Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME"

Transcript

1 Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro fogli (fronte/retro), deve essere debitamente compilato con cognome, nome, numero di matricola, posizione durante lo scritto, e deve essere firmato. I compiti non compilati, non firmati o con fogli mancanti non saranno considerati validi e quindi non saranno corretti. Sarà valutato solo quanto scritto su questi fogli. Non è consentito consultare testi né appunti. Sul tavolo non devono essere presenti telefoni cellulari, né astucci, né custodie di altro tipo. Le risposte devono essere scritte negli appositi riquadri, qualsiasi testo esterno a tali riquadri non verrà preso in considerazione. Se lo spazio per la soluzione degli esercizi non fosse sufficiente, si può scrivere sull ultimo foglio. FIRMA

2 Esercizio 1 (6 punti). Si consideri il processo di decisione di Markov il cui modello di transizione è riportato nella figura seguente (in cui le etichette numeriche degli archi multipli indicano la probabilità della relativa transizione e i rinforzi associati agli stati sono indicati all interno del relativo nodo): Si trovi la politica ottima π* nello stato A. Dalla definizione di politica ottima si ha π*(a)=argmax a { s Prob[s A,a] U(s ) }. Dall equazione di Bellman ( U(s)=R(s)+ max a { s Prob[s s,a] U(s ) } ) si hanno U(C)=100 U(B)=max{1/10 U(A)+2/10 U(B)+70; 7/10 U(A)+2/10 U(B)+10}. Osservo che U(A) 0, poiché andando nello stato A si ottiene il rinforzo immediato R(A)=-100 seguito da rinforzi dei quali l unico positivo è R(C)=100, che può essere ottenuto al più una volta. Pertanto si ha 1/10 U(A)+2/10 U(B)+70 > 7/10 U(A)+2/10 U(B)+10, da cui U(B)=1/10 U(A)+2/10 U(B)+70, ovvero U(B)=1/8 U(A)+175/2. Pertanto si ha π*(a)=argmax{ 17/80 U(A)+315/4; 15/80 U(A)+325/4}. a 1 a 2 Essendo U(A) 0, si ha 17/80 U(A)+315/4 < 15/80 U(A)+325/4, per cui π*(a)={a 2 }

3 Esercizio 2 (6 punti). Si consideri il seguente problema. Due agenti lavorano per raggiungere un obiettivo comune. Ogni agente può lavorare duramente (azione d) o perdere tempo (azione p). Se un agente lavora duramente, allora l altro agente preferisce perdere tempo. La situazione in cui entrambi gli agenti lavorano duramente è preferita a quella in cui entrambi perdono tempo. La situazione peggiore per un agente è quella in cui lavora duramente, mentre l altro agente perde tempo. Si formalizzi il problema come gioco strategico e se ne trovino gli equilibri di Nash. Il problema può essere formalizzato con il seguente gioco strategico: Il solo equilibrio di Nash è (p,p). d p d 2,2 0,3 p 3,0 1,1

4 Esercizio 3 (7 punti). Si consideri un mondo a griglia 3X3, popolato da tre agenti A 1, A 2, A 3 e da un oggetto O nella configurazione della figura seguente: Ciascun agente riesce a vedere la posizione dell oggetto O qualora esso sia posto nella stessa riga, colonna o diagonali dell agente; altrimenti l agente non vede l oggetto e non può stabilire direttamente in che casella si trovi. La configurazione del mondo a griglia, compresa la posizione dei tre agenti, l esistenza dell oggetto O e le capacità visive degli agenti sono conoscenza comune fra i tre agenti. Gli agenti, però, non sanno a priori dove si trova O, a meno, naturalmente, che non riescano a vederlo da sé. Per modellizzare tale situazione dal punto di vista della conoscenza, si consideri lo spazio di stato S delle possibili posizioni di O (in una coppia <i,j> intendiamo i come indice di riga e j di colonna): S={ <1,1>; <1,2>; <1,3>; <2,1>; <2,2>; <2,3>; <3,1>; <3,2>; <3,3> } (Lo stato reale è palesemente s=<1,1>). Si consideri il seguente evento E: E={<1,1>;<1,3>;<3,3>} Si svolgano i seguenti punti: (1) Si dica, giustificando la risposta, se A 1 conosce E, A 2 conosce E, A 3 conosce E. (2) Si dica, giustificando la risposta, se E è conoscenza comune fra i tre agenti nello stato s=<1,1>. Si utilizzi la definizione di conoscenza comune in termini di eventi autoevidenti. (1) Le partizioni di informazione degli agenti sono le seguenti: P 1 ={ {<1,1>}; {<1,2>}; {<1,3>}; {<2,1>}; {<2,2>}; {<2,3>}; {<3,1>;<3,3>}; {<3,2>} }, P 2 ={ {<1,1>}; {<1,2>}; {<1,3>;<3,3>}; {<2,1>}; {<2,2>}; {<2,3>}; {<3,1>}; {<3,2>} }, P 3 ={ {<1,1>;<1,3>}; {<1,2>}; {<2,1>}; {<2,2>}; {<2,3>}; {<3,1>}; {<3,2>}; {<3,3>} }. Un agente A conosce un evento E se l information set P i (s) dell agente i nello stato reale s è contenuto nell evento E. Ora, P 1 (s)= P 1 (<1,1>)={<1,1>} E, per cui A 1 conosce E; P 2 (s)= P 2 (<1,1>)={<1,1>} E, per cui A 2 conosce E; P 3 (s)= P 3 (<1,1>)={<1,1>;<1,3>} E, per cui A 3 conosce E. (2) L evento E, pur conosciuto da tutti gli agenti, non è conoscenza comune fra essi in s. Infatti, se per assurdo lo fosse, allora dovrebbe esistere un evento F tale che s F, F E ed F è autoevidente per A 1, A 2 e A 3. Ma gli unici eventi F tali che s F ed F E sono: - F 1 ={<1,1>}, che non è autoevidente per A 3. - F 2 ={<1,1>;<1,3>}, che non è autoevidente per A 2. - F 3 ={<1,1>;<3,3>}, che non è autoevidente per A 1. - F 4 ={<1,1>;<1,3>;<3,3>}, che non è autoevidente per A 1. 3

5 Esercizio 4 (6 punti). Si consideri il problema di coordinamento fra gli agenti A 1, A 2, A 3 e A 4, ciascuno dei quali può compiere le azioni x e y, la cui funzione di utilità è decomponibile nel seguente modo: u(a 1,a 2,a 3,a 4 )=f 1,2 (a 1,a 2 )+f 2, 3 (a 2,a 3 ) +f 3, 4 (a 3,a 4 ) ove f 1,2 (x,x)=5 f 2,3 (x,x)=6 f 3,4 (x,x)=8 f 1,2 (x,y)=8 f 2,3 (x,y)=9 f 3,4 (x,y)=8 f 1,2 (y,x)=13 f 2,3 (y,x)=2 f 3,4 (y,x)=4 f 1,2 (y,y)=4 f 2,3 (y,y)=0 f 3,4 (y,y)=14 Il problema di coordinamento viene risolto dagli agenti per eliminazione delle variabili senza comunicazione, con la funzione utilità decomposta come detto sopra e con l ordinamento A 1, A 2, A 3, A 4 per gli agenti e x, y per le azioni. Si illustri la computazione del generico agente nell esecuzione dell algoritmo di coordinamento.

6 La computazione del generico agente avviene come di seguito illustrato: -Si ha: F={f 1,2 (a 1,a 2 ), f 2, 3 (a 2,a 3 ), f 3, 4 (a 3,a 4 )} -Si considera il primo agente nell ordine: A 1. F 1 =insieme delle funzioni in F che hanno fra gli argomenti le azioni di A 1 ; si ottiene: F 1 ={f 1,2 (a 1,a 2 )} B 1 (a -1 )=argmax a1 {Σ f F1 f(a 1,a -1 )} B 1 (a 2 )=argmax a1 {f 1,2 (a 1,a 2 )} B 1 (x)={y} B 1 (y)={x} f (a -1 )=max a1 {Σ f F1 f(a 1,a -1 )} f (a 2 )=max a1 {f 1,2 (a 1,a 2 )} f (x)=13 f (y)=8 -Si pone F:= (F-F 1 ) U {f (a 2 )} F={f 2, 3 (a 2,a 3 ), f 3,4 (a 3,a 4 ), f (a 2 )} -Si considera il secondo agente nell ordine: A 2. F 2 =insieme delle funzioni in F che hanno fra gli argomenti le azioni di A 2 ; si ottiene: F 2 ={f 2, 3 (a 2,a 3 ), f (a 2 )} B 2 (a -2 )=argmax a2 {Σ f F2 f(a 2,a -2 )} B 2 (a 3 )=argmax a2 {f 2,3 (a 2,a 3 )+f (a 2 )} B 2 (x)={x} B 2 (y)={x} f (a -2 )=max a2 {Σ f F2 f(a 2,a -2 )} f (a 3 )=max a2 {f 2,3 (a 2,a 3 )+f (a 2 )} f (x)=19 f (y)=22 -Si pone F:= (F-F 2 ) U {f (a 3 )} F={f 3,4 (a 3,a 4 ),f (a 3 )} -Si considera il terzo agente nell ordine: A 3. F 3 =insieme delle funzioni in F che hanno fra gli argomenti le azioni di A 3 ; si ottiene: F 3 =F

7 -Si pone B 3 (a -3 )=argmax a3 {Σ f F3 f(a 3,a -3 )} B 3 (a 4 )=argmax a3 {f 3,4 (a 3,a 4 )+f (a 3 )} B 3 (x)={x} B 3 (y)={y} f (a -3 )=max a3 {Σ f F3 f(a 3,a -3 )} f (a 4 )=max a3 {f 3,4 (a 3,a 4 )+f (a 3 )} f (x)=27 f (y)=36 F:= (F-F 3 ) U {f (a 4 )} F={f (a 4 )} -Si considera il quarto agente nell ordine: A 4. F 4 =insieme delle funzioni in F che hanno fra gli argomenti le azioni di A 4 ; si ottiene: F 4 =F B 4 (a -4 )=argmax a4 {Σ f F4 f(a 4,a -4 )} B 4 =argmax a4 {f (a 4 )} B 4 ={y} -Si sceglie a 4 * B 4 ={y}, ovvero -Si sceglie a 3 * B 3 (a 4 *)=B 3 (y)={y}, ovvero -Si sceglie a 2 * B 2 (a 3 *)=B 2 (y)={x}, ovvero -Si sceglie a 1 * B 1 (a 2 *)=B 1 (x)={y}, ovvero a 4 *=y a 3 *=y a 2 *=x a 1 *=y

8 Esercizio 5 (6 punti). Si definisca formalmente un problema di soddisfacimento di vincoli distribuiti, indicando anche che cosa si intende per soluzione di un tale problema. Un problema di soddisfacimento di vincoli distribuiti è un problema definito come segue. Sono date n variabili (x 1, x 2,, x n ) ognuna delle quali appartiene a uno fra m agenti (a 1, a 2,, a m ). (Solitamente, n=m.) Ogni variabile x i può assumere valori appartenenti a un dominio D i. Le variabili sono legate da un insieme di vincoli p k. Un agente a j conosce i vincoli che coinvolgono le variabili che gli appartengono. Una soluzione a un problema di soddisfacimento di vincoli distribuiti è un assegnamento di valori a tutte le n variabili tale che tutti i vincoli siano rispettati.

Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica Industriale Appello COGNOME E NOME. 2 settembre 2009 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica Industriale Appello COGNOME E NOME. 2 settembre 2009 RIGA COLONNA MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica Industriale Appello COGNOME E NOME 2 settembre 2009 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro fogli

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games

Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI STUDI IN INGEGNERIA MATEMATICA Equilibri di Nash e di tipo Leadership con applicazione ai Patrolling Games Stefania

Dettagli

26 Febbraio 2015 Modulo 2

26 Febbraio 2015 Modulo 2 Reti di Comunicazione e Internet Prof. I. Filippini Cognome Nome Matricola 26 Febbraio 2015 Modulo 2 Tempo complessivo a disposizione per lo svolgimento: 1h 40m E possibile scrivere a matita E1 E2 Domande

Dettagli

Compito di Informatica Grafica 5 appello 29/06/2006

Compito di Informatica Grafica 5 appello 29/06/2006 Nome e Cognome Numero di Matricola Ing. Edile (Immatr. nell a.a. ) Ing. Edile-Architettura (Immatr. nell a.a. ) Esercizio 1 (12 punti) Sia data la base di dati il cui schema è rappresentato in figura,

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

GIUSTIFICARE LE RISPOSTE. Non scrivere la soluzione di esercizi diversi su uno stesso foglio.

GIUSTIFICARE LE RISPOSTE. Non scrivere la soluzione di esercizi diversi su uno stesso foglio. Teoria dei giochi applicata alle scienze sociali Laurea Specialistica in Ingegneria Gestionale, Politecnico di MI, 2006/07 I prova intermedia, 19 dicembre 2006, foglio A Tempo: 2 ore e 1/2; risolvere 3

Dettagli

FIRESHOP.NET. Gestione Lotti & Matricole. www.firesoft.it

FIRESHOP.NET. Gestione Lotti & Matricole. www.firesoft.it FIRESHOP.NET Gestione Lotti & Matricole www.firesoft.it Sommario SOMMARIO Introduzione... 3 Configurazione... 6 Personalizzare le etichette del modulo lotti... 6 Personalizzare i campi che identificano

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano Facoltà di Ingegneria dell Informazione Corso di laurea in Ingegneria Informatica COMPUTAZIONE DI EQUILIBRI PERFETTI NEI GIOCHI IN FORMA ESTESA A SOMMA ZERO CON DUE GIOCATORI: ALGORITMI

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi. Giochi ed equilibri di Nash Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.it 1 1 Notazione e definizione di equilibrio di Nash Si supponga

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone Sintesi di Reti Sequenziali Sincrone Maurizio Palesi Maurizio Palesi 1 Macchina Sequenziale Una macchina sequenziale è definita dalla quintupla (I,U,S,δ,λ) dove: I è l insieme finito dei simboli d ingresso

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Teoria dei Giochi Prova del 30 Novembre 2012

Teoria dei Giochi Prova del 30 Novembre 2012 Cognome, Nome, Corso di Laurea, email: Teoria dei Giochi Prova del 30 Novembre 2012 Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra {1,3,,6}; il secondo giocatore

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Esercizio 1. (7 punti) Illustrare facendo uso di pseudocodice uno degli algoritmi per l estrazione di regole di decisione visti a lezione.

Esercizio 1. (7 punti) Illustrare facendo uso di pseudocodice uno degli algoritmi per l estrazione di regole di decisione visti a lezione. Politecnico di Milano Facoltà di Ingegneria dell Informazione Metodologie per Sistemi Intelligenti Prof. Lanzi e Ing. Rossini 19 Luglio 2005 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere i seguenti

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 Importante: sono cambiati i moduli di rilevazione! Anche quest anno verrà distribuita dalla segreteria di Facoltà, dalla terzultima settimana

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere nome e cognome

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

MODULO 4: FOGLIO ELETTRONICO (EXCEL)

MODULO 4: FOGLIO ELETTRONICO (EXCEL) MODULO 4: FOGLIO ELETTRONICO (EXCEL) 1. Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei Personal computer. Essi

Dettagli

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola Politecnico di Milano Ingegneria del Software a.a. 2006/07 Appello del 14 settembre 2007 Cognome Nome Matricola Sezione (segnarne una) Baresi, Ghezzi, Morzenti, SanPietro Istruzioni 1. La mancata indicazione

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

Demos rel. 7.0.3 Pag. 1 di 25

Demos rel. 7.0.3 Pag. 1 di 25 Demos rel. 7.0.3 Demos rel. 7.0.3 Pag. 1 di 25 Sommario 1 Stato civile... 3 1.1 Stampa atti Matrimoni II C... 3 1.1.1 Separazione e Divorzio innanzi all ufficiale dello stato civile... 3 1.1.2 DemosWin:

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 marzo 2015 Appunti di didattica della matematica applicata

Dettagli

Laboratorio di Chimica Fisica 04/03/2015. Introduzione all uso di Microcal Origin 6.0 (TM)

Laboratorio di Chimica Fisica 04/03/2015. Introduzione all uso di Microcal Origin 6.0 (TM) Introduzione all uso di Microcal Origin 6.0 (TM) Origin lavora solo in ambiente Windows, ma ci sono degli omologhi per linux e apple. Sui computer del laboratorio è installato windows XP e troverete la

Dettagli

Appunti di Teoria dei Giochi per la Strategia di Impresa

Appunti di Teoria dei Giochi per la Strategia di Impresa Appunti di Teoria dei Giochi per la Strategia di Impresa Mauro Sylos Labini Scuola Superiore Sant Anna, Pisa. Gennaio 2004 1 Introduzione Il Capitolo di Teoria dei Giochi ha ormai conquistato un posto

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Il faccendiere valido per gli appelli di giugno e luglio 2012 1 Il problema Un faccendiere vuole depositare ingenti quantità di denaro

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

8.9 CREARE UNA TABELLA PIVOT

8.9 CREARE UNA TABELLA PIVOT 8.9 CREARE UNA TABELLA PIVOT Utilizziamo la tabella del foglio di Excel Consumo di energia elettrica in Italia del progetto Aggiungere subtotali a una tabella di dati, per creare una Tabella pivot: essa

Dettagli

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio? Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

A. Domande a Risposta Multipla (max 12 punti)

A. Domande a Risposta Multipla (max 12 punti) Esame di Politica Economica 2 appello Sessione Estiva A.A. 2010-2011 NOME E MATRICOLA: ISTRUZIONI: Utilizzate gli spazi indicati per le risposte Fogli addizionali possono essere consegnati solo con indicazione

Dettagli

Flip-flop Macchine sequenziali

Flip-flop Macchine sequenziali Flip-flop Macchine sequenziali Introduzione I circuiti digitali possono essere così classificati Circuiti combinatori Il valore delle uscite ad un determinato istante dipende unicamente dal valore degli

Dettagli

Equilibrio bayesiano perfetto. Giochi di segnalazione

Equilibrio bayesiano perfetto. Giochi di segnalazione Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi

Dettagli

Tra questi il più conosciuto è il sudoku.

Tra questi il più conosciuto è il sudoku. I giochi logici sono una particolare categoria di giochi a griglia. Tra questi il più conosciuto è il sudoku. Sono giochi adatti a tutti perché non richiedono conoscenze matematiche avanzate ma buone doti

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

IMPOSTAZIONE DELLE TAVOLE GRAFICHE

IMPOSTAZIONE DELLE TAVOLE GRAFICHE IMPOSTAZIONE DELLE TAVOLE GRAFICHE Esercizio di divisione dello spazio, costruzioni grafiche elementari, scritturazioni e uso del colore. IL E I SUOI FORMATI Formati e disposizioni degli elementi grafici

Dettagli

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro,

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro, EXCEL PER WINDOWS95 1.Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

TAVOLA 1 ORGANIZZAZIONE DELLO SPAZIO. Esercizio di divisione dello spazio, costruzioni grafiche elementari, scritturazioni e uso del colore.

TAVOLA 1 ORGANIZZAZIONE DELLO SPAZIO. Esercizio di divisione dello spazio, costruzioni grafiche elementari, scritturazioni e uso del colore. TAVOLA 1 ORGANIZZAZIONE DELLO SPAZIO Esercizio di divisione dello spazio, costruzioni grafiche elementari, scritturazioni e uso del colore. IL E I SUOI FORMATI Formati e disposizioni degli elementi grafici

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

Sistemi Informativi 01CIT 13 Febbraio 2008

Sistemi Informativi 01CIT 13 Febbraio 2008 Matricola Cognome Nome: Sistemi Informativi 01CIT 13 Febbraio 2008 Non e consentito usare appunti, libri o simili. Scrivere solo su questi fogli. Display prezzi merci in supermercato. I prezzi delle merci

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

Il problema della dieta: guida visuale all utilizzo del solutore di Excel 1

Il problema della dieta: guida visuale all utilizzo del solutore di Excel 1 Il problema della dieta: guida visuale all utilizzo del solutore di Excel 1 Un dietologo visita un uomo, da tempo un po' in sovrappeso, che desidera tornare in forma. Al primo incontro i due concordano

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Cultura Tecnologica di Progetto

Cultura Tecnologica di Progetto Cultura Tecnologica di Progetto Politecnico di Milano Facoltà di Disegno Industriale - DATABASE - A.A. 2003-2004 2004 DataBase DB e DataBase Management System DBMS - I database sono archivi che costituiscono

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

PORTALE MODOC. Guida per l utente. Release 4.0 30/05/2015

PORTALE MODOC. Guida per l utente. Release 4.0 30/05/2015 PORTALE MODOC Guida per l utente Release 4.0 30/05/2015 Sommario INFORMAZIONI GENERALI... 3 LOGIN... 4 HOME... 5 CENSIMENTO... 6 Nuova scatola... 6 Censimento di un box... 6 Censimento di un faldone...

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli