Tiziano Vargiolu. Elementi di Probabilità e Statistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tiziano Vargiolu. Elementi di Probabilità e Statistica"

Transcript

1 Tiziano Vargiolu Elementi di Probabilità e Statistica

2 Ristampa: marzo 2014 ISBN ISBN by CLEUP sc Coop. Libraria Editrice Università di Padova via Belzoni 118/3 Padova (t ) - Tutti i diritti di traduzione, riproduzione e adattamento, totale o parziale, con qualsiasi mezzo (comprese le copie fotostatiche e i microfilm) sono riservati. Grafica di copertina: Carlo Fumian

3 Indice Introduzione vii 1 Statistica descrittiva ed inferenziale Statistica descrittiva Media Variabilità La distribuzione normale Percentili Statistica inferenziale Elementi di Calcolo delle Probabilità Esperimento aleatorio Operazioni con eventi e variabili aleatorie Probabilità di un evento Proprietà delle probabilità Legge di una variabile aleatoria Funzione di ripartizione di una variabile aleatoria Probabilità condizionata Formula della probabilità totale Formula di Bayes Indipendenza Variabili aleatorie binomiali Speranza e varianza Le leggi gaussiane Teoremi di limite Variabili aleatorie di Poisson Stime e test Statistica descrittiva Media e varianza Percentili e quantili Statistica inferenziale Quantili della distribuzione normale N(0, 1)

4 iv INDICE 4 Test di Student Variabile aleatoria t di Student Test di Student Errori di prima e seconda specie Test unilateri Test sulla media Il valore P Quantili della distribuzione t(n) di Student Analisi della varianza La variabile aleatoria χ Variabile aleatoria F di Fischer Il test t è una analisi della varianza Un altro esempio Uso del test t per isolare differenze tra gruppi Quantili della distribuzione F di Fischer, α = Quantili della distribuzione F di Fischer, α = Errori di prima e di seconda specie Errore di seconda specie Potenza di un test Cosa determina la potenza di un test? La probabilità α di fare un errore di prima specie La differenza che si vuole misurare La taglia del campione Riassunto Problemi pratici relativi alla potenza Approssimazione normale Intervalli di confidenza Un esempio Che significa confidenza Uso degli intervalli di confidenza per test di ipotesi Intervalli di confidenza per la media Statistica discreta Torniamo su Marte Stimare le proporzioni dai campioni Test di ipotesi per le proporzioni Mortalità associata all anestesia Un altro approccio: analisi delle tabelle di contingenza Il test χ Il test χ 2 per più di due gruppi o risultati Suddividere le tabelle di contingenza Test per un singolo campione

5 INDICE v 8.7 Intervalli di confidenza per differenze di proporzioni Intervalli di confidenza per proporzioni Quantili della distribuzione χ Regressione lineare Come stimare i parametri da un campione Variabilità intorno alla retta di regressione Errori standard dei coefficienti di regressione Intervalli di confidenza e test di ipotesi sui coefficienti di regressione Un altro esempio Previsione nella regressione lineare Previsione della media Previsione della singola misurazione A Teoria della probabilità secondo Kolmogorov 181 A.1 Esperimento aleatorio A.2 Eventi legati ad un esperimento aleatorio A.3 Probabilità di un evento A.3.1 Proprietà delle misure di probabilità A.4 Variabili aleatorie A.5 Funzione di ripartizione di una variabile aleatoria A.6 Speranza matematica A.7 Conclusione

6

7 Introduzione Questo libro è la seconda edizione di un libro tratto dalle dispense che avevo scritto per il corso di Istituzioni di Matematiche II per Biotecnologie nell anno accademico 1999/2000. Tuttavia, rispetto alla prima edizione, ho cambiato completamente l approccio con cui presentare la probabilità (e di conseguenza la statistica). Seguendo l esempio di un altro libro di matematica per non matematici [14], ho scritto due introduzioni: una per gli studenti, e una per i miei colleghi docenti. Introduzione per gli studenti Dopo un capitolo introduttivo su statistica descrittiva ed inferenziale, ho scelto di presentare subito le basi teoriche sia della probabilità che della statistica. Questo per due motivi: far vedere che le procedure statistiche più usate in pratica (test t, regressione lineare, ecc.) non sono una serie di formulette da imparare a memoria che funzionano per qualche specie di magia, ma hanno delle giustificazioni teoriche; ho preferito mostrare brevemente a cosa può servire la statistica, prima di partire con la teoria; una volta fatta la teoria, poi, si riesce a capire molto meglio parecchie cose usate in pratica. Una parola va spesa per il formalismo matematico. Probabilmente il rigore utilizzato soprattutto nei Capitoli 2 e 3 può apparire eccessivo per una cosa che poi avrà delle applicazioni pratiche. Tuttavia, in matematica ogni parola o simbolo usato ha il suo preciso significato, e il più piccolo cambiamento può portare a stravolgimenti di senso. Questo fatto è molto ben esemplificato da un esempio non matematico fatto da un matematico (Freddie Delbaen): Perfino l ordine con cui si dicono le cose ha la sua importanza. Se dico: per ogni uomo esiste una donna, voi vi immaginate una certa situazione. Se invece dico: esiste una donna per ogni uomo, voi vi immaginate una situazione completamente diversa. Naturalmente questo tipo di donne esiste... ma non ha una reputazione molto buona!. Seguendo questo spirito, nei Capitoli 2 e 3 ho usato una struttura teorema-dimostrazione (quando è stato possibile fornire una dimostrazione breve e comprensibile); nei capitoli seguenti, la struttura si fa più discorsiva, ma sono sempre specificate le ipotesi sotto cui si può utilizzare la procedura statistica sotto esame.

8 viii INTRODUZIONE Inoltre, in tutto il libro capita di dare delle definizioni: il nome dell oggetto definito viene usualmente indicato in grassetto, e consiglio vivamente di usare quel nome e non dei sinonimi, a meno di essere veramente sicuri di ciò che si sta facendo. La scelta degli argomenti è poi caduta su quelli svolti tradizionalmente in un corso di statistica elementare. Ogni argomento é svolto tenendo d occhio una situazione pratica in cui si applica o si potrebbe applicare la procedura utilizzata. Alcuni esempi sono stati volutamente scelti fuori dal comune: ho infatti notato che l effetto finale degli esempi è che gli studenti sono interessati dalla situazione strana e alla fine comprendono meglio la procedura statistica. Ogni capitolo termina con degli esercizi risolti, alcuni dei quali sono testi di esami precedenti. La mia raccomandazione è che lo studente, dopo aver letto il capitolo, tenti di fare l esercizio senza guardare la soluzione, poi confronti la propria soluzione con quella del libro. In questo modo si imparano molte più cose che leggendo semplicemente la soluzione, secondo il noto principio per cui si impara di più facendo che guardando gli altri fare. Introduzione per i docenti Nello scrivere la prima edizione di questo libro, avevo perseguito due obbiettivi: il rigore formale e la presentazione di applicazioni concrete, il tutto cercando di non sacrificare la comprensibilità. Infatti, mentre l insegnamento dell Analisi non ci sono molte differenze nel rigore formale tra un corso di laurea in Matematica e un qualsiasi altro corso (le definizioni di intorno, di funzione continua, di limite ecc. sono sempre le stesse), per quanto riguarda la Probabilità mi sembra che essa soffra di una specie di complesso di inferiorità (o di superiorità) non appena esce dal corso di laurea in Matematica: infatti mi sembra che si tema di fare teoria perché non verrebbe capita, e ci si accontenta di presentare solo i risultati utili per la statistica, quasi senza giustificazione. Avevo quindi cercato, dopo una breve parte in cui si presentano le idee intuitive della Statistica, di fornire le basi teoriche della Probabilità e della Statistica (secondo l approccio di Kolmogorov), cercando di dimostrare tutto il possibile, compatibilmente al fatto che il tipico lettore di questo libro non conosce (né sarà tenuto a farlo) la Teoria della Misura. Durante gli anni (non molti) in cui ho usato questo testo, però, mi sono accorto che alcune cose non venivano capite dagli studenti non tanto per troppa astrazione, ma perchè non comprendevano gli scopi pratici. Le principali obiezioni risultavano essere all additività numerabile (soprattutto da studenti che ormai, dopo innumerevoli tagli ai programmi, non vedono più una serie numerica nè al liceo nè all università) e alla costruzione delle variabili aleatorie, che sembrano cadere dal cielo. Mentre affrontavo queste difficoltà, mi è capitato di interessarmi all approccio di De Finetti. Dopo un periodo di digestione, ho deciso di adottarlo, poichè risolve in modo stupefacente i due problemi di cui sopra: la teoria viene sviluppata fin da subito supponendo solo l additività finita (questo perchè lo stesso De Finetti ritiene l additività numerabile una proprietà troppo forte e che di fatto tradisce il legame della probabilità con le applicazioni), e facendo a meno della struttura di spazio probabilizzato sottostante la teoria, ma che di

9 ix fatto non viene utilizzata quasi mai in applicazioni statistiche (e sicuramente non per quanto riguarda quanto esposto qui). Come per la prima edizione, molti fatti sono dati per veri senza accennare a dimostrazioni, soprattutto nei Capitoli 2 e 3. I più rilevanti nella prima edizione (di cui una traccia si può vedere in Appendice) erano l esistenza dei boreliani e della misura di Lebesgue, insieme a quasi ogni enunciato sulle variabili aleatorie continue (ho scelto di omettere assolutamente perché per un lettore che non conosce la Teoria della Misura non si capisce rispetto a cosa siano assolutamente continue ). In questa edizione ho sorvolato sul fatto che non ci sono contraddizioni se si definisce la probabilità in modo che valga l additività finita e poi si compiono operazioni su un insieme infinito (numerabile o meno) di eventi (una sorta di teorema di compattezza logica), e sul fatto che la speranza matematica di variabili aleatorie non limitate in realtà è indeterminato, e quello che si usa nel libro è solo una delle infinite possibili specificazioni del risultato (che comunque rimane coerente sia al suo interno che coi teoremi di limite presentati alla fine del Capitolo 2). Dopo la parte teorica, ho lasciato alle applicazioni tutto lo spazio che meritano in un corso che di fatto dovrà dare le basi quantitative ad un futuro scienziato che tipicamente non sarà un matematico: molti tests (sia col metodo del valore critico che usando gli intervalli di confidenza) e molti esempi pratici; ogni capitolo poi termina con alcuni esercizi risolti. A questo proposito devo dire che per essere pienamente coerente avrei dovuto essere bayesiano, e presentare da subito la statistica bayesiana. Ma questa edizione nasce come esperimento, e in questo momento non voglio mettere troppa carne sul fuoco: ho preferito quindi attenermi ad un approccio più classico nei corsi di Statistica per biologia, anche per il fatto che è l approccio seguito nella maggior parte della letteratura scientifica. Ho poi voluto tenere il numero di pagine basso, in modo che il libro contenesse ciò che ragionevolmente si può fare in un corso annuale: d altronde esistono già dei libri che si possono assumere come testi di referenza, e cercare di esaurire tutti gli argomenti svolti da questi avrebbe voluto dire sacrificare sia la leggibilità che la precisione. Ringraziamenti Desidero poi ringraziare gli studenti del primo anno di Biotecnologie dell Università di Padova dell anno accademico 1999/2000 per i numerosi errori trovati nella prima edizione di questo manoscritto, e Gino Favero per alcuni consigli sull edizione finale. Sicuramente altri errori sono stati introdotti poi, e me ne scuso con i lettori. Padova, 26 aprile 2005 Tiziano Vargiolu

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010 AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINATORE Ranzani Sono presenti i proff. P Ranzani (coordinatore),

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

I libri di testo. Carlo Tarsitani

I libri di testo. Carlo Tarsitani I libri di testo Carlo Tarsitani Premessa Per accedere ai contenuti del sapere scientifico, ai vari livelli di istruzione, si usa comunemente anche un libro di testo. A partire dalla scuola primaria, tutti

Dettagli

Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola

Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Come l Analisi Multi Ciclica ci può evitare Stop-Loss e trovare buoni Ingressi in un Trade

Come l Analisi Multi Ciclica ci può evitare Stop-Loss e trovare buoni Ingressi in un Trade Come l Analisi Multi Ciclica ci può evitare Stop-Loss e trovare buoni Ingressi in un Trade Chi conosce l Analisi Ciclica capirà meglio la sequenza logica qui seguita. Anche chi non consoce bene l Analisi

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Note. Si pensi di poter rispondere alle seguenti domande avendo l ausilio di: 1) un foglio con l elenco

Dettagli

Biografia linguistica

Biografia linguistica EAQUALS-ALTE Biografia linguistica (Parte del Portfolio Europeo delle Lingue di EAQUALS-ALTE) I 1 BIOGRAFIA LINGUISTICA La Biografia linguistica è un documento da aggiornare nel tempo che attesta perché,

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

1. LA MOTIVAZIONE. Imparare è una necessità umana

1. LA MOTIVAZIONE. Imparare è una necessità umana 1. LA MOTIVAZIONE Imparare è una necessità umana La parola studiare spesso ha un retrogusto amaro e richiama alla memoria lunghe ore passate a ripassare i vocaboli di latino o a fare dei calcoli dei quali

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti.

INTRODUZIONE. Nei nostri esperimenti abbiamo verificato la legge di Lenz ma non ne abbiamo sentito gli effetti. INTRODUZIONE Il nostro lavoro muove dallo studio del superamento della visione meccanicistica avvenuta nel contesto dello studio delle interazioni elettriche e magnetiche fra la fine del 7 e l inizio dell

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

Introduzione ai metodi statistici per il credit scoring

Introduzione ai metodi statistici per il credit scoring Introduzione ai metodi statistici per il credit scoring Elena Stanghellini Introduzione ai metodi statistici ai metodi per statistici il credit per scoring il credit scoring Elena Stanghellini Dipartimento

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

IDEE PER LO STUDIO DELLA MATEMATICA

IDEE PER LO STUDIO DELLA MATEMATICA IDEE PER LO STUDIO DELLA MATEMATICA A cura del 1 LA MATEMATICA: perché studiarla??? La matematica non è una disciplina fine a se stessa poichè fornisce strumenti importanti e utili in molti settori della

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

ProgettoFuori Corso TESI DI LAUREA

ProgettoFuori Corso TESI DI LAUREA Università degli Studi di Urbino Carlo Bo DIPARTIMENTO DI STUDI INTERNAZIONALI (DISTI) SCUOLA DI LINGUE E LETTERATURE STRANIERE ProgettoFuori Corso TESI DI LAUREA Cos èla tesi di laurea? Alla fine del

Dettagli

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA Tutti i test statistici di significatività assumono inizialmente la cosiddetta ipotesi zero (o ipotesi nulla) Quando si effettua il confronto fra due o più gruppi di dati, l'ipotesi

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Riccardo Dossena UN ALTRA SPERANZA

Riccardo Dossena UN ALTRA SPERANZA Un altra speranza Riccardo Dossena UN ALTRA SPERANZA Autobiografia www.booksprintedizioni.it Copyright 2014 Riccardo Dossena Tutti i diritti riservati Progetto scrivere di Riccardo Dossena. Con il mio

Dettagli

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Direttore Tiziana Migliore. Comitato scientifico Paolo Fabbri. Silvia Burini. Jean Marie Klinkenberg. Isabella Pezzini. Università IUAV di Venezia

Direttore Tiziana Migliore. Comitato scientifico Paolo Fabbri. Silvia Burini. Jean Marie Klinkenberg. Isabella Pezzini. Università IUAV di Venezia RIFLESSI 9 Direttore Tiziana Migliore Università IUAV di Venezia Comitato scientifico Paolo Fabbri Libera Università Internazionale degli Studi Sociali Guido Carli (LUISS) di Roma Silvia Burini Università

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

LEZIONI DI STATISTICA

LEZIONI DI STATISTICA ez10 l GIOVANNI GIRONE Ordinario nell'università di Bari TOMMASO SALVEMINI Ordinario nel!' Università di Roma LEZIONI DI STATISTICA Volume Secondo CACUCCI EDITORE - BARI - 1992 CENTRO " G. ASTENGO» INVENTARIO

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Corso di Statistica. Corso di Laurea in Ingegneria Edile. Ingegneria Tessile. Docente: Orietta Nicolis

Corso di Statistica. Corso di Laurea in Ingegneria Edile. Ingegneria Tessile. Docente: Orietta Nicolis Corso di Statistica Corso di Laurea in Ingegneria Edile ed Ingegneria Tessile Docente: Orietta Nicolis Orario del corso: Martedì: dalle 16.00 alle 18.00 Giovedì: dalle 9.30 alle 11.30 Ricevimento: Mercoledì:

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

LA FATTURA ELETTRONICA di Giuliano Marrucci

LA FATTURA ELETTRONICA di Giuliano Marrucci LA FATTURA ELETTRONICA di Giuliano Marrucci FUORI CAMPO Luca Richelli insegna informatica musicale al conservatorio di Verona. E siccome di informatica ci capisce, quando a fine corso ha dovuto fare la

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE ISTITUTO: liceo scienze applicate liceo classico X Itc I.Enogastronomia/ospitalità Liceo artistico Scuola media annessa INSEGNANTE: MONICA BIANCHI MATERIA DI INSEGNAMENTO: MATEMATICA

Dettagli

Non dimentichiamoci di Dio

Non dimentichiamoci di Dio Angelo Scola Non dimentichiamoci di Dio Libertà di fedi, di culture e politica Rizzoli Proprietà letteraria riservata 2013 RCS Libri S.p.A., Milano ISBN 978-88-17-06129-2 Prima edizione: marzo 2013 Prefazione

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Esercizi su. Funzioni

Esercizi su. Funzioni Esercizi su Funzioni ๒ Varie Tracce extra Sul sito del corso ๓ Esercizi funz_max.cc funz_fattoriale.cc ๔ Documentazione Il codice va documentato (commentato) Leggibilità Riduzione degli errori Manutenibilità

Dettagli

Ponzio a Bologna Maggio 2009

Ponzio a Bologna Maggio 2009 Ponzio a Bologna Maggio 2009 Intervento di Susan Petrilli Il libro di Augusto Ponzio La dissidenza cifrematica è un vero e proprio esercizio di traduzione, nel senso non tanto interlinguale, come passaggio

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

1. Competenze trasversali

1. Competenze trasversali 1 ISTITUTO D ISTRUZIONE SUPERIORE G. CENA SEZIONE TECNICA ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA DI MATEMATICA DOCENTI: PROF. ANGERA GIANFRANCO CLASSE V U TUR Secondo le linee guida, il corso

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

Livello A2 Unità 7 Istruzione

Livello A2 Unità 7 Istruzione Livello A2 Unità 7 Istruzione Chiavi Lavoriamo sulla comprensione 1. Ascolta il testo. Vero o Falso? Testo 1 - Ciao Marta. - Ciao Habiba, come stai? - Bene grazie. - E Aziz? Lo hai già iscritto scuola?

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Metodi di previsione statistica

Metodi di previsione statistica Metodi di previsione statistica Francesco Battaglia Metodi di previsrone statisttca ~ Springer FRANCESCO BATTAGLIA Dipartimento di Statistica, Probabilita e Statistiche Applicate Universita La Sapienza

Dettagli

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite Questo breve file è dedicato alle questioni di derivabilità di funzioni reali di variabile reale. Particolare attenzione viene posta alla classificazione dei punti di non derivabilità delle funzioni definite

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

Errori di una misura e sua rappresentazione

Errori di una misura e sua rappresentazione Errori di una misura e sua rappresentazione Il risultato di una qualsiasi misura sperimentale è costituito da un valore numerico (con la rispettiva unità di misura) ed un incertezza (chiamata anche errore)

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Questo libro è scritto da me su dettatura di Gesù Cristo. Voglio raccontare la malattia di mio marito e lo voglio fare con l aiuto di Dio.

Questo libro è scritto da me su dettatura di Gesù Cristo. Voglio raccontare la malattia di mio marito e lo voglio fare con l aiuto di Dio. Questo libro è scritto da me su dettatura di Gesù Cristo. Voglio raccontare la malattia di mio marito e lo voglio fare con l aiuto di Dio. Siccome il cancro è una malattia incurabile, Gesù vuole spiegare

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010 Note sull esperienza Misura di g versione 1, Francesco, 7/05/010 L esperienza, basata sullo studio di una molla a spirale in condizioni di equilibrio e di oscillazione, ha diversi scopi e finalità, tra

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano Statistica e Calcolo delle Probabilità prof. Cesare Svelto prof.sa Carla Cattaneo Corso integrato Corso 5+5 = 10 CFU in 2 moduli emisemestrali 1 modulo Statistica 2 modulo Calcolo

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Brand Il primo corso per gli imprenditori che vogliono imparare l arma segreta del Brand Positioning Introduzione

Brand Il primo corso per gli imprenditori che vogliono imparare l arma segreta del Brand Positioning Introduzione Il primo corso per gli imprenditori che vogliono imparare l arma segreta del Brand Positioning Un corso di Marco De Veglia Brand Positioning: la chiave segreta del marketing Mi occupo di Brand Positioning

Dettagli

Figli e denaro: verso il futuro

Figli e denaro: verso il futuro Educare al futuro: il ruolo dell educazione finanziaria Francesco Saita CAREFIN, Università Bocconi Figli e denaro: verso il futuro FAES PattiChiari, Milano, 12 ottobre 2013 1 Introduzione Parlare di educazione

Dettagli