Evoluzione dei mezzi di calcolo rende possibile modello più accurato, da analizzare attraverso uno studio di simulazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Evoluzione dei mezzi di calcolo rende possibile modello più accurato, da analizzare attraverso uno studio di simulazione"

Transcript

1 Probabilità e computer Modello probabilistico è spesso un compromesso tra esigenza di aderenza a fenomeno reale e trattabilità matematica modello troppo semplificato ma che può essere analizzato matematicamente Evoluzione dei mezzi di calcolo rende possibile modello più accurato, da analizzare attraverso uno studio di simulazione Simulazione rende anche possibile studiare fenomeni virtuali o organizzare esperimenti virtuali Esempio: Coda ad uno sportello Si prevede di aprire uno sportello che dia informazioni tra le 9 e le 19 ogni giorno. Ci si aspetta che ogni giorno si presentino allo sportello circa 50 persone (clienti). Si prevede che rispondere ad un cliente richieda un tempo casuale con media 10 e deviazione standard 2. Si pensa di non accettare più clienti dopo le 19 ma di servire comunque quelli in attesa. Tipiche domande alle quali si vuole ottenere una risposta: 1

2 1. tempo medio di apertura effettiva dello sportello? 2. frazione di giorni in cui lo sportello ancora aperto alle 19,30? 3. tempo medio di attesa per un cliente? 4. quanti clienti in media serviti ogni 30 minuti? 5. effetto di respingere i clienti quando la coda è più lunga di 5 clienti? Costruzione di un modello probabilistico utile richiede ipotesi ragionevolmente accurate. modello del processo degli arrivi: tasso di arrivo costante? Variabile con le ore del giorno (più realistico) distribuzione del tempo di servizio di un cliente? Diverse distribuzioni in dipendenza del numero di clienti in attesa o delle ore del giorno? dipendenza dai giorni della settimana? 2

3 Modello risultante può essere troppo complicato da trattare per via analitica. Simulazione programma comportamento probabilistico del sistema su un computer utilizzando numeri casuali per realizzare i vari effetti probabilistici (valori delle variabili aleatorie in gioco) e registrando esito di tali effetti su aspetti del sistema complessivo di interesse. Computer permette di replicare esperimento virtuale un gran numero di volte e ottenere stime delle quantità interessanti tramite legge grandi numeri. 3

4 Generazione di numeri casuali Lancio moneta, dado, esito della roulette, estrazione di carte da un mazzo: sistemi meccanici per simulare realizzazioni di variabili aleatorie discrete Lancio moneta (equilibrata) può generare numeri casuali con arbitrario numero di cifre binarie, approssimazione di numeri uniformi in (0,1) (realizzazioni di v.a. uniforme) Poco pratico Con computer numeri pseudo-casuali : generati da algoritmo deterministico, ma che sembrano realizzazioni di variabili aleatorie uniformi e indipendenti Approccio più comune: congruenziale moltiplicativo x 0 valore intero iniziale (seme) a e m interi positivi fissati x n {0, 1,...m 1} x n ax n 1 mod m x n /m valore approssimato (?) di un numero estratto da U(0, 1) 4

5 a e m scelti in modo che: 1. per ogni ragionevole scelta di x 0, { x 1 m,..., x n m } si comporta come una successione di valori osservati di n v.a. indipenendenti e U(0, 1) 2. il periodo della successione è grande (la successione prima o poi si ripete, sicuramente dopo m iterazioni) 3. il calcolo è veloce Per un computer con parole di 32 bit una buona scelta è m = = e a = 7 5 = Proprietà statistiche della successione valutate attraverso una serie di test numero primo (scelta... non casuale!) periodo pieno = m sufficientemente lungo in pratica Generatore congruenziale misto x n (ax n 1 + c) mod m Ogni sistema operativo ha in librerie di sistema procedura per generare numeri pseudo-casuali 5

6 Calcolo di un integrale definito tramite numeri pseudocasuali Una delle prime applicazioni dei numeri pseudo-casuali: metodo Montecarlo (all inglese Monte Carlo) I = 1 0 g(x)dx Se U U(0, 1) I = E[g(U)] Se U 1, U 2,...,U n i.i.d U(0, 1), da legge forte dei grandi numeri: 1 k k g(u i ) E[g(U)] = I per k i=1 Generando un numero elevato di numeri pseudocasuali u 1, u 2,...,u n, la media aritmetica dei g(u i ) approssima I 6

7 > # Esempio di calcolo di integrale definito con metodo Montecarlo > with(stats): > with(random): > g:=proc(x) exp( sin(x)) end proc: #funzione integranda > int(g(x),x=0..1); #integrazione definita 1 > 0 e ( sin( x) ) dx > evalf(%); #valuta numericamente > media:=proc(g,n) local i, m: m:=0: for i from 1 to n do od: m:=m/n: end proc: > media(g,10); > media(g,100); > media(g,1000); m:=m+g(uniform[0,1](1)): > media(g,10000); > media(g,100000); Deviazione standard della media aritmetica 1 n, errore nella stima 1 n 7

8 Se integrale non in [0,1], si può operare cambio di variabile Metodo Montecarlo poco utile per integrali semplici, più utile per integrali multipli I = I = E[g(U 1, U 2,...,U n )] 0 U i i.i.d. U(0, 1) e u j i Es. Stima Montecarlo di π g(x 1, x 2,...,x n )dx 1 dx 2 dx n k g(u j 1,...,uj n)/k j=1 numeri pseudo-casuali (X, Y ) punto casuale uniforme sul quadrato di vertici (±1, ±1) Probabilità p che (X, Y ) cerchio iscritto di raggio 1? p = Area del cerchio Area del quadrato = π 4 Se X e Y sono indipendenti e U( 1, 1), f(x, y) = f(x)f(y) = = 1 4, x, y ( 1, 1) (X, Y ) uniforme sul quadrato Se U U(0, 1) 2U 1 U( 1, 1) 8

9 Da coppie di numeri pseudo-casuali u 1, u 2 ottengo punti pseudo-casuali (2u 1 1, 2u 2 1) nel quadrato I(x, y) = 1 se x 2 + y 2 1, 0 altrimenti p = E(I) = P(X 2 + Y 2 1) p frazione di punti pseudo-casuali che cade nel cerchio 9

10 > # Esempio di calcolo di pigreco con metodo Montecarlo > with(stats): > with(random): > evalf(pi); #valuta numericamente > g:=proc(x,y) if (x^2+y^2 <= 1) then 1. else 0 end if: end proc: > media:=proc(g,n) local i, m, u : m:=0: for i from 1 to n do od: u:=uniform[0,1](2): m:=m+g(2*u[1] 1,2*u[2] 1): m:=4*m/n: end proc: > media(g,10); > media(g,100); > media(g,1000); > media(g,10000); > media(g,100000);

11 Generazione di numeri pseudo-casuali non uniformi Da numeri pseudo-casuali uniformi simulazione variabili aleatorie con altre distribuzioni Simulazione di variabili aleatorie discrete P(X = x j ) = p j, j = 1, 2,..., j p j = 1 Se U U(0, 1) P(X = x j ) = P ( j 1 i=1 p i U < ) j p i = p j i=1 a u numero uniforme associo x j se j 1 i=1 p i u < j i=1 p i algoritmo: genera u se u < p 1 stop con x 1 se u < p 1 + p 2 stop con x 2. 11

12 (v.a. uniforme discreta) l algoritmo si ferma quando j 1 n u < j n Se x j = j, j = 1,...,n e p j = 1 n restituendo j, cioè [nu] + 1 ([x] parte intera di x) - calcolo immediato Simulazione del lancio di una moneta p probabilità di una testa, se u < p testa, altrimenti croce Simulando n lanci di una moneta e sommando i successi simulo v.a. binomiale B(n, p) Non molto efficiente Oltre a proprietà statistiche, importante efficienza degli algoritmi 12

13 algoritmo più efficiente per binomiale: P(X = i+1) = n! (i + 1)!(n (i + 1))! p(i+1) (1 p) n (i+1) = n i i + 1 n! i!(n i)! p 1 p pi (1 p) n i = n i i + 1 p P(X = i) 1 p Applicazione algoritmo generale: Passo 1: genera u Passo 2: c = p/(1 p), i = 0, P = (1 p) n, F = P Passo 3: se u < F stop con i Passo 4: P = [c(n i)/(i + 1)]P, F = F + P, i = i + 1 Passo 5: Vai a passo 3 In media 1 + np ricerche; se p > 1/2, conviene simulare B(n, 1 p) e sottrarre da n 13

14 Simulazione della rovina del giocatore > # Simulazione rovina del giocatore > with(stats): > with(random): > vincita:=proc(p) #1 o 1 con prob p e 1 p if ( uniform[0,1](1) < p) then 1 else 1 end if: end proc: > gioca:=proc(m,n,p) #calcola se rovina o vittoria e durata gioco local rovina, durata, capitale: durata:=0: capitale:=m: while ( capitale <> 0 and capitale <> m+n ) do capitale:= capitale + vincita(p): durata:= durata + 1: end do: if ( capitale = 0 ) then rovina:=1 else rovina:=0 end if: [rovina,durata] end proc: > medie:=proc(m,n,p,n) # calcola frequenza rovina e durata media # su N ripetizioni local i, L, prob, esito: prob:=0: L:=0: for i from 1 to N do esito:= gioca(m,n,p): od: prob:=prob+esito[1]: L:=L+esito[2]: prob:=prob/n: L:=L/N: evalf([prob,l]): end proc: 14

15 > medie(10,10,0.5,10000); # gioco equo con pari capitale iniziale [ , ] > # da confrontare con n/(m+n) = 1/2 # e m*n =10*10 = 100 > medie(1,100,0.4,10000); #ubriaco ad 1 passo dal burrone e a 100 # passi da casa attratto dal burrone [ 1., ] > subs(m=1,n=100,r=0.6/0.4,( r^m r^(m+n) )/(1 r^(m+n) ) ); effettiva # probabilità > subs(m=1,n=100,q=0.6, p=0.4, (m+n)/(p q) * (1 (q/p)^m) /(1 (q/p)^(m+n)) m/(p q) ) # durata media effettiva > medie(1,100,0.5,10000); # idem ma senza attrazione [ , ] > # da confrontare con 100/101= # e 1*100=100 > medie(1,100,0.6,10000); #idem ma con attrazione verso casa [ , ] > subs(m=1,n=100,r=0.4/0.6,( r^m r^(m+n) )/(1 r^(m+n) ) ); # probabilità effettiva > subs(m=1,n=100,q=0.4, p=0.6, (m+n)/(p q) * (1 (q/p)^m) /(1 (q/p)^(m+n)) m/(p q) ); #durata media effettiva

16 Simulazione di variabili aleatorie continue Se U U(0, 1) e F funzione di ripartizione continua X = F 1 (U) F Algoritmo della trasformazione inversa per simulare una v.a. con distribuzione F Genera u Calcola F 1 (u) esempio Simulare X Exp(1) F(x) = 1 e x x = F 1 (u) = log(1 u) numero pseudo-casuale esponenziale se U U(0, 1) 1 U U(0, 1), quindi basta porre x = log(u) Per simulare X Exp(λ) x = 1 λ log(u) Simulazione di un processo di arrivi con intervallo tra un arrivo e l altro descritto da v.a. esponenziale Metodo di accettazione-rifiuto Se possibile simulare in modo efficiente una v.a. con 16

17 funzione di densità g(x), possiamo simulare qualsiasi altra v.a. dotata di densità f(x) se c tale che f(x) g(x) c x Passo 1: Genera Y con densità g Passo 2: Genera U uniforme Passo 3: Se U f(y ) cg(y ) Passo 1 stop con Y altrimenti vai al Si dimostra che la variabile prodotta dall algoritmo ha densità f e che il numero di iterazioni richieste è una v.a. geometrica con media c Esempio Simulare una v.a. Normale standard se X N(0, 1), Z = X ha densità f(z) = 2 2π e z2 /2, 0 < z < g(z) = e z densità esponenziale con media 1 f(z) g(z) = 2/πe z z2 /2 massimo in 1 c = f(1)/g(1) = { } 2e/π f(z) cg(z) = exp (z 1)2 2 17

18 simulazione di Z: Passo 1: Genera Y exp(1) Passo 2: Genera U U(0, 1) Passo 3: Se U exp{ (Y 1) 2 /2} stop con Y altrimenti vai a Passo 1 X N(0, 1) può essere simulata scegliendo Z o Z con probabilità 1/2. 18

19 Sistemi di funzioni iterate I sistemi di funzioni iterate costituiscono un metodo per costruire immagini frattali (M. Barnsley, Fractals Everywhere, 1988). I frattali sono composti dall unione di copie di se stessi ottenute tramite la trasformazione attraverso opportune funzioni. L esempio più famoso è il triangolo di Sierpinski sia dato un triangolo equilatero con base parallela all asse orizzontale (prima immagine) si riduca ogni lato del triangolo di 1/2, si facciano due copie e si posizionino i tre triangoli come nella seconda immagine si ripeta il passo precedente per ciascuno dei triangoli (immagine 3 e seguenti) Immagine autosimile, fatta dall unione di tre copie dell immagine traformate come sopra Costruzione tramite IFS 19

20 x 0 = 0, y 0 = 0 i punti successivi sono ottenuti applicando a caso (con uguale probabilità) una delle tre seguenti trasformazioni (affini) x n+1 = 0.5x n y n+1 = 0.5y n x n+1 = 0.5x n y n+1 = 0.5y n x n+1 = 0.5x n + 1 y n+1 = 0.5y n Le tre trasformazioni producono i punti rispettivamente evidenziati in giallo, rosso, verde nella figura 20

21 Catena di Markov (con spazio degli stati continuo) Le funzioni di trsaformazione non necessariamente affini, ma devono essere contrazioni, cioè rendere i punti trasformati più vicini. La forma del frattale è di conseguenza fatta di un certo numero di copie (eventualmente con sovrapposizioni) ridotte del frattale e così ogni copia è fatta di sue copie ridotte e così via. S = N i=1f i (S) I sistemi IFS sono usati per la compressione di immagini. Descrizione con pochi parametri. Problema difficile trovare in generale il sistema che determina una data immagine (brevetti di Barnsley) IFS per immagine di foglia di felce: 21

22 La figura è formata dall unione di 4 copie di se stessa (compreso lo stelo - verde) 22

23 Le 4 trasformazioni corrispondenti sono: x n+1 = 0 y n+1 = 0.16y n stelo - verde x n+1 = 0.2x n 0.26y n y n+1 = 0.23x n y n rosso x n+1 = 0.15x n y n y n+1 = 0.26x n y n blu x n+1 = 0.85x n y n y n+1 = 0.04x n y n azzurro Le probabilità delle trasformazioni sono rispettivamente 0.01, 0.07, 0.07, x 0 = y 0 = 0 Le probabilità non influenzano la forma, ma solo la frequenza dei punti nelle varie regioni 23

2.3.1 Generazione di numeri pseudocasuali con distribuzione uniforme

2.3.1 Generazione di numeri pseudocasuali con distribuzione uniforme GENERAZIONE DI OSSERVAZIONI CASUALI 145 2.3 GENERAZIONE DI OSSERVAZIONI CASUALI Una volta determinate le distribuzioni di input, la simulazione dovrà generare durante ogni esecuzione osservazioni casuali

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Simulazione al Calcolatore La simulazione al calcolatore (computer simulation), (nel caso qui considerato simulazione stocastica) si basa sulla generazione, mediante calcolatore, di sequenze di numeri

Dettagli

Integrazione con metodo Monte Carlo

Integrazione con metodo Monte Carlo 28 Ottobre 2010 Outline 1 Integrazione numerica I metodi deterministici di integrazione numerica (come Simpson, trapezi, e in generale Newton-Cotes) lavorano tipicamente con campionature uniformi del dominio.

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Campionamento di variabili aleatorie. Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010

Campionamento di variabili aleatorie. Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010 Campionamento di variabili aleatorie Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010 Premessa Soluzione della prima esercitazione: l'analisi teorica Richiami:

Dettagli

Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo

Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo Laboratorio di Calcolo I Applicazioni : Metodo Monte Carlo 1 Monte Carlo Il metodo di Monte Carlo è un metodo per la risoluzione numerica di problemi matematici che utilizza numeri casuali. Si applica

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

CALCOLO NUMERICO. Prof. Di Capua Giuseppe. Appunti di Informatica - Prof. Di Capua 1

CALCOLO NUMERICO. Prof. Di Capua Giuseppe. Appunti di Informatica - Prof. Di Capua 1 CALCOLO NUMERICO Prof. Di Capua Giuseppe Appunti di Informatica - Prof. Di Capua 1 INTRODUZIONE Quando algoritmi algebrici non determinano la soluzione di un problema o il loro «costo» è molto alto, allora

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Generazione di numeri random. Distribuzioni uniformi

Generazione di numeri random. Distribuzioni uniformi Generazione di numeri random Distribuzioni uniformi I numeri random Per numero random (o numero casuale) si intende una variabile aleatoria distribuita in modo uniforme tra 0 e 1. Le proprietà statistiche

Dettagli

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FACOLTA DI INGEGNERIA Laurea Specialistica in Ingegneria Civile N.O. Giuseppe T. Aronica CORSO DI IDROLOGIA TECNICA PARTE III Idrologia delle piene Lezione XIX: I metodi indiretti per la valutazione delle

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Metodi Computazionali. Generazione di numeri pseudocasuali

Metodi Computazionali. Generazione di numeri pseudocasuali Metodi Computazionali Generazione di numeri pseudocasuali A.A. 2009/2010 Pseudo random numbers I più comuni generatori di numeri random determinano il prossimo numero random di una serie come una funzione

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001 Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre 2000-28 Gennaio 2001 1 Nona settimana 76. Lun. 4 Dic. Generalita. Spazi

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

λ è detto intensità e rappresenta il numero di eventi che si

λ è detto intensità e rappresenta il numero di eventi che si ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di

Dettagli

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare Analisi dati in Fisica Subnucleare Introduzione al metodo Monte Carlo (N.B. parte di queste trasparenze sono riciclate da un seminario di L. Lista) Il metodo Monte Carlo È una tecnica numerica che si basa

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali LABORATORIO R - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2014 Argomenti La distribuzione normale e applicazioni La distribuzione binomiale

Dettagli

P (0 semafori rossi) = 0,05 P (1 semaforo rosso) = 0,20 P (2 semafori rossi) = 0,25 P (3 semafori rossi) = 0,35 P (4 semafori rossi) = 0,15

P (0 semafori rossi) = 0,05 P (1 semaforo rosso) = 0,20 P (2 semafori rossi) = 0,25 P (3 semafori rossi) = 0,35 P (4 semafori rossi) = 0,15 ESERCITAZIONE : ROBABILITA, VARIABILI CASUALI, BINOMIALE ESERCIZIO N. Una donna che si reca al lavoro in macchina ha osservato che il seguente modello è un approssimato modello probabilistico per il numero

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Generatori di sequenze pseudocasuali. Manuela Aprile Maria Chiara Fumi

Generatori di sequenze pseudocasuali. Manuela Aprile Maria Chiara Fumi Generatori di sequenze pseudocasuali Manuela Aprile Maria Chiara Fumi Indice Concetti base e terminologia Random bit generator Pseudorandom bit generator Cenni di statistica Test Statistici Concetti base

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 24-28 Luglio 2017 www.u4learn.it Arianna Pipitone Introduzione alla probabilità MATLAB mette a disposizione degli utenti una serie di funzioni

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche.

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche. FRAME 0.1. S.M. Ross, Calcolo delle Probabilità, Apogeo 2004. C. Mariconda, A. Tonolo, Matematica Discreta, a.a. 2005-2006, Libreria Progetto, 2005 (costo 6 euro. Compitini FRAME 0.2. 13 maggio, ore 9.30

Dettagli

NUMERI CASUALI E SIMULAZIONE

NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI Usati in: statistica programmi di simulazione... Strumenti: - tabelle di numeri casuali - generatori hardware - generatori software DESCRIZIONE DEL PROBLEMA

Dettagli

Appunti di Simulazione

Appunti di Simulazione Appunti di Simulazione M. Gianfelice Corso di modelli probabilistici per le applicazioni Master di II livello in Matematica per le Applicazioni a.a. 2004/2005 1 Simulazione di numeri aleatori con distribuzione

Dettagli

tabelle grafici misure di

tabelle grafici misure di Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

Generazione di numeri casuali

Generazione di numeri casuali Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Esercizi di riepilogo Lezioni

Esercizi di riepilogo Lezioni Esercizi di riepilogo Lezioni 9-10-11 Es1: Aspettazioni iterate Siano X, Y, e Z v.a. discrete. Dimostrare le seguenti generalizzazioni della legge delle aspettazioni iterate a) b) c) Es2: Bacchetta Abbiamo

Dettagli

Simulazione. D.E.I.S. Università di Bologna DEISNet

Simulazione. D.E.I.S. Università di Bologna DEISNet Simulazione D.E.I.S. Università di Bologna DEISNet http://deisnet.deis.unibo.it/ Introduzione Per valutare le prestazioni di un sistema esistono due approcci sostanzialmente differenti Analisi si basa

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica Le distribuzioni teoriche di probabilità. La distribuzione di probabilità binomiale Corso di laurea in biotecnologie

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Esercitazione N. 1 (11 ottobre 2016)

Esercitazione N. 1 (11 ottobre 2016) Esercitazione N. 1 (11 ottobre 2016) Un'urna contiene elementi. Vengono estratti di seguito elementi, ogni elemento una volta estratto è riposto nell'urna. Calcolare la probabilità dell evento: Problema

Dettagli

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie Prova N. parti e : risposte Matematica e Statistica 0 gennaio 0 VARIANTE: 0 risposte: C A C B B B B D A B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %,

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità > Note Distribuzioni di probabilità filename: distribuzioni.mws version: 2.0 tested: Maple V Release 6.02 on Windows 2000 date: 15 marzo 2003 author: Claudio Marsan Liceo Cantonale di Mendrisio Via Agostino

Dettagli

Introduzione alla probabilità. Renato Mainetti

Introduzione alla probabilità. Renato Mainetti Introduzione alla probabilità Renato Mainetti Esperimenti sulla probabilità: Vedremo come utilizzare semplici funzioni di matlab per avvicinarci al mondo della probabilità, iniziando così ad introdurre

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

D. 1 Il prodotto di a = 12,37 e b = 25,45

D. 1 Il prodotto di a = 12,37 e b = 25,45 Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

Algoritmi in C++ (seconda parte)

Algoritmi in C++ (seconda parte) Algoritmi in C++ (seconda parte) Introduzione Obiettivo: imparare a risolvere problemi analitici con semplici programmi in C++. Nella prima parte abbiamo imparato: generazione di sequenze di numeri casuali

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Distribuzioni di probabilità. Un po' di teoria

Distribuzioni di probabilità. Un po' di teoria Distribuzioni di probabilità Un po' di teoria Distribuzione di Poisson Considera un centralino telefonico. Tale centralino riceve in media 3600 telefonate al giorno. Vogliamo calcolare la probabilità

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

LEZIONE 2.5. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.5 p. 1/12

LEZIONE 2.5. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.5 p. 1/12 LEZIONE 2.5 p. 1/12 LEZIONE 2.5 corso di statistica Francesco Lagona Università Roma Tre LEZIONE 2.5 p. 2/12 distribuzione doppia di due variabili aleatorie consideriamo la distribuzione doppia di due

Dettagli

Metodi Matematici della Fisica. S3

Metodi Matematici della Fisica. S3 Metodi Matematici della Fisica. S Filippo Cesi 0 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 6 CFU 8 CFU 4 + 6 CFU altro: problema 4 5 6 7 8 9 0 test totale voto in trentesimi voto

Dettagli

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n

Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni COGNOME: NOME: MATR.: 1. x n Compito di Analisi Matematica 1 per Ingegneria Elettronica a delle Telecomunicazioni 17 gennaio 2017 COGNOME: NOME: MATR.: Esercizio 1. Sia f : R R definita da f(x) = 1 4 x x + 1 2. a) Disegnare grafico

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

Esercizi Teoria della Probabilità

Esercizi Teoria della Probabilità Esercizi Teoria della Probabilità Esercizio 1 Durante un corso universitario, uno studente prova a svolgere una serie di esercizi. La risposta agli esercizi è di tipo binario (SI/NO). Supponendo la completa

Dettagli

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul 1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Algoritmi in C++ (prima parte)

Algoritmi in C++ (prima parte) Algoritmi in C++ (prima parte) Alcuni algoritmi in C++ Far risolvere al calcolatore, in modo approssimato, problemi analitici Diverse tipologie di problemi generazione di sequenze di numeri casuali ricerca

Dettagli

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1

Campionamento La statistica media campionaria e la sua distribuzione. Paola Giacomello Dip. Scienze Sociali ed Economiche Uniroma1 Campionamento La statistica media campionaria e la sua distribuzione 1 Definisco il problema da studiare: es. tempo di percorrenza tra abitazione e università Carattere: tempo ossia v.s. continua Popolazione:

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini e Leonardo Bertini Lezione 1: Probabilità: fondamenti Progettazione probabilistica: Considerazione delle incertezze

Dettagli

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio;

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio; TEST DI AUTOVALUTAZIONE - SETTIMANA 3 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Una variabile casuale

Dettagli

Lezione VIII: Montecarlo

Lezione VIII: Montecarlo Lezione VIII: Montecarlo Laboratorio di Fisica Computazionale 2 (216/217) November 16, 216 Fabrizio Parodi Lezione VIII: Montecarlo November 16, 216 1 / 26 Metodo di Monte Carlo Metodo di Monte Carlo Il

Dettagli