Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)"

Transcript

1 Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni unarie da naturali a naturali: φ ψ (φ è minore di ψ, o φ approssima ψ) se e solo se x dom(φ).φ ψ(x). Cioè, dove la minore è definita, è definita anche la maggiore, e assumono entrambe lo stesso valore. Diciamo inoltre che φ < ψ (φ è strettamente minore di ψ) se e solo se φ ψ ed esiste ameno un valore x dove ψ è definita e φ no. Ad esempio, la funzione: x se x è pari h è tale che h Id e anche h < Id (Id è la funzione identità). Consideriamo una semplice funzione ricorsiva: fatt se x = 0 allora 1 altrimenti x fatt(x 1) fatt può essere approssimata dalla seguente catena di funzioni parziali: fatt (0) 1 se x = 0 tali che: fatt (1) 1 se x = 0, 1 fatt (n) x se x n altrimenti fatt (0) < fatt (1) <... < fatt (n) < fatt () <... Se dobbiamo calcolare il fattoriale del numero m, ci basterà usare una approssimazione fatt (n), con n m. In altre parole, la definizione ricorsiva di una funzione può essere sviluppata all infinito, ma ogni volta che vogliamo calcolarla su di uno specifico valore, il numero degli sviluppi (chiamate ricorsive) è sempre finito e dipe dal valore in input. In altre parole nella computazione reale non ci serve mai tutta la potenza della ricursione. Fatte queste considerazioni preliminari, vogliamo ora mostrare l equivalenza tra ricursione e iterazione. Cioè vogliamo dimostrare il seguente teorema: Teorema. Dato un programma ricorsivo, esiste un programma iterativo che calcola la stessa funzione. 1

2 Estiamo il linguaggio WHILE con una nozione di procedura ricorsiva, come fatto nel testo a pag. 110 (versione inglese), con la semantica operazionale come data informalmente nel testo. Sia FATT il programma così ottenuto. Possiamo scrivere, per ogni n, il programma iterativo che calcola la funzione fatt (n). Sia e l indice del seguente programma, che calcola la funzione ovunque indefinita: Sia F AT T 0 = P e = begin X1 = 1; while X1 0 do begin P e ; Ovviamente F AT T 0 calcola la funzione fatt 0. Sia ora F AT T 0 + il programma F AT T 0 con X3 al posto di X2, cioè modificato nel seguente modo: Sia F AT T 1 = begin X3 := X1; X1 := pred(x1); P e ; X1 := X3 X1 F AT T 0 +; La ridenomina della variabile X2 in X3 è necessaria per poter effettuare il passaggio dei parametri, senza cancellare il dato iniziale. Ovviamente F AT T 1 calcola la funzione fatt 1. Sia f la funzione di riscrittura di programmi tale che, applicata ad un programma di indice i, lo riscrive nel modo seguente, otteno così il programma di indice f(i): begin X 2 := X1; X1 := pred(x1); P i dove ogni variabile X j, con j 2 è rimpiazzata da X j+1 ; 2

3 Quindi F AT T 0 = P f(e), e possiamo allora scrivere F AT T 1 nel modo seguente: P f(e) ; cioè F AT T 1 = P f 2 (e), usando la notazione: f 0 (e) = e, f (e) = f(f n (e)). In generale, la funzione fatt (n) sarà quindi calcolata dal programma F AT T n = P f (e), definito nel modo seguente: P f n (e); In altre parole, φ f (e)(a) = fatt n (a) Teorema. Per ogni n, esiste m tale che fatt (m) (n) = fatt(n). Dimostrazione. Ovvia, basta prere m = n. Possiamo quindi scrivere un programma iterativo, che calcola il fattoriale, calcolando prima quale è l approssimazione necessaria, e poi applicando questa all input? Invece di riferirci solo alla funzione fattoriale, vediamo di porci il problema nel caso più generale. Sia una funzione definita in modo ricorsivo. è approssimata da una catena infinita di funzioni parziali: (0) < (1) <... < (n) < () <... Vale in generale un teorema simile al precedente: Teorema. Per ogni n, esiste m tale che (m) (n) = (n). Possiamo scrivere, analogamente a quanto fatto per il fattoriale, un programma iterativo che calcola ciascuna delle approssimazioni (i) (i 0). Siano K i questi programmi. Ricordiamo che ciscuno di questi programmi richiama al suo interno il programma P e, che cicla indefinitamente. Analogamente a quanto fatto per la funzione fattoriale, possiamo definire una sequenza di programmi, K 0, K 1,... tali che K i calcola la funzione (i). Esiste quindi una funzione di 3

4 riscrittura di programmi, sia f, tale che K n = P f (e). Possiamo scrivere un programma iterativo, che calcola, calcolando prima quale è l approssimazione necessaria, e poi applicando il programma corrispondente all input? Cioè, è possibile implementare il seguente algoritmo, per ogni funzione e programmi K i? Algoritmo A: 2. calcola quale è il minimo m tale che (m) (a) = (a); 3. esegui il programma K m sull input a. NOTA. Questo programma NON è ricorsivo, perchè i programmi che calcolano le approssimazioni (n) sono programmi iterativi. Il problema, per implementare l algoritmo A, è che non possiamo procedere per tentativi, ad esempio provando ad eseguirlo nel modo seguente: 2. poni n = 0; 3. esegui K n sull input a e va a 4; 4. se l esecuzione di K n sull input a è terminata normalmente, esci dando in output il contenuto di X1; 5. se l esecuzione di K n non termina, incrementa n di 1 e torna a 3. infatti tale algoritmo non è implementabile, data l indecidibilità del problema dell alt. Possiamo però rere effettivo l algoritmo, trasformandolo nel modo seguente. Sia F LAG una variabile speciale e sia P u il seguente programma: P u = begin F LAG := 1 e trasformiamo ogni programma K n sostituo, al posto di P e, il programma P u. Quindi K n = P f (u). Ricordiamoci che ogni programma K n ha come indice f (e), e quindi il programma trasformato avrà come indice f (u). La differenza tra P f n (e) e il programma trasformato P f n (u) è che, mentre il primo può ciclare, per particolari valori di input, il programma trasformato termina sempre, e in particolare pone F LAG = 1 in corrispondenza ai valori di input per cui P f n (e) cicla. Possiamo quindi scrivere il seguente algoritmo B: 2. n:=1; 4

5 3. FLAG:=0; esegui P f n (u) (cioè il trasformato di K n ) sull input a. quando la computazione si ferma, va a 4; Se e 4. Se FLAG =1, incrementa n di 1 e va a 3; 5. Se FLAG=0, restituisci in output il valore di X1. Infatti FLAG =1 indica che è stato eseguito P u, il che corrisponderebbe all esecuzione di P e nel programma originale K n. Possiamo scrivere un programma WHILE che realizza l algoritmo B. Sia h la funzione di riscrittura di programmi tale che P h(x) è il programma seguente: begin F LAG := 0; P x dove ogni test C è trasformato in C AND FLAG=0} if F LAG = 0 then X1 := succ(x1) else X1 := 0 Il programma P h(f (u)) calcola la seguente funzione: φ h(f (u)) (a) = φf (e) (a) + 1 = n (a) + 1 se P f n (e) su a non cicla 0 altrimenti Quindi l algoritmo B è implementato dal seguente programma: begin N := 0; while Φ(h(f N (u)), X1) = 0 do N := succ(n); X1 := pred(φ(h(f N (u)), X1)) che calcola quindi, in modo iterativo, la funzione. Quindi abbiamo dimostrato il teorema voluto: Theorema Per ogni programma ricorsivo, c è un programma iterativo che calcola la stessa funzione. 5

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di esempio CERCA 90 NEL SACCHETTO = estrai num Casi num 90 Effetti CERCA 90 NEL

Dettagli

STRUTTURE (O COSTRUTTI) DI CONTROLLO

STRUTTURE (O COSTRUTTI) DI CONTROLLO Le strutture di controllo Le strutture di controllo STRUTTURE (O COSTRUTTI) DI CONTROLLO determinano l ordine con cui devono essere eseguite le istruzioni sono indipendenti dalla natura delle istruzioni

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Programmazione Funzionale

Programmazione Funzionale Programmazione Funzionale LP imperativi: apparenza simile modello di progettazione = macchina fisica Famiglia dei LP imperativi = progressivo miglioramento del FORTRAN Obiezione: pesante aderenza dei LP

Dettagli

Sottoprogrammi: astrazione procedurale

Sottoprogrammi: astrazione procedurale Sottoprogrammi: astrazione procedurale Incapsulamento di un segmento di programma presente = false; j = 0; while ( (j

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE Il problema Un computer è usato per risolvere dei problemi Prenotazione di un viaggio Compilazione e stampa di un certificato in un ufficio comunale Preparazione

Dettagli

Ricapitoliamo. Ricapitoliamo

Ricapitoliamo. Ricapitoliamo Ricapitoliamo Finora ci siamo concentrati sui processi computazionali e sul ruolo che giocano le procedure nella progettazione dei programmi In particolare, abbiamo visto: Come usare dati primitivi (numeri)

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

CALCOLO DEL MASSIMO COMUN DIVISORE

CALCOLO DEL MASSIMO COMUN DIVISORE CALCOLO DEL MASSIMO COMUN DIVISORE Problema: "calcolare il Massimo Comun Divisore (M.C.D.) di due numeri naturali, A e B, secondo l'algoritmo cosiddetto delle sottrazioni successive". L'algoritmo "delle

Dettagli

AREA RETTANGOLO LIRE IN EURO

AREA RETTANGOLO LIRE IN EURO AREA RETTANGOLO Private Sub Area() Dim h As Integer h = InputBox("altezza") b = InputBox("base") A = b * h MsgBox( L area del Rettangolo è : & A) LIRE IN EURO Dim lire As Double Dim euro As Double lire

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Ricorsione. Rosario Culmone. - p. 1/13

Ricorsione. Rosario Culmone. - p. 1/13 Ricorsione Rosario Culmone - p. 1/13 Induzione e Ricorsione Spesso utilizzeremo le definizioni induttive. Sono forme di definizione compatte che descrivono un numero infinito di elementi. I contesti di

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Verifica che una grammatica sia Context Free nel GrammaReader

Verifica che una grammatica sia Context Free nel GrammaReader Verifica che una grammatica sia Context Free nel GrammaReader Sommario Dispensa di Linguaggi di Programmazione Corrado Mencar Pasquale Lops In questa dispensa si descrivono alcune soluzioni per verificare

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3 RICORSIVITA 1. Cos è la ricorsività? La ricorsività è un metodo di soluzione dei problemi che consiste nell esprimere la soluzione relativa al caso n in funzione della soluzione relativa al caso n-1. La

Dettagli

Sistemi di Riscrittura per Termini del Prim Ordine

Sistemi di Riscrittura per Termini del Prim Ordine Sistemi di Riscrittura per Termini del Prim Ordine Paola Inverardi, Monica Nesi e Marisa Venturini Zilli Dipartimento di Matematica Pura e Applicata Università di L Aquila Dipartimento di Scienze dell

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Semplici Algoritmi di Ordinamento

Semplici Algoritmi di Ordinamento Fondamenti di Informatica Semplici Algoritmi di Ordinamento Fondamenti di Informatica - D. Talia - UNICAL 1 Ordinamento di una sequenza di elementi Esistono molti algoritmi di ordinamento. Tutti ricevono

Dettagli

Istruzioni per il controllo di ciclo - ciclo a condizione generica

Istruzioni per il controllo di ciclo - ciclo a condizione generica Istruzioni per il controllo di ciclo - ciclo a condizione generica Permette di ripetere l esecuzione di un blocco di istruzioni finchè non viene verificata una condizione logica. Sintassi istruzione_1...

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Descrizioni VHDL Behavioral

Descrizioni VHDL Behavioral 1 Descrizioni VHDL Behavioral In questo capitolo vedremo come la struttura di un sistema digitale è descritto in VHDL utilizzando descrizioni di tipo comportamentale. Outline: process wait statements,

Dettagli

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice . Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice Ordinamento di osservazioni: PROC SORT PROC SORT DATA=fa il sort è numerico

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 08/03/07 Nota Questi lucidi sono tratti

Dettagli

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno Accordo su chiavi (key agreement) Alfredo De Santis Dipartimento di Informatica Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo 2015 Accordo su una chiave Alice Bob??

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 La Ricorsione Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 Obiettivi La ricorsione Ricordate la sigla GNU GNU = GNU is Not Unix GNU = GNU is Not Unix GNU = GNU is

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

Le funzioni di shell La bash supporta la programmazione procedurale e prevede la possibilità di definire funzioni utilizzando le sintassi

Le funzioni di shell La bash supporta la programmazione procedurale e prevede la possibilità di definire funzioni utilizzando le sintassi Le funzioni di shell La bash supporta la programmazione procedurale e prevede la possibilità di definire funzioni utilizzando le sintassi alternative: function nome { lista-comandi } oppure nome ( ) {

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

I file di dati. Unità didattica D1 1

I file di dati. Unità didattica D1 1 I file di dati Unità didattica D1 1 1) I file sequenziali Utili per la memorizzazione di informazioni testuali Si tratta di strutture organizzate per righe e non per record Non sono adatte per grandi quantità

Dettagli

Ricerca sequenziale di un elemento in un vettore

Ricerca sequenziale di un elemento in un vettore Ricerca sequenziale di un elemento in un vettore La ricerca sequenziale o lineare è utilizzata per ricercare i dati in un vettore NON ordinato. L algoritmo di ricerca sequenziale utilizza quan non ha alcuna

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247

Cos è una stringa (1) Stringhe. Leggere e scrivere stringhe (1) Cos è una stringa (2) DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Cos è una stringa (1) Stringhe DD Cap. 8 pp. 305-341 KP Cap. 6 pp. 241-247 Una stringa è una serie di caratteri trattati come una singola unità. Essa potrà includere lettere, cifre, simboli e caratteri

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Definizione. File di dati. Insieme di record omogenei memorizzati in memoria di massa. Record. Bianchi. Anna Roma 1980. Verdi. Luca Milano 1960.

Definizione. File di dati. Insieme di record omogenei memorizzati in memoria di massa. Record. Bianchi. Anna Roma 1980. Verdi. Luca Milano 1960. File di dati Definizione File di dati Insieme di record omogenei memorizzati in memoria di massa Bianchi Verdi Neri Verdi Anna Roma 1980 Luca Milano 1960 Andrea Torino 1976 Paola Bari 1954 Record Operazioni

Dettagli

La ricorsione. Politecnico di Milano Sede di Cremona

La ricorsione. Politecnico di Milano Sede di Cremona La ricorsione Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Definizioni ricorsive Sono comuni

Dettagli

Le Stringhe. Un introduzione operativa. Luigi Palopoli

Le Stringhe. Un introduzione operativa. Luigi Palopoli Le Stringhe p.1/19 Le Stringhe Un introduzione operativa Luigi Palopoli ReTiS Lab - Scuola Superiore S. Anna Viale Rinaldo Piaggio 34 Pontedera - Pisa Tel. 050-883444 Email: palopoli@sssup.it URL: http://feanor.sssup.it/

Dettagli

Laboratorio di Sistemi Fattoriale di un numero Jsp [Java]

Laboratorio di Sistemi Fattoriale di un numero Jsp [Java] Desideriamo realizzare una applicazione web che ci consenta di calcolare il fattoriale di un numero. L'esercizio in sé non particolarmente difficile, tuttavia esso ci consentirà di affrontare il problema

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31 Le Liste Elisa Marengo Università degli Studi di Torino Dipartimento di Informatica Elisa Marengo (UNITO) Le Liste 1 / 31 Cos è una Lista Una lista è una collezione di elementi omogenei che: potrebbero

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Arduino: Programmazione

Arduino: Programmazione Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori

Gli array. Gli array. Gli array. Classi di memorizzazione per array. Inizializzazione esplicita degli array. Array e puntatori Gli array Array e puntatori Laboratorio di Informatica I un array è un insieme di elementi (valori) avente le seguenti caratteristiche: - un array è ordinato: agli elementi dell array è assegnato un ordine

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Linguaggio C: introduzione

Linguaggio C: introduzione Linguaggio C: introduzione Il linguaggio C è un linguaggio general purpose sviluppato nel 1972 da Dennis Ritchie per scrivere il sistema operativo UNIX ed alcune applicazioni per un PDP-11. Il linguaggio

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO...

Modulo. Programmiamo in Pascal. Unità didattiche COSA IMPAREREMO... Modulo A Programmiamo in Pascal Unità didattiche 1. Installiamo il Dev-Pascal 2. Il programma e le variabili 3. Input dei dati 4. Utilizziamo gli operatori matematici e commentiamo il codice COSA IMPAREREMO...

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Condizione di sincronizzazione Qualora si voglia realizzare una determinata politica di gestione delle risorse,la decisione se ad

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

Autori: M. Di Ianni, A. Panepuccia

Autori: M. Di Ianni, A. Panepuccia AR Analisi di Reti 2010/2011 M.Di Ianni Assegnazioni di ruoli Autori: M. Di Ianni, A. Panepuccia In questa dispensa verrà trattato il problema dell assegnazione dei ruoli in un grafo. Tale problema è stato

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Funzioni. Corso di Fondamenti di Informatica

Funzioni. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Funzioni Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e dei

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Introduzione al VHDL. Alcuni concetti introduttivi

Introduzione al VHDL. Alcuni concetti introduttivi Introduzione al VHDL Alcuni concetti introduttivi Riferimenti The VHDL Cookbook, Peter J. Ashenden, Reperibile nel sito: http://vlsilab.polito.it/documents.html The VHDL Made Easy, David Pellerin, Douglas

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

P a s q u a l e t t i V e r o n i c a

P a s q u a l e t t i V e r o n i c a PHP: OOP Pasqualetti Veronica Oggetti Possiamo pensare ad un oggetto come ad un tipo di dato più complesso e personalizzato, non esistente fra i tipi tradizionali di PHP, ma creato da noi. 2 Gli oggetti

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Gestione dinamica di una pila

Gestione dinamica di una pila Gestione dinamica di una pila Una pila o stack è una lista lineare a lunghezza variabile in cui inserimenti (push) ed estrazioni (pop) vengono effettuate ad un solo estremo, detto testa (top) della pila.

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Appunti di Sistemi Operativi Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Indice 1 Cenni su alcuni algoritmi del Kernel di Unix 1 1.1 Elementi di Unix Internals.................................

Dettagli

Linguaggio C++ Uso ambiente Dev C++ con creazione di progetto con scelta Basic --> Empty Project

Linguaggio C++ Uso ambiente Dev C++ con creazione di progetto con scelta Basic --> Empty Project Linguaggio C++ Uso ambiente Dev C++ con creazione di progetto con scelta Basic --> Empty Project NB: E necessario: adoperare la sintassi più evoluta per le direttive di precompilazione 1, usando come contenitore

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Fondamenti di Informatica T. Linguaggio C: File

Fondamenti di Informatica T. Linguaggio C: File Linguaggio C: File I File Il file e` l'unita` logica di memorizzazione dei dati su memoria di massa, che consente una memorizzazione persistente dei dati, non limitata dalle dimensioni della memoria centrale.

Dettagli

BPEL: Business Process Execution Language

BPEL: Business Process Execution Language Ingegneria dei processi aziendali BPEL: Business Process Execution Language Ghilardi Dario 753708 Manenti Andrea 755454 Docente: Prof. Ernesto Damiani BPEL - definizione Business Process Execution Language

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Cicli in Visual Basic for Application. For contatore = inizio To fine istruzioni Next contatore

Cicli in Visual Basic for Application. For contatore = inizio To fine istruzioni Next contatore Cicli in Visual Basic for Application Le strutture del programma che ripetono l'esecuzione di una o più istruzioni sono chiamate Cicli. Alcune strutture per i cicli sono costruite in modo da venire eseguite

Dettagli

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof.

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof. Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 009-10 prof. Viviana Bono Blocco 9 Metodi statici: passaggio parametri, variabili locali, record

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli