(ETC) MATRICOLE DISPARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "(ETC) MATRICOLE DISPARI"

Transcript

1 Elementi di Teoria della Computazione (ETC) MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI!

2 Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica 1. Computabilità 2. Complessità

3 Cosa è la Computazione? Treccani Computazione: Il computare e il modo con cui si computa; computo, calcolo. Computare Calcolare, fare il conto di qualche cosa: c. il tempo necessario; metodo di c. gli anni;

4 Carta e Penna Abaco. Mezzi di Computazione Calcolatori/programmi

5 Cosa è la Computazione? Possiamo definire la computazione senza far riferimento ad un calcolatore attuale?

6 Cosa è la Computazione? Possiamo definire la computazione senza far riferimento ad un calcolatore attuale? Possiamo definire la computazione indipendentemente dai limiti odierni della scienza (ingegneria, fisica, )?

7 Cosa è la Computazione? Possiamo definire la computazione senza far riferimento ad un calcolatore attuale? Possiamo definire la computazione indipendentemente dai limiti odierni della scienza (ingegneria, fisica, )? Possiamo definire formalmente (matematicamente) un calcolatore? Possiamo dimostrare teoremi circa ciò che può o non può essere computato?

8 Avendo a disposizione risorse (memoria, tempo, ) sufficienti

9 Avendo a disposizione risorse (memoria, tempo, ) sufficienti un calcolatore può risolvere qualsiasi problema? oppure esistono limiti fondamentali a ciò che si può computare?

10 Cosa è la Computazione? Treccani Computazione: Il computare e il modo con cui si computa; computo, calcolo. Computare Calcolare, fare il conto di qualche cosa: c. il tempo necessario; metodo di c. gli anni; Computabile : Che si può computare; di cui si può o si deve tener conto In logica matematica e in informatica teorica, detto di una funzione (per es., l insieme dei numeri naturali) che si può calcolare effettivamente, cioè per la quale esiste un procedimento che permette di determinarne i valori; con sign. più concreto si dicono computabili quelle funzioni che, in linea di principio, possono essere calcolate con un elaboratore adeguatamente programmato; la teoria della computabilità (o della ricorsività) studia i limiti teorici di tale possibilità.

11 Computabilità: Quali problemi possono essere computati? (con qualsiasi macchina, linguaggio, ) Esempi di problemi computazionali Problemi numerici Data una stringa binaria, il numero di 1 è maggiore del numero di 0? Dati due numeri x e y, calcola x+y Dato un intero, risulta x primo? Problemi riguardanti programmi (es. in C) Data una sequenza di caratteri ASCII, rispetta la sintassi del C? Dato un programma in C, esiste un input che lo manda in loop?

12 Computabilità: Quali problemi possono essere computati? (con qualsiasi macchina, linguaggio, ) Macchine a stati finiti/automi: Quali problemi possiamo risolvere con memoria costante?

13 Macchina a stati finiti

14 Distributore di bibite/snack a 50c Accetta monete da 10c e da 20c non da resto, rifiuta moneta troppo grande E (semplice) macchina a stati finiti che opera in accordo all input (monete)

15 Macchina a stati finiti o Automa finito Astrazione Più semplice modello di calcolo Chip Parte di molti apparecchi elettromeccanici Analizzatori lessicali e sintattici di compilatori,

16 Computabilità: Quali problemi possono essere computati? (con qualsiasi macchina, linguaggio, ) Macchine a stati finiti/automi: Quali problemi possiamo risolvere con memoria costante?

17 Computabilità: Quali problemi possono essere computati? Non tutti!!! Esempi di problemi computazionali Problemi numerici Data una stringa binaria, il numero di 1 è maggiore del numero di 0? Dati due numeri x e y, calcola x+y Dato un intero, risulta x primo? Problemi riguardanti programmi (es. in C) Data una sequenza di caratteri ASCII, rispetta la sintassi del C? Dato un programma in C, esiste un input che lo manda in loop?

18 Computabilità: Quali problemi possono essere computati? Non tutti!!! Es. Dato un qualsiasi programma in C, possiamo stabiliure se termina su ogni input? Risposta: NO input n; while (n!=1) { if (n is even) n := n/2; else n := 3*n+1; } Termina per ogni n>1? 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

19 Computabilità: Modello di computazione indipendente dalla tecnologia presente? Macchine di Turing Ideate da Alan Turing nel Modello di calcolatore più semplice: - macchina a stati finiti - Nastro (lettura e scrittura) memoria, processore

20 Macchine di Turing Ideate da Alan Turing nel Modello di calcolatore più semplice: - macchina a stati finiti - Nastro memoria, processore Scopo: formalizzare in maniera esatta (matematica) il concetto di computazione (indipendentemente dalla potenza di calcolo )

21 Tesi di Church-Turing: Equivalenza tra programmi e Macchine di Turing Macchine di Turing: Concetto di Computabilità indipendente dalla tecnologia

22 Tesi di Church-Turing: Equivalenza tra programmi e Macchine di Turing Limiti delle macchine di Turing (e della computazione): Problemi non computabili

23 Computabilità: Cosa può essere computato? Cosa non può esserlo? (con qualsiasi macchina, linguaggio, ) Dove si trova il confine? Calcolabilità: Quali sono le le risorse minime necessarie (es. tempo di calcolo e memoria) per la risoluzione di un problema?

24 Lista luoghi con associato il l interesse a visitare il luogo (voto da 0 a 100) Vogliamo ordinare i luoghi in ordine di interesse Facile!

25 Usando I collegamenti esistenti (metro, bus). Facile?

26 Prova tutti i siti vicini non ancora visitati

27

28

29 Algoritmi utili in pratica Algoritmi P efficienti: Utilizzano un tempo polinomiale su tutti gli input Algoritmi inefficienti: Utilizzano un tempo esponenziale su qualche input Nota. Definizione indipendente da sviluppo tecnologico Cosa rende un problema facile o meno?

30

31 Cosa rende un problema facile o meno?

32 Le classi P e NP Definizione (informale) della classe P: insieme di problemi risolubili in tempo polinomiale da una macchina di Turing deterministica Tesi Church-Turing insieme di problemi che ammettono un algoritmo efficiente

33 Le classi P e NP Definizione (informale) della classe NP: insieme di problemi che ammettono un algoritmo efficiente di verifica di una soluzione fornita

34 Problemi NP-completi Travelling Salesman Problem, 3-coloring di grafi, Scheduling Multiprocessore, Folding Proteine, Programmazione lineare intera: esiste soluzione intera per un sistema del tipo Tutti risolvibili efficientemente o nessuno!

35 Argomenti di massima: Macchine a stati finiti Macchine di Turing Le classi P e NP

36 Finalità Computabilità Comprendere la nozione di di computabilità Limiti intrinsechi della computabilità Modelli più semplici di computazione

37 Risultati attesi: Saprete che è impossibile dimostrare che un programma in C termina fornire una dimostrazione formale di ciò nessun calcolatore futuro può cambiare la situazione

38 Finalità Computabilità Comprendere la nozione di di computabilità Limiti intrinsechi della computabilità Modelli più semplici di computazione Complessità classificazione problemi solubili: difficoltà riconoscere problemi difficili

39 Risultati attesi: Saprete Come riconoscere un problema intrattabile se vi capita Es. PROTEIN FOLDING, NEURON TRAINING, AUCTION WINNER-DETERMINATION, MIN-ENERGY CONFIGURATION OF A GAS

40 Informazioni Pratiche ORARIO: Martedì: 11:00 13:00 Giovedì: 16:00 18:00 Venerdì: 14:00 16:00 N.B.: Tutte le lezioni sono ugualmente importanti!

41 Informazioni Pratiche SITO WEB: di riferimento per il materiale relativo al corso - copie delle slides, esercizi, - date delle prove, - comunicazioni varie, - etc.

42 Suggerimenti (per superare facilmente l esame) Seguire il corso È più difficile imparare da soli dal libro (ancora di più dalle slide!) Studiare lezione per lezione Gli argomenti diventano più complessi Studiare dal libro di testo Fare gli esercizi

43 Testo Michael Sipser, Introduction to the Theory of Computation, Course Technology.

44 Testo Jon Kleinberg, Eva Tardos, Algorithm Design, Pearson

45 Prove di Esame Prova scritta con esercizi e teoria (nessun materiale ammesso) Eventuale prova orale Requisito minimo: 50% del totale

46 Prove in Itinere Bonus Prossima lezione

47

48 Progamma sintetico Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP

49 Nozioni preliminari Conoscenza del significato dei termini: Definizione, Enunciato, Dimostrazione, Implicazione, Equivalenza,... Familiarità con i vari tipi di dimostrazioni: per contraddizione, prova per induzione, Definizioni delle operazioni logiche AND, OR, NOT. Alfabeti Stringhe Linguaggi

50 DIMOSTRAZIONE Metodo per stabilire una verità Differente in vari campi Legale: giuria prove processuali Scientifica: esperimenti ripetibili Filosofica: persuasione basata su argomenti plausibili Cartesio: Cogito ergo sum, Deriva esistenza dal fatto di pensare sull'esistenza

51 PROVA Matematica Una prova formale è una catena di deduzioni logiche che portano ad una affermazione partendo da un insieme di assunzioni

52 c=cent E=Euro Assunzione 1E=100c 1 c= 0,01 E=(0,1 E) 2 =(10c) 2 =100c=1E?

53 Dimostrazione c=cent E=Euro 1 c= 0,01 E=(0,1 E) 2 =(10c) 2 =100c=1E ERRATA!!

54 Affermazione Se a e b sono due numeri reali uguali allora a = 0. Dimostrazione Assunzione a=b

55 Affermazione errata: Se a e b sono due numeri reali uguali allora a = 0. Dimostrazione sbagliata:

56 Proposizione: affermazione che può essere vera o falsa Proposizioni matematiche devono riferirsi ad oggetti ben definiti matematicamente (numeri, insiemi, funzioni,...) Devono essere formulate in modo preciso Es = 5.

57 Proposizione: può essere vera o falsa Dimostrazione: Data una proposizione, vogliamo dimostrare che essa è vera.

58 Es. Proposizione p(n)=n 2 +n+41 è numero primo per ogni n > 1. Come facciamo?

59 Es. p(n)=n 2 +n+41 è primo per ogni n > 1. Proviamo per qualche valore p(1)=43 primo P(2)=47 primo P(3)=53 primo P(20)=461 primo P(39)=1601 primo VERA?

60 Es. p(n)=n 2 +n+41 è primo per ogni n > 1. Proviamo per qualche valore p(1)=43 primo P(2)=47 primo P(3)=53 primo P(20)=461 primo P(39)=1601 primo P(40)=40x =41x41 FALSO! Dimostrazione per esempi = Esempio di dimostrazione sbagliata

61 Es. Proposizione a 4 +b 4 +c 4 = d 4 non ha soluzione con a, b, c, d interi positivi Congettura di Eulero del Dimostrata FALSA 218 anni dopo da Noam Elkies: a = 95800; b = ; c = ; d =

62 Es. Proposizione 313(x 3 +y 3 ) = z 3 non ha soluzione con x,y,z interi positivi FALSA: controesempio più piccolo ha più di 1000 digit!

63 Es. Congettura di Goldbach (1742) Proposizione P(n): n si può scrivere come somma di due primi per ogni n>2?

64 Es. Congettura di Goldbach (1742) Proposizione P(n): n si può scrivere come somma di due primi per ogni n>2? Non possimo stabilire VERO provando per un numero finito di valori! Servono altri metodi!

65 Proposizione: affermazione che può essere può essere vera o falsa Dimostrazione: Data una proposizione, vogliamo dimostrare che essa è vera.

66 Proposizione P: vera (T) o falsa (F) Operazioni Logiche: NOT, OR, AND Tavole di verità:

67 Implicazioni: Deduzioni logiche per provare nuove proposizioni a partire da altre note (vere) P Q (P implica Q: se P è vera allora Q è vera ) Es. Se gli asini volano, allora voi capirete questa lezione. E un insulto? Nel linguaggio comune: Si Matematicamente è un affermazione vera! P Q è vera ogni volta che P è falsa o Q è vera

68 Deduzioni logiche: per provare nuove proposizioni a partire da altre note (vere) (P vera, P Q) ALLORA Q vera (P Q; Q falsa) ALLORA P Falsa

69 Deduzioni logiche NOT(Q) NOT(P) Equivalente a P Q NOTA NOT(P) NOT(Q) ALLORA P Q: ERRATA

70 Come dimostrare che P Q: 1. Assumiamo P. 2. mostriamo che Q segue Es. Se 0 < x < 2, allora -x 3 + 4x + 1 > 0. Dim. Assumiamo 0 < x < 2 Scriviamo -x 3 + 4x = x(2 - x)(2 + x) Sappiamo che x, 2 - x, e 2 + x nonnegativi ( >0 ). Allora il loro prodotto è nonnegativo (>0). Sommando 1 abbiamo numero positivo (>0): -x 3 + 4x+1= x(2 - x)(2 + x) + 1 > 0.

71 P IFF Q equivale a P Q AND Q P.

72 P IFF Q equivale a P Q AND Q P. Provare iff : 1. Proviamo che P implica Q e vice-versa. 2. Per prima cosa, mostriamo che P implica Q. (Come prima) 3. Secondo passo, mostriamo che Q implica P. (Come prima)

73 ES.

74 Schema: Dimostrazione per contraddizione per dimostrare P 1.Assumiamo che l ipotesi P è falsa 2.Dimostriamo che NOT(P) NOT(Q) per qualche Q che sappiamo essere vera 3.A questo punto abbiamo una contraddizione e possiamo concludere che P deve essere vera

75 Dim. Teorema. La radice quadrata di 2 è un numero irrazionale. Assumiamo che l ipotesi P è falsa, cioè sqrt(2)=m/n (m,n interi primi fra loro) Dimostriamo NOT(P) NOT(Q) [Q: m, n primi tra loro] m 2 =(n sqrt(2)) 2 =n 2 2 m 2 =2n 2 m 2 pari m pari, Poniamo m=2k Allora 2n 2 = m 2= 4k 2 n 2 =2k 2 n pari Abbiamo che n,m entrambi pari m,n hanno fattore comune 2 A questo punto abbiamo NOT(Q) possiamo dedurre che P è falsa (cioè sqrt(2) è irrazionale)

76 Teorema. La radice quadrata di 2 è un numero irrazionale. Dim. Assumiamo che l ipotesi è falsa, possiamo scrivere a) sqrt(2)=m/n b) con m,n interi primi fra loro Abbiamo m 2 =(n sqrt(2)) 2 =n 2 2 m 2 =2n 2 m 2 pari m pari, Ponendo m=2k si ha 2n 2 = m 2= 4k 2 n 2 =2k 2 n pari Quindi n,m entrambi pari m,n hanno fattore comune 2 che contraddice punto b) possiamo concludere che sqrt(2) è irrazionale.

77 Dimostrazioni Corrette in Pratica Definire il metodo che si vuole seguire es. Usiamo un distinzione di casi o Ragioniamo per assurdo. Una dimostrazione e` un saggio non un calcolo Approccio errato: sequenza di espressioni senza commenti Una dimostrazione comprensibile e` un saggio inframmezzato da calcoli

78 Buone dimostrazioni <=> Buoni programmi Stesso rigore necessario per scrivere programmi funzionanti Programma che ''sembra funzionare'' può causare molti problemi Es. Therac 25: macchina per radioterapia che ''ogni tanto'' ha ucciso i pazienti per eccesso di radiazioni (problema software) Es. (Agosto 2004) problema software usato da United e American Airlines ha messo a terra l'intera flotta delle due compagnie

79 INDUZIONE Data una affermazione, vogliamo dimostrare che essa vale per ogni intero n>a. Es. La somma dei primi n interi vale n(n+1)/2 per ogni n > 1.

80 INDUZIONE Vogliamo dimostrare che un certo predicato è vero. Formaliziamo con affermazione S(n) dimostriamo per induzione che S(n) vera (per ogni intero n>a). Una dimostrazione per induzione consiste di 2 fasi 1. BASE INDUTTIVA. Si dimostra che l affermazione è vera per il primo valore, cioè S(a) è vera. 1. PASSO INDUTTIVO. Assumiamo che S(n-1) è vera e dimostriamo che allora anche S(n) è vera.

81 INDUZIONE Es. La somma dei primi n interi vale n(n+1)/2 per ogni n > 1. Formalizzazione S(n): n n ( nn )1 i 1(2... n(n 1) n) i (1... n) i i 1 Si vuole dimostrare per induzione che S(n) vale per ogni n > 1.

82 INDUZIONE 1. BASE INDUTTIVA. S(a) è vera. 2. PASSO INDUTTIVO. S(n-1) implica S(n) vera. Es. S(n): Si vuole dimostrare che S(n) vale per ogni n > 1. Base. S(1) è vera perché Passo. Ipotesi induttiva S(n-1): Si ha n i (1... n) i 1 n i i 1 n 1 i 1 i n Quindi S(n) è vera. n(n 1) 2 (n 1)n 2 1 i 1 1(1 )1/2 i 1 n 1 i 1 n i ( n )1 n/2 (n 1)n 2n 2 n(n 1) 2

83 INDUZIONE Esercizio. Dimostrare per induzione che la seguente affermazione S(n) è vera per ogni intero n>0. S(n): n 2 i 2 n 1 1 i 0

84 INDUZIONE Es. Se x 4, allora 2 x x 2 Affermazione S(x): 2 x x 2 Mostriamo per induzione che S(x) vera per ogni x 4. Base: x = 4 2 x = 2 4 = 16 e x 2 = 4 2 = 16 Passo I.: Supponiamo che 2 x x 2 per x 4 Dobbiamo dimostrare che 2 x +1 (x + 1) 2 Abbiamo: 2 x +1 = 2 2 x 2 x 2 (dalla ipotesi induttiva) Dimostriamo adesso che 2x 2 (x + 1) 2 =x x Semplificando: x 2-2x 1 Se x 4, x(x-2) 8>1

85 VALIDITA delle dimostrazioni per INDUZIONE Dim. per induzione Base: S(a) vera Passo induttivo S(n) vera, ogni n>a Minimo controesempio. IPOTESI: S(n) falsa per qualche n. Sia b il più piccolo intero tale che S(b) falsa. DEDUCIAMO: Se b=a contraddiciamo la base. Quindi b>a. Essendo b = minimo intero per cui l affermazione è falsa, risulta S(b-1) vera (nota b-1 > a). Per il Passo Induttivo, S(b-1) S(b). Allora S(b) vera: contraddizione con assunzione che S(b) falsa. Quindi ipotesi è sbagliata, Cioè non esiste intero per cui l affermazione è falsa Cioè S(n) vera per ogni intero

86 Teorema. Tutti i cavalli hanno lo stesso colore Dim. Sia P(n): ''in ogni insieme di n cavalli, tutti i cavalli hanno lo stesso colore.'' Mostriamo per induzione che P(n) vera per ogni n 1. Base : P (1) vera. Passo. Assumiamo P (n) vera, n>1. Consideriamo insieme di n + 1 cavalli: h1, h2,..., hn, hn+1 Per I.I. I primi n cavalli h1, h2,..., hn hanno stesso colore, Per I.I. Gli ultimi n cavalli h2, h3,..., hn+1 hanno stesso colore, Quindi h1, h2,..., hn+1 hanno stesso colore, e P(n+1) vera Poiche` P (n) P (n + 1), allora P(n) vera per ogni n 1.

87 Teorema. Tutti i cavalli hanno lo stesso colore Dim. Per induzione su n. Sia P(n): ''in ogni insieme di n cavalli, tutti i cavalli hanno lo stesso colore.'' Conseguenza: se n=(numero cavalli nel mondo) allora tutti cavalli hanno lo stesso colore. Abbiamo provato una cosa FALSA! ERRORE? Abbiamo provato: P (1) P (2) P (3), P (3) P (4), etc. NON P (1) P (2)

88 INDUZIONE COMPLETA Vogliamo dimostrare che P(n) vale per ogni intero n>a. Dimostrazione per induzione completa: 1. BASE INDUTTIVA. Si dimostra che l affermazione è vera per il primo valore, cioè P(a) è vera. 2. PASSO INDUTTIVO. Assumiamo che P(a), P(a+1),, P(n-1) sono tutte vere e dimostriamo che anche P(n) è vera.

89 Definizioni Induttive ; Una definizione per induzione (o induttiva o ricorsiva) di un insieme di oggetti consiste di una base e di un passo induttivo. BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti

90 Definizioni Induttive ; BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti Es. Definizione induttiva di n! (prodotto primi n interi) BASE 1! P.I. n!=n (n-1)! Per ogni n>1

91 Definizioni Induttive ; BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti Es. Definizione dei numeri di fibonacci BASE f(0)=f(1)=1 P.I. f(n)=f(n-1)+f(n-2), per ogni n>1

92 Teorema. Ogni intero maggiore di 1 è un prodotto di primi Dim. Stabiliamo affermazione P(n): l intero n è un prodotto di primi Vogliamo dimostrare per induzione completa che p(n) vera per ogni n>1. Base. P(2) vera, poichè 2 è primo Passo. II: p(2),,p(n-1) vere Proviamo che P(n) è vera. Se n è primo, ok Se n non è primo allora n=km per qualche k e m II ci dice che P(k), p(m) vere, Cioè k ed m sono prodotti di primi Quindi anche il loro prodotto n=km è un prodotto di primi.

93 Definizioni Induttive ; Una definizione per induzione (o induttiva o ricorsiva) di un insieme di oggetti consiste di una base e di un passo induttivo. BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti

94 Definizioni Induttive ; BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti Es. Definizione induttiva di n! (prodotto primi n interi) BASE 1! P.I. n!=n (n-1)! Per ogni n>1

95 Definizioni Induttive ; BASE definisce uno o più oggetti elementari. Passo Induttivo definisce la regola che permette di costruire oggetti più complessi in termini di quelli già definiti Es. Definizione dei numeri di fibonacci BASE f(0)=f(1)=1 P.I. f(n)=f(n-1)+f(n-2), per ogni n>1

96 Definizioni Induttive e Dimostrazioni Induttive ; Es. Mostrare che il numero di fibonacci f(n) soddisfa f(n)<2 n, per ogni n>0

(ETC) MATRICOLE DISPARI

(ETC) MATRICOLE DISPARI Elementi di Teoria della Computazione (ETC) MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica 1. Computabilità

Dettagli

Elementi di Teoria della Computazione (ETC) Classe 2: matricole congrue a 1 (mod 3) Docente: Prof. Luisa Gargano BENVENUTI!

Elementi di Teoria della Computazione (ETC) Classe 2: matricole congrue a 1 (mod 3) Docente: Prof. Luisa Gargano BENVENUTI! Elementi di Teoria della Computazione (ETC) Classe 2: matricole congrue a 1 (mod 3) Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica

Dettagli

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Progamma sintetico Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Nozioni preliminari Conoscenza del significato dei termini:

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 6 Alberto Carraro 30 novembre DAIS, Universitá Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Funzioni Turing-calcolabili Finora abbiamo

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Fondamenti di Informatica. Docenti: Prof. Luisa Gargano Prof. Adele Rescigno BENVENUTI!

Fondamenti di Informatica. Docenti: Prof. Luisa Gargano Prof. Adele Rescigno BENVENUTI! Fondamenti di Informatica Docenti: Prof. Luisa Gargano Prof. Adele Rescigno BENVENUTI! Finalità: Fornire gli elementi di base dei concetti che sono di fondamento all'informatica Informazioni Pratiche ORARIO:

Dettagli

FACOLTÀ DI INGEGNERIA ESAME DI ANALISI MATEMATICA A A.A. 2008/2009 - Ing. Biomedica, Elettrica, Elettronica, Informatica - L Z

FACOLTÀ DI INGEGNERIA ESAME DI ANALISI MATEMATICA A A.A. 2008/2009 - Ing. Biomedica, Elettrica, Elettronica, Informatica - L Z FACOLTÀ DI INGEGNERIA ESAME DI ANALISI MATEMATICA A A.A. 2008/2009 - Ing. Biomedica, Elettrica, Elettronica, Informatica - L Z L esame è costituito da una prova scritta (o, in alternativa, da due prove

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Algoritmi e Complessità

Algoritmi e Complessità Algoritmi e Complessità Università di Camerino Corso di Laurea in Informatica (tecnologie informatiche) III periodo didattico Docente: Emanuela Merelli Email:emanuela.merelli@unicam.it Lezione 2 Teoria

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Come ragiona il computer. Problemi e algoritmi

Come ragiona il computer. Problemi e algoritmi Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Problema Strategia

Dettagli

Semantica Assiomatica

Semantica Assiomatica Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,

Dettagli

(ETC) A.A. 2016/17 MATRICOLE DISPARI

(ETC) A.A. 2016/17 MATRICOLE DISPARI Elementi di Teoria della Computazione (ETC) A.A. 2016/17 MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Introduzione ai tipi di dato astratti: applicazione alle liste

Introduzione ai tipi di dato astratti: applicazione alle liste Universitàdegli Studi di L Aquila Facoltàdi Scienze M.F.N. Corso di Laurea in Informatica Corso di Laboratorio di Algoritmi e Strutture Dati A.A. 2005/2006 Introduzione ai tipi di dato astratti: applicazione

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

ci sono più problemi che programmi esiste un problema che non si può risolvere con un programma

ci sono più problemi che programmi esiste un problema che non si può risolvere con un programma Calcolabilità problemi facili trovare la media di due numeri stampare le linee di un file che contengono una parola problemi difficili trovare il circuito minimo data una tabella determinare la migliore

Dettagli

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi.

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. PROGETTO SeT Il ciclo dell informazione Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. Scuola media Istituto comprensivo di Fagagna (Udine) Insegnanti referenti: Guerra Annalja, Gianquinto

Dettagli

Predicati e Quantificatori

Predicati e Quantificatori Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

REGOLE PER L ESAME (agg.te settembre 2015)

REGOLE PER L ESAME (agg.te settembre 2015) Informatica e Programmazione (9 CFU) Ingegneria Meccanica e dei Materiali REGOLE PER L ESAME (agg.te settembre 2015) Modalità d esame (note generali) Per superare l esame, lo studente deve sostenere due

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Convertitori numerici in Excel

Convertitori numerici in Excel ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA Convertitori numerici in Excel Prof. G. Ciaschetti Come attività di laboratorio, vogliamo realizzare dei convertitori numerici con Microsoft Excel

Dettagli

Codifica: dal diagramma a blocchi al linguaggio C++

Codifica: dal diagramma a blocchi al linguaggio C++ Codifica: dal diagramma a blocchi al linguaggio C++ E necessario chiarire inizialmente alcuni concetti. La compilazione Il dispositivo del computer addetto all esecuzione dei programmi è la CPU La CPU

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli

II.f. Altre attività sull euro

II.f. Altre attività sull euro Altre attività sull euro II.f È consigliabile costruire modelli in carta o cartoncino di monete e banconote, e farli usare ai bambini in varie attività di classe fin dal primo o al più dal secondo anno.

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Metodologie di programmazione in Fortran 90

Metodologie di programmazione in Fortran 90 Metodologie di programmazione in Fortran 90 Ing. Luca De Santis DIS - Dipartimento di informatica e sistemistica Anno accademico 2007/2008 Fortran 90: Metodologie di programmazione DIS - Dipartimento di

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Capitolo 7: Teoria generale della calcolabilitá

Capitolo 7: Teoria generale della calcolabilitá Capitolo 7: Teoria generale della calcolabilitá 1 Differenti nozioni di calcolabilitá (che seguono da differenti modelli di calcolo) portano a definire la stessa classe di funzioni. Le tecniche di simulazione

Dettagli

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011

Fondamenti di Informatica. Computabilità e Macchine di Turing. Prof. Franco Zambonelli Gennaio 2011 Fondamenti di Informatica Computabilità e Macchine di Turing Prof. Franco Zambonelli Gennaio 2011 Letture Consigliate: Roger Penrose, La Mente Nuova dell Imperatore, Sansoni Editrice. Martin Davis, Il

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Introduzione. Informatica B. Daniele Loiacono

Introduzione. Informatica B. Daniele Loiacono Introduzione Informatica B Perchè studiare l informatica? Perchè ha a che fare con quasi tutto quello con cui abbiamo a che fare ogni giorno Perché è uno strumento fondamentale per progettare l innovazione

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Le macchine di Turing

Le macchine di Turing Le macchine di Turing Alan Turing (1912-1954) 1954) Il problema della decisione i L Entscheidungsproblem [il problema della decisione] è risolto se si conosce una procedura che permette di decidere la

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente.

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente. Algoritmo Formalmente, per algoritmo si intende una successione finita di passi o istruzioni che definiscono le operazioni da eseguire su dei dati (=istanza del problema): in generale un algoritmo è definito

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

Scopo della lezione. Informatica. Informatica - def. 1. Informatica

Scopo della lezione. Informatica. Informatica - def. 1. Informatica Scopo della lezione Informatica per le lauree triennali LEZIONE 1 - Che cos è l informatica Introdurre i concetti base della materia Definire le differenze tra hardware e software Individuare le applicazioni

Dettagli

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15 Nozioni di Base

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15 Nozioni di Base Fondamenti di Informatica Allievi Automatici A.A. 2014-15 Nozioni di Base Perché studiare informatica? Perché l informatica è uno dei maggiori settori industriali, e ha importanza strategica Perché, oltre

Dettagli

Anno 1. Definizione di Logica e operazioni logiche

Anno 1. Definizione di Logica e operazioni logiche Anno 1 Definizione di Logica e operazioni logiche 1 Introduzione In questa lezione ci occuperemo di descrivere la definizione di logica matematica e di operazioni logiche. Che cos è la logica matematica?

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T2 3-Compilatori e interpreti 1 Prerequisiti Principi di programmazione Utilizzo di un compilatore 2 1 Introduzione Una volta progettato un algoritmo codificato in un linguaggio

Dettagli