico in Ingegneria Edile-Architettura Geotecnica e Laboratorio Tenioni totali, neutrali e efficaci Prof. Ing. Marco Favaretti e-mail: marco.favaretti@unipd.it ebite:.marcofavaretti.net

Dettagli

CALORE E TEMPERATURA

CALORE E TEMPERATURA CALORE E TEMPERATURA Indice Obiettivi L agitazione termica La dilatazione termica La misura della temperatura Lo stato fisico della materia Flussi di calore ed equilibrio termico La propagazione del calore

Dettagli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli coro di Terminali per i Traporti e la Logitica ELEMENTI DI TEORIA DELLE CODE Umberto Crialli crialli@ing.uniroma.it INTRODUZIONE Simulazione dei terminali In generale, un terminale è cotituito da un inieme

Dettagli

Trasmissione del calore: Irraggiamento - I parte

Trasmissione del calore: Irraggiamento - I parte CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA FISICA TECNICA AMBIENTALE Trasmissione del calore: Irraggiamento - I parte Prof. Gianfranco Caruso A.A. 2013/2014 La trasmissione di calore per Irraggiamento

Dettagli

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore.

Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Lezione 14 Termologia Cambiamenti di stato. Dilatazioni termiche. Trasmissione del calore. Cambiamenti di stati di aggregazione Gli stati di aggregazione della materia sono: solido, liquido gassoso (e

Dettagli

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma Principi i Ingegneria Chimica Anno Accaemico 05-06 Cognome Nome Matricola Firma E-mail: Problema. Un tubo cilinrico i iametro D è pieno i acqua liquia in preenza i ghiaccio, a un titolo iniziale x L0 e

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I itemi termici La reitenza termica Se ue corpi aventi temperature ivere vengono mei a contatto, i ha un paaggio i quantità i calore al corpo a temperatura maggiore vero quello a temperatura minore, fino

Dettagli

APPUNTI DI TERMOLOGIA

APPUNTI DI TERMOLOGIA APPUNTI DI TERMOLOGIA 1 La temperatura La temperatura è una grandezza che indica lo stato termico di un corpo e si misura con il termometro, utilizzando una opportuna scala termometrica. Una delle scale

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010 CORSO DI LURE IN SCIENZE BIOLOGICHE Prova critta di FISIC 4 Gennaio 00 ) Un bambino lancia una palla di maa m = 00 gr verticalmente vero l alto con velocità v 0 = m/, a partire da una roccia alta h 0 =

Dettagli

CORSO DI FISICA TECNICA

CORSO DI FISICA TECNICA CORSO DI FISICA TECNICA Trasmissione del calore Irraggiamento IRRAGGIAMENTO Trasferimento di energia per onde elettromagnetiche Moto vibratorio delle molecole Tutte le superfici emettono onde elettromagnetiche

Dettagli

Traiettoria La traiettoria è la linea che unisce le posizioni successive occupate dal punto materiale in movimento. Sistema di riferimento

Traiettoria La traiettoria è la linea che unisce le posizioni successive occupate dal punto materiale in movimento. Sistema di riferimento Punto materiale Quando l oggetto in movimento è molto piccolo ripetto alla ditanza che percorre, può eere tudiato come e foe un punto (non ha dimenioni, non ha un orientamento). Traiettoria La traiettoria

Dettagli

Esercizi e problemi su statistiche quantistiche e solidi

Esercizi e problemi su statistiche quantistiche e solidi Coro di Laurea in Fiia - Coro di Struttura della Materia G. Rinaudo - a.a.001/0 Eerizi e problemi u tatitihe quantitihe e olidi Il forno a miroonde La frequenza f di lavoro di un forno a miroonde è pari

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi Coro di Progetto di Strutture POTENZA, a.a. 0 03 Serbatoi e tubi Dott. arco VONA Scuola di Ingegneria, Univerità di Bailicata marco.vona@uniba.it http://.uniba.it/utenti/vona/ CONSIDERAZIONI INTRODUTTIVE

Dettagli

Definizioni e relazioni fondamentali

Definizioni e relazioni fondamentali Capitolo 1 Definizioni e relazioni fondamentali 1.1 Definizioni di E e B Il campo elettrico E (m 1 ) e l induzione magnetica B (T) ono definiti in riferimento alla forza che agice u una carica in movimento

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

Lezione 2.2: trasmissione del calore!

Lezione 2.2: trasmissione del calore! Elementi di Fisica degli Edifici Laboratorio di costruzione dell architettura I A.A. 2010-2011 prof. Fabio Morea Lezione 2.2: trasmissione del calore! 2.1 capacità termica 2.2 conduzione 2.3 convezione

Dettagli

Errori e cifre significative. Incontro iniziale LAB2GO

Errori e cifre significative. Incontro iniziale LAB2GO Errori e cifre ignificative Incontro iniziale LABGO La ditribuzione gauiana f tinyurl.com/labcalcquiz Propagazione degli errori Miure dirette: la grandezza fiica viene miurata direttamente (ad e. Speore

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

Espansi polistirenici per l isolamento termico. Dr. Stefano Fabris

Espansi polistirenici per l isolamento termico. Dr. Stefano Fabris Epani politirenici per l iolamento termico Dr. Stefano Fabri Ricaldamento di una caa non coibentata: 29000 kwh/anno (250 kwh/m 2 ) 1600 Euro 7.2 ton di CO 2 Tetto: 12120 kwh/a Pareti: 10100 kwh/a Finetre:

Dettagli

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO

Michelle Melcarne matr Morena Iocolano matr Lezione del 04/06/2014 ora 9:30-12:30 PER IRRAGGIAMENTO Michelle Melcarne matr. 5 Morena Iocolano matr. 77 Lezione del /6/ ora 9:3-:3 (Lez./6/) Indice SCAMBIO TERMICO PER IRRAGGIAMENTO ESERCIZI ONDE ELETTROMAGNETICHE SCAMBIO TERMICO PER IRRAGGIAMENTO IN CAMPO

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

RACCOLTA DI ESERCIZI TRATTI DA TEMI D ESAME - parte 1^

RACCOLTA DI ESERCIZI TRATTI DA TEMI D ESAME - parte 1^ A.A. 2005/2006 Sitemi energetici (CINDK) RACCOLA DI ESERCIZI RAI DA EMI D ESAME - parte ^. Acqua viene caldata in una pentola ben chiua pota u un fornello mentre viene frullata con un frullatore. Durante

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

Elementi di Trasmissione del calore

Elementi di Trasmissione del calore Elementi di rasmissione del calore Prof.Ing Ing.. Luigi Maffei Versione 000-00 CLOE Se tra due sistemi sussiste una differenza di temperatura, dell'energia come calore verrà trasferita dal sistema a temperatura

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

Capitolo 2 CONDUZIONE

Capitolo 2 CONDUZIONE Capitolo CONDUZIONE Introduzione La conduzione è il meccanimo di traferimento pontaneo di energia termica nei olidi o nei fluidi in quiete cauato unicamente da differenze di temperatura nel mezzo. A livello

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO

TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO TRASMISSIONE DI CALORE PER IRRAGGIAMEMNTO In generale un qualsiasi corpo è soggetto simultaneamente ad un flusso di energia entrante in esso e ad uno uscente da esso, che sono gli effetti dell interazione

Dettagli

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui:

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui: Il recipiente diegnato in figura ha una configurazione cilindrica avente diametro interno D = 000 mm è chiuo con fondi emiferici, eo è itemato u due elle A e B pote ad una ditanza L AB = 7000 mm e fuoriece

Dettagli

Il calore è l energia trasmessa da un corpo ad un altro in virtù di una differenza di temperatura.

Il calore è l energia trasmessa da un corpo ad un altro in virtù di una differenza di temperatura. I meccanismi di trasmissione del calore Il calore è l energia trasmessa da un corpo ad un altro in virtù di una differenza di temperatura. Dall osservazione dei fenomeni termici, è possibile mettere in

Dettagli

q 2 1 LC COSTANTE NEL TEMPO

q 2 1 LC COSTANTE NEL TEMPO Il circuito Abbiamo dicuo circuiti che combinano reitenze e condenatori (R) e reitenze ed induttanze (R); abbiamo vito che, nel regime traniente di avvio o di pegnimento della corrente nel circuito, le

Dettagli

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ]

Resistenza a sforzo normale e flessione (elementi monodimensionali) [ ] 41 1. Calcolo dell armatura longitudinale delle travi in funzione delle azioni riultanti dall analii; 2. Calcolo dell armatura a taglio delle travi in funzione del taglio dovuto ai momenti reitenti delle

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche c = λν Le onde elettromagnetiche hanno la stessa velocità nel vuoto: la velocità della luce. c = 2.998 10 8 m/s Relazione tra energia e frequenza (Planck - Einstein): E = hν c ν

Dettagli

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a:

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a: Eempio Verifica dell apertura delle feure Si conidera la ezione rettangolare caratterizzata dalle eguenti proprietà: - bae b = 00 mm, - altezza totale h = 00 mm, - copriferro c =0 mm, - altezza utile d

Dettagli

Trasmissione del calore

Trasmissione del calore FISICA TECNICA Prof. Ing. Marina Mistretta Trasmissione del calore a.a. 2018/2019 Prof. Ing. Marina Mistretta L edificio è un sistema aperto che scambia con l ambiente massa ed energia: - energia termica

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

Calore e lavoro. 1 caloria = quantità di calore che bisogna cedere a 1 g di acqua per far passare la sua temperatura da 14.5 a 15.

Calore e lavoro. 1 caloria = quantità di calore che bisogna cedere a 1 g di acqua per far passare la sua temperatura da 14.5 a 15. Calore e lavoro Nel 1700 si pensava al calore come qualcosa contenuto in un corpo, il calorico, che si trasmetteva da un corpo ad un altro. Sistema A T 1 Sistema B T 2 Parete conduttrice T 1 > T 2 Definizione

Dettagli

LE SUPERFICI OPACHE ED I MATERIALI

LE SUPERFICI OPACHE ED I MATERIALI LE SUPERFICI OPACHE ED I MATERIALI LA TRASMISSIONE DEL CALORE NELLE SUPERFICI OPACHE Abbiamo visto come nello studio delle dispersioni termiche dell'edificio una delle componenti essenziali da analizzare

Dettagli

CORSO DI FISICA TECNICA. Trasmissione del Calore Campi Termici. Prof. Ing. Giulio Vannucci

CORSO DI FISICA TECNICA. Trasmissione del Calore Campi Termici. Prof. Ing. Giulio Vannucci CORSO DI FISICA TECNICA Trasmissione del Calore Campi Termici Università Sapienza di Roma Facoltà di Ingegneria Corso di Elementi di Trasmissione del Calore Conduzione Conduzione L equazione di Fourier

Dettagli

TRASMISSIONE DEL CALORE

TRASMISSIONE DEL CALORE CAPITOLO TRASMISSIONE DEL CALORE Studiando i sistemi termodinamici abbiamo visto che l energia può essere trasmessa sotto forma di calore per effetto di una differenza di temperatura tra il sistema e l

Dettagli

Calore e Temperatura

Calore e Temperatura PROGETTO POTENZIAMENTO DEL LABORATORIO DI FISICA LEZIONI ATTIVE Calore e Temperatura PREREQUISITO Ripetiamo il concetto di ENERGIA DEFINIZIONE TIPOLOGIE TRASFORMAZIONE DISPONIBILITA E CONSUMO FORZE DISSIPATIVE

Dettagli

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW

Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW Termodinamica (1) Temperatura e calore Lezione 12, 13/11/2018, JW 15.1-15.6 1 1. Calore Definizione di calore Il calore è l energia trasferita tra oggetti a causa della loro differenza di temperatura.

Dettagli

Sono processi unitari le Sintesi industriali.

Sono processi unitari le Sintesi industriali. 1 1 Per risolvere i problemi relativi agli impianti chimici è necessario fare uso di equazioni, esse vengono classificate in : equazioni di bilancio e equazioni di trasferimento. -Le equazioni di bilancio

Dettagli

Scambio termico per convezione

Scambio termico per convezione Scambio termico per convezione La convezione forzata Equazione di Newton w > Equazione di Newton q c q q& ( T ) = h A T c ( T ) = h T Fluo Fluo pecifico 1 Fenomenologia w > q& Il meccanimo di cambio termico

Dettagli

Lezione 10. Cenni di Termodinamica. Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica

Lezione 10. Cenni di Termodinamica. Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica Lezione 10 Cenni di Termodinamica Temperatura e calore Definizione e misura della temperatura Calore Principi della Termodinamica Trasporto del calore Fisica Generale per Architettura - G. Cantatore 1

Dettagli

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1 Modello monodimenionale per le correnti in moto turbolento vario 1. Decompoizione dei campi di moto turbolento vario Prima di affrontare la definizione del modello per le correnti in moto turbolento vario,

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

Miscele di gas (Esercizi del testo) e Conduzione

Miscele di gas (Esercizi del testo) e Conduzione Miscele di gas (Esercizi del testo) e Conduzione 1. Determinare la resistenza termica complessiva di un condotto cilindrico di lunghezza L = 10 m, diametro interno D i = 4 mm e spessore s = 1 mm, realizzato

Dettagli

Liceo Scientifico Cassini Esercizi di fisica, classe 3G, foglio7

Liceo Scientifico Cassini Esercizi di fisica, classe 3G, foglio7 Liceo Scientifico Caini Eercizi di fiica, clae 3G, foglio7 Problema1 In una gara ui 200m un corridore percorre i primi 40m con un accelerazione di 1.5 m ed il reto della gara di moto rettilineo uniforme.

Dettagli

TRASMISSIONE DEL CALORE IN VUOTO E AD ALTE TEMPERATURE

TRASMISSIONE DEL CALORE IN VUOTO E AD ALTE TEMPERATURE GRUPPO G : TRASMISSIONE DEL CALORE IN VUOTO E AD ALTE TEMPERATURE Francesco Zamprogno Riccardo Frezza Lucia Montanari 02/07/2013 IL PROGETTO SPES Exp. Hall 3 ALPI building Cyclotron RIB target stations

Dettagli

Entropia. Disuguaglianza di Clausius. Considero un corpo S a temperatura a cui verrà fatta variare la temperatura innalzandola a T per poi

Entropia. Disuguaglianza di Clausius. Considero un corpo S a temperatura a cui verrà fatta variare la temperatura innalzandola a T per poi Entroia Diuguaglianza di Clauiu Conidero un coro S a temeratura a cui verrà fatta variare la temeratura innalzandola a er oi riortarla a. Per cominciare ongo il coro S a contatto con una orgente ideale

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

Lezione 3 Acceleratori

Lezione 3 Acceleratori Lezione 3 Acceleratori Lezione 3. Anelli di colliione.. riaunto Generalità e definizione della luminoità (R= L) Ocillazioni e tabilità dei faci Ocillazioni longitudinali o di fae o di incrotrone dovute

Dettagli

Trasmissione di Simboli Isolati

Trasmissione di Simboli Isolati Coro di COMUNICAZIONI ELETTRICHE Docente : Prof. Roberto Gaudino Tutore : Prof. Vito De Feo Eercitazione n 6 Tramiione di Simboli Iolati Anno Accademico 007-008 Eercizio Quale delle forme d'onda h(t) in

Dettagli

Termografia a infrarossi

Termografia a infrarossi Termografia a infrarossi Nella radiometria a microonde si verifica che hν

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle otruzioni La fleione compota Verifica di ezioni oggette a fleione compota Fleione compota 1 tadio (Formule di Scienza delle otruzioni) on riferimento alla ezione omogeneizzata vale

Dettagli

16. Onde elastiche. m s

16. Onde elastiche. m s 1 Catena di ocillatori 16. Onde elatiche Vogliamo dicutere il fenomeno della propagazione ondulatoria in un mezzo elatico. A tale copo conideriamo un inieme di punti materiali dipoti lungo una retta, ad

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 Seonda legge della dinamia: a forza riultante agente u un orpo è in relazione on la rapidità on ui quel orpo modifia la propria veloità (l aelerazione del orpo). r r m a Unità di miura: new ton kg m dove

Dettagli

IL CALORE LA TEMPERATURA E I PASSAGGI DI STATO

IL CALORE LA TEMPERATURA E I PASSAGGI DI STATO IL CALORE LA TEMPERATURA E I PASSAGGI DI STATO IL CALORE Se metti a contatto un oggetto meno caldo (acqua) con uno più caldo (chiodo), dopo un po di tempo quello meno caldo tende a scaldarsi e quello più

Dettagli

LUCE E ONDE ELETTROMAGNETICHE

LUCE E ONDE ELETTROMAGNETICHE LUCE E ONDE ELETTROMAGNETICHE QUASI TUTTO QUELLO CHE SAPPIAMO SULLA STRUTTURA DELL ATOMO DERIVA DALL ANALISI DELLA LUCE EMESSA O ASSORBITA DALLE SOSTANZE CHI FU IL PRIMO AD ACCORGERSI CHE I SINGOLI ELEMENTI

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

I PRINCIPIO DELLA TERMODINAMICA. G. Pugliese 1

I PRINCIPIO DELLA TERMODINAMICA. G. Pugliese 1 I PRINCIPIO DELLA TERMODINAMICA G. Pugliese 1 Esperimento di Joule Esperimenti di Joule (1800): il sistema termodinamico è costituito da un recipiente a pareti adiabatiche riempito di acqua. 1. mulinello

Dettagli

BARRE. Barre in rame e alluminio

BARRE. Barre in rame e alluminio Nei quadri elettrici ono attualmente impiegati due metalli in qualità di conduttori: il rame e l alluminio. In particolare, dovendo definire una ditribuzione di potenza all interno di un quadro elettrico,

Dettagli

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale Il trasporto di energia termica: introduzione e trasporto conduttivo Principi di Ingegneria Chimica Ambientale 1 Meccanismi di trasmissione del calore La Trasmissione del Calore può avvenire con meccanismi

Dettagli