MPC di sistemi non lineari output feedback and tracking

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MPC di sistemi non lineari output feedback and tracking"

Transcript

1 MPC di sistemi non lineari output feedback and tracking Dipartimento di Informatica e Sistemistica Via Ferrata 1, Pavia 1

2 Stato dell arte Sono stati proposti molti algoritmi MPC stabilizzanti con retroazione sullo stato Il problema della retroazione sull uscita è stato risolto con il principio di separazione Una sfida ancora aperta è quella di sviluppare metodi MPC con capacità di inseguimento di segnali di riferimento con dinamica definita 2

3 Schema della presentazione Schemi di controllo per l inseguimento asintotico nel controllo lineare MPC non lineare: il problema della regolazione MPC non lineare: il problema dell inseguimento con modelli di stato MPC non lineare: il problema dell inseguimento con modelli ingresso - uscita 3

4 Schemi di controllo per l inseguimento asintotico Sistemi lineari e segnali esogeni costanti d w e u R0 R2 R1 R2 R System y R0 = insiemi di integratori 1/(z-1) R1, R2 =regolatori lineari stabilizzanticon azione feedback - feedforward 4

5 Schema 1 w e u R2 R0 v z1 d Sistema y Non molto usato in MPC n. ingressi = n. uscite Utile nel controllo non lineare per estendere il principio del modello interno 5

6 Schema 2 R21 R22 d w e u u R1 R0 Sistema y schema MPC classico, come nel GPC numero di integratori = numero di variabili di ingresso R21, R22 possono essere termini non causali 6

7 Schema 3 w e u R0 R2 Sistema d y Non usato nel MPC Numero di integratori = numero di variabili di uscita 7

8 Il sistema non lineare Sistema non lineare a tempo discreto x(k +1)=f(x(k),u(k)), x(t) =x t f(0,0)=0, h(0)=0 y(k) =h(x(k)) f e h sono funzioni sufficientemente smooth 8

9 Il problema di regolazione retroazione sullo stato è trovare una legge di controllo u=(x) tale che l origine sia un punto di equilibrio stabile e x (k) X u(k) U X e U sono insiemi compatti che contengono l origine 9

10 L output admissible set Data la legge di controllo u=(x) un output admissible set Y k è un insieme di stati iniziali da cui si può raggiungere l origine nel rispetto dei vincoli 10

11 L approccio MPC - I Ad ogni t, minimizza rispetto a [u(t), u(t+1),,u(t+m-1)] il funzionale di costo J = t+nà1 i=t Con i vincoli x(i) 2 + u(i) 2 + V Q R f (x(t + N)) x X, u U e x(t + N) X f u(k) =Kx(k), k > t + M 11

12 L approccio MPC - II Quindi applica soltanto u(t) e ripeti la procedura di ottimizzazione all istante t+1 Ciò definisce la legge di controllo MPC u=rh(x) 12

13 Parametri di progetto N = orizzonte di predizione M = orizzonte di controllo Q, R = matrici dei pesi Vf(x(t+N)) = peso finale Xf = insieme finale u = Kx legge di controllo lineare localmente stabilizzante Yrh = output admissible set di u=rh(x) YK = output admissible set di u=kx 13

14 Stabilità di MPC Xf =0, Vf = 0 Xf =YK, Vf = 0 commuta a u=kx all interno di YK Xf =YK, Vf = x Pf x Xf =YK, V f (x(t)) = x(i) 2 i=t Q+K 0 RK Tutte stabilizzano esponenzialmente l origine 14

15 Retroazione sull uscita Osservatore esponenzialmente stabile (ad esempio EKF) xê(k +1)=g(xê(k),h(x(k)),u(k)) controllo MPC u Sistema y xê Osservatore dello stato Controllo MPC esponenzialmente stabilizzante + osservatore esp. stabile L origine è un equilibrio esponenzialmente stabile 15

16 Il problema del tracking w Orizzonte di predizione Orizzonte del riferimento y w Orizzonte di controllo Legge di controllo lineare Ipotesi: esiste un equilibrio tale che xö(wö) = f(xö(wö),uö(wö)) wö =h(xö(wö)) t W Ipotesi: Il sistema linearizzato è stabilizzabile, detettabile, senza zeri di trasm. z=1 16

17 Sistema + R0 x 1 (k +1)=f 1 (x 1 (k),v(k),w(k)) e(k) =h 1 (x 1 (k),w(k)) Legge lineare localmente stabilizzante v(k) =K 1 (wö)(x 1 (k) à xö 1 (wö)) Metodo 1 - I w e u y R2 R0 v z1 Sistema Minimizza rispetto av(k),,v(k+m-1) t+nà1 J 1 = P ð í í íe(i) 2 + í í ñ Q v(i) 2 + V R f1 (x 1 (t + N),wö) i=t V f1 = P ð í í íe(i) 2 + í K1 (x Q 1 (i) à xö 1 (wö)) í ñ 2 R i=t+n x 1 (t + N) Y K 1 + altri vincoli 17

18 R2 si ottiene combinando la legge MPC con un osservatore Con l ipotesi di osservabilità opportuna, xö 1 (wö) è punto di equilibrio esponenzialmente stabile Pro: facile generalizzare a altri segnali esogeni Metodo 1 - II w e u y R2 R0 v z1 Sistema Contro: è difficile includere vincoli su u, u; stesso numero di ingressi e uscite; bisogna calcolare xö 1 (wö) 18

19 Supponi di conoscere un reg. dinamico localmente stabilizzante x r (k +1)=A r x r (k)+b r e(k) v(k) =C r x r (k)+d r e(k) Metodo 1 - III come evitare il calcolo di xö 1 (wö) Minimizza rispetto av(k),,v(k+m-1), xr(k+m) x r (k J ã +1)=A r x r (k)+b r e(k) 1 = t+ M à 1 è ke(i) k 2 Q + kv(i) é + k x r (t + M ) k 2 Rr + V ã f1 = P i= t t+nà1 + P P i=t+n i=t+m k2 R n v(k) =C o r x r (k)+d r e(k) ke(i) k 2 Qö + kx r (i) + V ã f1 ke(i) k 2 Qö + kx r (i) k 2 Qö R k 2 Qö r, ì x 1 (t + N) x r (t + N) ì Yã f1 (wö) 19

20 Vf ei xr w e u u y R1 R0 Sistema Metodo 2 - I Sistema + R0 x 2 (k +1)=f 2 (x 2 (k),îu(k),w(k)) e(k) =h 2 (x 2 (k),w(k)) Legge lineare localmente stabilizzante îu(k) =K 2 (wö)(x 2 (k) à xö 2 (wö)) J 2 = Minimizza rispetto au(k),,u(k+m-1) t+nà1 P ð i=t ñ ke(i) k 2 Q + kîu(i) + k2 Vf2 (x 2 (t + N),wö) R V f2 = P i=t+n ke(i) k 2 Q + k K 2(x 2 (i) à xö 2 (wö)) x 2 (t + N) Y K2 + altri vincoli k 2 R 20

21 w e u u y R1 R0 Sistema Metodo 2 - II R1 è ottenuto combinando la legge MPC con un osservatore Contro: n. di integratori = n. di ingressi; per modelli incerti, è necessario un osservatore anche se x è noto; non si generalizza ad altri riferimenti. Con l ipotesi di osservabilità opportuna, xö 2 (wö) è un punto di equilibrio esponenzialmente stabile Pro: facile includere vincoli su u e u; schema MPC classico 21

22 w e u y R0 R2 Sistema Metodo 3 - I Sistema + R0 x 3 (k +1)= f 3 (x 3 (k),u(k),w(k)) e(k) =h 3 (x 3 (k),w(k)) dove x 3 (k) contiene lo stato del sistema, degli integratori e u(k-1), cosicché u(k)=u(k)-u(k-1)=u(k)-x 3 (k) 22

23 w e u y R0 R2 Sistema Metodo 3 - II Legge localmente stabilizzante u(k) =uö(wö) + K 3 (wö)(x 3 (k) à xö 3 (wö)) Minimizza rispetto au(k),,u(k+m-1), t+nà1 ð ñ J 3 = ke(i) k 2 Q + kîu(i) + V f3 (x 3 (t + N),wö) V f3 = P i=t P i=t+n k2 R ke(i) k 2 Q + kuö(wö) + K 3 (x 3 (i) à xö 3 (wö)) x 3 (t + N) Y K3 + altri vincoli k 2 R 23

24 w e u y R0 R2 Sistema Metodo 3 - III R2 è ottenuto combinando la legge MPC con un osservatore Contro: schema non standard ; non si generalizza ad altri riferimenti; Con l ipotesi di osservabilità opportuna, xö 3 (wö) è un punto di equilibrio esponenzialmente stabile Pro: facile includere vincoli su u e u; minimo numero di integratori 24

25 Modelli Ingresso-Uscita - I Con riferimento allo schema 2, con tecniche di identificazione si può ottenere il modello ingresso- uscita e(k +1)=í(e(k),..., e(k à n),îu(k),..., îu(k à n)) con (0,0)=0 25

26 Posto Modelli ingresso-uscita - II x(k) = [ e(k),..., e(k à n),îu(k),..., îu(k à n) ] 0 il modello può essere scritto come x(k +1)=f(x(k),îu(k)) e(k) =Cx(k) e il problema di tracking è trasformato in un problema di regolazione 26

27 Un esempio illustrativo Continuous Stirred Tank Reactor Cç A = q V (C Af à C A ) à k 0 exp(à E RT )C A Tç = q V (T f à T) à 4H úcp k 0 exp(à E RT )C A + UA VúCp (T c à T) y = T, u = T c Equilibrio instabile Cö A =0.5mol/L Tö = 350K T ö c = 300K Vincoli 220K 6 T c 6 550K 220K 6 T 6 550K 0 6 C A 6 C Af =1mol/L 27

28 Risposta allo scalino 0.8 T c =300K æ 5K (a) 440 (a) C A (mol/l) C A (mol/l) Time (minute) (b) T (K) T (K) Time (minute ) (b) Time (minute) Time (minute ) (a) +5K, (b) -5K 28

29 Retroazione sull uscita - metodo 2 Regolatore dinamico localmente stabilizzante N = 4 Q = 10, R = 1 Extended Kalman Filter 29

30 Esperimento 1 Scalino pre-programmato C A (mol/l) T (K) T c (K) Time (min) Regolatore lineare: linea blu; MPC: linea rossa 30

31 Esperimento 2 Rampa pre-programmata C A (mol/l) T (K) T c (K) Time (min) Regolatore:linea blu; MPC: linea rossa 31

32 Esperimento 3 variazioni del parametro E/R E/R(K) Time (min) C A (mol/l) Time (min) T(mol/L) T c (mol/l) Time (min) Variazione di E/R Time (min) 32

33 Conclusioni Oggi ci sono algoritmi MPC con retroazione sull uscita e tracking per sistemi non lineari L aspetto computazionale è fondamentale per l impiego pratico di queste tecniche attività di ricerca futura può riguardare: (a) osservatori non lineari (b) identificazione ingresso-uscita affidabile 33

34 Riferimenti Magni L., G. De Nicolao and R. Scattolini : "Output feedback and tracking of nonlinear systems with model predictive control", Automatica, to appear, Magni L., G. De Nicolao, L. Magnani, and R. Scattolini : "A stabilizing modelbased predictive control for nonlinear systems", Automatica, to appear, De Nicolao G., L. Magni and R. Scattolini : "Tracking of nonlinear systems via model based predictive control", ADCHEM 2000, International Symposium on Advanced Control of Chemical Processes, Pisa, Italy - June 14-16, De Nicolao G., L. Magni and R. Scattolini : "Stabilizing Receding-Horizon control of nonlinear time varyng systems", IEEE Trans. on Automatic Control, AC-43, , De Nicolao G., L. Magni and R. Scattolini : "Stabilizing predictive control of Nonlinear ARX models", Automatica, 33, , De Nicolao G., L. Magni and R. Scattolini : "On the robustness of receding-horizon control with terminal constraints", IEEE Trans. on Automatic Control, AC-41, ,

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Equazioni non lineari

Equazioni non lineari CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA ELETTRICA Equazioni non lineari Metodi iterativi per l approssimazione di radici Corso di calcolo numerico 2 01/11/2010 Manuela Carta INDICE Introduzione Metodo

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Il sistema di Rossler

Il sistema di Rossler Il sistema di Rossler Il sistema di Rossler è considerato il più semplice sistema di terzo ordine a tempo continuo capace di manifestare comportamenti di tipo caotico. = = + (1) = + Questo sistema presenta

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Analisi e controllo di uno scambiatore di calore

Analisi e controllo di uno scambiatore di calore Università degli Studi di Roma Tor Vergata FACOLTÀ DI INGNEGNERIA Corso di Laurea Magistrale in Ingegneria dell automazione Progetto per il corso di controllo dei processi Analisi e controllo di uno scambiatore

Dettagli

A. Bicchi Centro I.R. E. Piaggio, Università di Pisa

A. Bicchi Centro I.R. E. Piaggio, Università di Pisa Controllo, Teoria del Teoria dell Enciclopedia Italiana di Scienze, Lettere ed Arti Istituto della Enciclopedia Italiana ``G. Treccani'' XXI Secolo -- Aggiornamento, A. Bicchi Centro I.R. E. Piaggio, Università

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Process mining & Optimization Un approccio matematico al problema

Process mining & Optimization Un approccio matematico al problema Res User Meeting 2014 con la partecipazione di Scriviamo insieme il futuro Paolo Ferrandi Responsabile Tecnico Research for Enterprise Systems Federico Bonelli Engineer Process mining & Optimization Un

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Cap.1 - L impresa come sistema

Cap.1 - L impresa come sistema Cap.1 - L impresa come sistema Indice: L impresa come sistema dinamico L impresa come sistema complesso e gerarchico La progettazione del sistema impresa Modelli organizzativi per la gestione Proprietà

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame.

1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame. 1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame. (a) Da quanti bit è costituito l indirizzo logico? (b) Da quanti bit

Dettagli

L EQUILIBRIO CHIMICO

L EQUILIBRIO CHIMICO EQUIIBRIO CHIMICO Molte reazioni chimiche possono avvenire in entrambe i sensi: reagenti e prodotti possono cioè scambiarsi fra di loro; le reazioni di questo tipo vengono qualificate come reazioni reversibili.

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Lezioni del corso AL430 - Anelli Commutativi e Ideali

Lezioni del corso AL430 - Anelli Commutativi e Ideali Lezioni del corso AL430 - Anelli Commutativi e Ideali a.a. 2011-2012 Introduzione alla Teoria delle Valutazioni Stefania Gabelli Testi di Riferimento M. F. Atiyah and I. G. Macdonald, Introduction to Commutative

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Problem Management Obiettivi Obiettivo del Problem Management e di minimizzare l effetto negativo sull organizzazione degli Incidenti e dei Problemi causati da errori nell infrastruttura e prevenire gli

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

IT Service Management, le best practice per la gestione dei servizi

IT Service Management, le best practice per la gestione dei servizi Il Framework ITIL e gli Standard di PMI : : possibili sinergie Milano, Venerdì, 11 Luglio 2008 IT Service Management, le best practice per la gestione dei servizi Maxime Sottini Slide 1 Agenda Introduzione

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

CAPITOLO 3. Elementi fondamentali della struttura organizzativa

CAPITOLO 3. Elementi fondamentali della struttura organizzativa CAPITOLO 3 Elementi fondamentali della struttura organizzativa Agenda La struttura organizzativa Le esigenze informative Tipologia di strutture Struttura funzionale Struttura divisionale Struttura per

Dettagli

Perché il Controllo Fuzzy?

Perché il Controllo Fuzzy? Pregi - Non è necessario un modello matematico dettagliato 2 - Può incorporare facilmente esperienza umana espressa in termini "qualitativi" 3 - E' robusto 4 - E' adattabile alle modifiche del processo

Dettagli

SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE

SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE di M. VILLA. e L. MURACCHINI (a Bologna) 1. - Nelle nostre ricerche sull'applicabilita proiettiva delle trasformazioni puntuali fra piani, abbiamo

Dettagli

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Università di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Ing. dell' Informazione Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Relatore: Prof. Alessandro Beghi Presentata

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale D. Prattichizzo G.L. Mariottini F. Moneti M. Orlandesi M. Fei M. de Pascale A. Formaglio F. Morbidi S. Mulatto SIRSLab Laboratorio

Dettagli

Cenni di Elettronica non Lineare

Cenni di Elettronica non Lineare 1 Cenni di Elettronica non Lineare RUOLO DELL ELETTRONICA NON LINEARE La differenza principale tra l elettronica lineare e quella non-lineare risiede nel tipo di informazione che viene elaborata. L elettronica

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

ENERGY-EFFICIENT HOME VENTILATION SYSTEMS

ENERGY-EFFICIENT HOME VENTILATION SYSTEMS SISTEMI DI RECUPERO RESIDENZIALE HOME RECOVERY SYSTEMS RECUPERO DI CALORE AD ALTA EFFICIENZA HIGH EFFICIENCY HEAT RECOVERY VENTILAZIONE A BASSO CONSUMO LOW ENERGY VENTILATION SISTEMI DI RICAMBIO CONTROLLATO

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Soluzioni Esercitazione VIII. p(t)dt = R

Soluzioni Esercitazione VIII. p(t)dt = R S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t u + perché

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

Panoramica su ITIL V3 ed esempio di implementazione del Service Design

Panoramica su ITIL V3 ed esempio di implementazione del Service Design Master Universitario di II livello in Interoperabilità Per la Pubblica Amministrazione e Le Imprese Panoramica su ITIL V3 ed esempio di implementazione del Service Design Lavoro pratico II Periodo didattico

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Corso Base ITIL V3 2008

Corso Base ITIL V3 2008 Corso Base ITIL V3 2008 PROXYMA Contrà San Silvestro, 14 36100 Vicenza Tel. 0444 544522 Fax 0444 234400 Email: proxyma@proxyma.it L informazione come risorsa strategica Nelle aziende moderne l informazione

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

il materiale contenuto nel presente documento non può essere utilizzato o riprodotto senza autorizzazione

il materiale contenuto nel presente documento non può essere utilizzato o riprodotto senza autorizzazione Reliability Management La gestione del processo di Sviluppo Prodotto Ing. Andrea Calisti www.indcons.eu Chi sono... Andrea CALISTI Ingegnere meccanico dal 1995 al 2009 nel Gruppo Fiat Assistenza Clienti

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli