Generazione di numeri casuali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generazione di numeri casuali"

Transcript

1 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però imparare a generare variabili aleatorie che seguano distribuzioni di probabilità note, e per questo ci servono sequenze di numeri casuali. Generare buone sequenze di numeri realmente casuali è cosa complicata, per cui la migliore strategia consiste nell affidarsi a processi fisici intrinsecamente aleatori: decadimenti radioattivi rumore termico sistemi turbolenti (come ad esempio il cesto delle palline del lotto) Inutile dire che questi dispositivi non sono esattamente portatili. Laboratorio di Calcolo B 67

2 Generazione di numeri pseudo- casuali Siccome la generazione di numeri casuali è un po' scomoda, ci si accontenta di sequenze pseudo-casuali. Si tratta di fatto di sequenze perfettamente deterministiche, che tuttavia generano numeri interi uniformemente distribuiti in un dato intervallo, con periodo di ripetizione molto lungo e con basso livello di correlazione tra un elemento della sequenza e quello successivo. Esempio (Middle Square, Von Neumann, 1946): Dato un numero intero di 10 cifre (seme della sequenza) lo si eleva al quadrato e si prendono le 10 cifre centrali come numero successivo Provate per esercizio a implementare questo metodo. Laboratorio di Calcolo B 68

3 Uso della funzione random() In ambiente C esiste un generatore di numeri casuali uniformemente distribuiti. La funzione si chiama long int random() ed è definita in stdlib.h. Ogni chiamata a random() ritorna un intero compreso tra 0 e RAND_MAX (che, nelle macchine a 3 bits vale di solito 31-1). Se si vogliono numeri compresi tra 0 e 1 si usa: double rnd; rnd (double)random()/rand_max; Esiste anche una funzione void srandom(long int) che consente di definire il seme della sequenza (seme uguale sequenza uguale, la qual cosa è particolarmente utile in fase di debug). Se si vuole una sequenza differente ad ogni esecuzione del programma si può usare srandom(time()); Laboratorio di Calcolo B 69

4 La distribuzione binomiale Una interessante applicazione delle distribuzioni uniformi è la distribuzione binomiale. Consideriamo un evento che consista nella ripetizione di n prove indipendenti. L esito di ogni prova i è caratterizzato da una variabile aleatoria i discreta che assume il valore 0 con probabilità p e il valore 1 con probabilità q1-p. Si dimostra (Lab1B) che la variabile somma delle i assume il valore k con probabilità p( k, n, p) n k k n k p (1 p) Media e varainza della distribuzione binomiale sono date da: k np σ np(1 p) Laboratorio di Calcolo B 70

5 La distribuzione binomiale La binomiale risponde a domande del tipo: se lancio n volte una moneta, qual è la probabilità di ottenere testa k volte? Altra visualizzazione della binomiale è il tavolo binario. Si tratta di un piano inclinato con una serie di chiodi piantati in modo da formare un reticolo regolare. Una biglia, urtando un chiodo, può passare a destra o a sinistra con uguale probabilità (p 0.5). Il numero di righe di chiodi fornisce il numero di ripetizioni n; la posizione di arrivo della biglia è k n3 p0.5 k Laboratorio di Calcolo B 71

6 Simulazione della binomiale In laboratorio dovrete simulare un processo binomiale e confrontarlo con la distribuzione teorica. Si eseguono n estrazioni di numeri casuali compresi tra 0 e 1. Se il numero estratto è maggiore di p si somma 1, altrimenti 0. Il valore ottenuto, che sarà compreso tra 0 e n, si inserisce in un istogramma a n+1 bins, e si ripete la procedura M volte (n,p e M devono poter essere facilmente variati). Alla fine, se M è abbastanza grande, l istogramma approssimerà con buona precisione una binomiale. Si deve eseguire un fit per verificare che i valori di n e p ottenuti dal confronto con la binomiale teorica coincidano, entro gli errori, con quelli usati per la simulazione. Siccome per n grande la binomiale tende alla gaussiana, si può verificare questo fatto usando una gaussiana per eseguire il fit. Laboratorio di Calcolo B 7

7 Simulazione della binomiale: matriale occorrente int binevent(int p, int n); simula n ripetizioni di eventi binari con probabilità p e ritorna il numero di successi k double binomiale(int p, int n, int k); calcola la probabilità binomiale int/double bincoeff(int n, int k); calcola il coefficiente binomiale; qui si deve fare attenzione al modo in cui il calcolo viene eseguito, perché altrimenti si perde facilmente precisione o si eccedono i limiti delle variabili intere. Laboratorio di Calcolo B 73

8 Generazione di una gaussiana I Un metodo per generare una distribuzione gaussiana consiste nell affidarsi al teorema del limite centrale: La distribuzione della somma di N variabili aleatorie comunque distribuite tende, per N ->, ad una distribuzione gaussiana. Se sommiamo 1 variabili uniformemente distribuite in [-0.5, 0.5], ricordando che σ 1/ 1/ d 0 1/ 1/ ( ) 1 1 otteniamo (approssimativamente) una gaussiana con media 0 e varianza 1. Se servono medie o varianze diverse basta calcolare σ + <>. Laboratorio di Calcolo B 74

9 Traccia per l esperienza Provare il generatore di numeri casuali uniformemente distribuiti realizzando un istrogramma (che deve risultare piatto). Provate a variare il numero di eventi nell istogramma. Simulare un processo binario e confrontare (tramite best-fit) il risultato della simulazione con la distribuzione binomiale teorica. Provate diversi valori di n e p. Generare una distribuzione gaussiana utilizzando il teorema del limite centrale; verificare tramite fit il risultato ottenuto e ricavare i valori di media e varianza. Provate a cambiare il numero di variabili sommate. Laboratorio di Calcolo B 75

10 Calcolo di integrali Supponiamo di dover calcolare l integrale di una funzione in un intervallo limitato [ min, ma ], e di conoscere il massimo ed il minimo della funzione in tale intervallo. Se generiamo n punti uniformemente distribuiti nel rettangolo [ min, ma ][f min,f ma ] avremo che la frazione p di punti che cadono sotto la funzione è pari al rapporto tra l integrale e l area del rettangolo A. La distribuzione di successi è binomiale e si ha: I σ ( I ) ma min f ( ) d A p(1 n Ap p) Laboratorio di Calcolo B 76

11 Calcolo di π Se in particolare si sceglie come funzione l equazione del cerchio nell intervallo [0,1][0,1] si può determinare il valore di π. Questa è stata la prima applicazione del metodo di montecarlo (Buffon 1777). I 1 1 d 0 Laboratorio di Calcolo B 77 π 4

12 Generazione di distribuzioni di probabilità arbitrarie Abbiamo visto come generare eventi con distribuzione di probabilità uniforme, ed abbiamo anche visto in quale contesto tali eventi sono utili. Tuttavia la maggior parte dei problemi di statistica applicati alla fisica richiedono eventi con distribuzioni di probabilità non uniformi. È quindi importante imparare a generare eventi distribuiti secondo una generica densità di probabilità a partire da eventi distribuiti uniformemente. Laboratorio di Calcolo B 78

13 Il metodo della reiezione Supponiamo che la distribuzione da generare, f(), sia definita nell intervallo [ min, ma ] e sia, in tale intervallo, compresa tra 0 e f ma. Se estraiamo un valore di uniformemente in [ min, ma ] potremo decidere se accettarlo o meno sulla base di una seconda estrazione uniforme y in [0, f ma ] : se y è minore di f() accettiamo il valore di, altrimenti lo rigettiamo. Questo metodo genera, per costruzione, la distribuzione di probabilita desiderata. Il metodo è quello usato per il calcolo dell integrale. Laboratorio di Calcolo B 79

14 Limiti del metodo di reiezione Il metodo di reiezione non può trattare distribuzioni di probabilità in intervalli non limitati. Inoltre il metodo risulta molto inefficiente nel caso si manipolino distribuzioni con picchi stretti (in questo caso ci sono molte reiezioni...). Nel caso della gaussiana questo metodo non è applicabile. Il fatto che modulando una distribuzione uniforme con il valore della densità di probabilità si ottenga l integrale di tale distribuzione ci suggerisce che possa esistere un legame funzionale tra l integrale di una densità di probabilità ed una variabile aleatoria distribuita uniformemente. Questa idea è alla base del metodo di inversione. Laboratorio di Calcolo B 80

15 Il metodo di inversione Data la solita f(), definita in [ min, ma ], cerchiamo una funzione g tale che, se η è una variabile aleatoria distribuita uniformemente in [0,1], allora g(η) è distribuita secondo f in [ min, ma ]. Potremo porre: g(0) min g(1) ma p(η)dη dη f()d 0 1 η min ma Laboratorio di Calcolo B 81

16 Il metodo di inversione Cominciamo ad affrontare il problema inverso, ovvero dato distribuito secondo f() generare η. Consideriamo la funzione integrale normalizzata: Si vede subito che g -1 ( min ) 0 e che g -1 ( ma ) 1; proviamo adesso a calcolare la densità di probabilità di η. Sappiamo che: 1 min η g ( ) ma f min f ( q) dq ( q) dq p ( η) dη f ( ) d Laboratorio di Calcolo B 8

17 Quindi: Il metodo di inversione 1 dη dg ( ) p ( η) p( η) d d Ma la derivata di g -1 () è f() da cui: ( ) p( η) f ( ) f ( ) p( η) Abbiamo quindi dimostrato che se f() è una densità di probabilità la sua funzione integrale è una variabile aleatoria distribuita uniformemente in [0,1]. A questo punto dobbiamo essere capaci di invertire g -1 per ottenere g. Vale la pena di osservare che non esistono motivi per cui min ed ma non possano tendere all infinito. Va osservato pure che il metodo richiede il calcolo dell integrale di f, e quindi non si applica alla gaussiana. Laboratorio di Calcolo B 83 f 1

18 Il metodo di inversione: esempio Dobbiamo generare numeri distribuiti secondo un esponenziale negativo in [0, ]. Calcoliamo g -1 : η g 1 ( ) 0 0 e e q q dq dq 1 e Invertiamo per ottenere g: g( η) log(1 η) Se quindi estraiamo numeri η uniformemente distribuiti in [0,1] e calcoliamo g(η) otteniamo numeri distribuiti esponenzialmente in [0, ]. Laboratorio di Calcolo B 84

19 Laboratorio di Calcolo B 85 Generazione di una Generazione di una gaussiana gaussiana II II Consideriamo una gaussuana in due dimensioni: Scritta in coordinate polari diventa: Questa funzione si può integrare: du e rdr e rdrd r G ddy y G u r 0 0 / 0 0 ), ( ), ( π π θ θ π / ), ( r e r G θ ) / ( / / ), ( y y e e e y G +

20 Generazione di una gaussiana II La ricetta da seguire è quindi: Si generano due numeri θ e u, uno distribuito uniformemente in [0,π], l altro esponenzialmente in [0, ]. Si convertono questi numeri in coordinate cartesiane e si ottengono due numeri e y distribuiti gaussianamente; in formule: u log(1 η ) r θ y u πη r cos( θ ) r sin( θ ) Laboratorio di Calcolo B 86 1

21 Traccia per l esperienza Generare una distribuzione arbitraria usando il metodo di reiezione. Generare una distribuzione esponenziale usando il metodo di inversione. Generare una gaussiana usando la distribuzione bi-dimensionale. Verificare con un fit la correttezza delle distribuzioni ottenute nei tre casi. La generazione di una distribuzione gaussiana in due dimensioni è una buona occasione per familiarizzare con gli istogrammi bi-dimensionali. Laboratorio di Calcolo B 87

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

Metodo di Monte Carlo

Metodo di Monte Carlo Il termine metodo di si riferisce a qualsiasi metodo numerico che faccia uso di numeri (random) per risolvere probabilisticamente un problema. Metodi di sono normalmente utilizzati in ambito scientifico

Dettagli

Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo

Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo Laboratorio di Calcolo I Applicazioni : Metodo Monte Carlo 1 Monte Carlo Il metodo di Monte Carlo è un metodo per la risoluzione numerica di problemi matematici che utilizza numeri casuali. Si applica

Dettagli

- noise di conteggio ; f[m] è un numero intero che è la realizzazione di una variabile aleatoria con valor medio (valore atteso) f 0 [m].

- noise di conteggio ; f[m] è un numero intero che è la realizzazione di una variabile aleatoria con valor medio (valore atteso) f 0 [m]. Segnali con noise Sia f [m], m,,..., N-, il campionamento del segnale in arrivo sul rivelatore; il segnale campionato in uscita f[m] differisce da f [m] per quantità che variano in modo casuale. Si hanno

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo Distribuzioni di probabilità e principi del metodo di Montecarlo Simulazione di sistemi complessi Distribuzioni di probabilità Istogrammi Generazione di numeri casuali Esempi di applicazione del metodo

Dettagli

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare

Il metodo Monte Carlo. Esempio di transizione al caos. Numeri (pseudo)casuali. λ 1. Analisi dati in Fisica Subnucleare Analisi dati in Fisica Subnucleare Introduzione al metodo Monte Carlo (N.B. parte di queste trasparenze sono riciclate da un seminario di L. Lista) Il metodo Monte Carlo È una tecnica numerica che si basa

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

NUMERI CASUALI E SIMULAZIONE

NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI Usati in: statistica programmi di simulazione... Strumenti: - tabelle di numeri casuali - generatori hardware - generatori software DESCRIZIONE DEL PROBLEMA

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

Generazione di numeri random. Distribuzioni uniformi

Generazione di numeri random. Distribuzioni uniformi Generazione di numeri random Distribuzioni uniformi I numeri random Per numero random (o numero casuale) si intende una variabile aleatoria distribuita in modo uniforme tra 0 e 1. Le proprietà statistiche

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Simulazione al Calcolatore La simulazione al calcolatore (computer simulation), (nel caso qui considerato simulazione stocastica) si basa sulla generazione, mediante calcolatore, di sequenze di numeri

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Campionamento di variabili aleatorie. Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010

Campionamento di variabili aleatorie. Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010 Campionamento di variabili aleatorie Andrea Marin Università Ca' Foscari Venezia Corso di Probabilità e Statistica a.a. 2009/2010 Premessa Soluzione della prima esercitazione: l'analisi teorica Richiami:

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali LABORATORIO R - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2014 Argomenti La distribuzione normale e applicazioni La distribuzione binomiale

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Introduzione alla probabilità. Renato Mainetti

Introduzione alla probabilità. Renato Mainetti Introduzione alla probabilità Renato Mainetti Esperimenti sulla probabilità: Vedremo come utilizzare semplici funzioni di matlab per avvicinarci al mondo della probabilità, iniziando così ad introdurre

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 7 - QUESTIONARIO QUESITO Definito il numero E come: E = e d, dimostrare che risulta: e d = e E esprimere e d in termini di e ed E. Cerchiamo una primitiva di e integrando

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Algoritmi in C++ (prima parte)

Algoritmi in C++ (prima parte) Algoritmi in C++ (prima parte) Alcuni algoritmi in C++ Far risolvere al calcolatore, in modo approssimato, problemi analitici Diverse tipologie di problemi generazione di sequenze di numeri casuali ricerca

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Studio dell aleatorietà: : proprietà di indipendenza ed uniformità. Daniela Picin

Studio dell aleatorietà: : proprietà di indipendenza ed uniformità. Daniela Picin Studio dell aleatorietà: : proprietà di indipendenza ed uniformità Daniela Picin TEST TEORICI: studio della media, della varianza e della correlazione del primo ordine, studio della struttura reticolare.

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

CALCOLO NUMERICO. Prof. Di Capua Giuseppe. Appunti di Informatica - Prof. Di Capua 1

CALCOLO NUMERICO. Prof. Di Capua Giuseppe. Appunti di Informatica - Prof. Di Capua 1 CALCOLO NUMERICO Prof. Di Capua Giuseppe Appunti di Informatica - Prof. Di Capua 1 INTRODUZIONE Quando algoritmi algebrici non determinano la soluzione di un problema o il loro «costo» è molto alto, allora

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Analisi statistica della bontà di un programma di simulazione del lancio di dadi

Analisi statistica della bontà di un programma di simulazione del lancio di dadi Analisi statistica della bontà di un programma di simulazione del lancio di dadi Jacopo Nespolo, Jonathan Barsotti, Oscar Pizzulli 19/2/2007 1 Obbiettivi Con questa esperienza si intende analizzare i dati

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI

MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI MATEMATICA E STATISTICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI ESERCITATI CON ME! I ESERCITAZIONE 1) Misure ripetute (materiale secco su vetrino) della lunghezza del diametro maggiore

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale

Dettagli

RAPPRESENTARE CON UN COMPUTER FENOMENI CASUALI E UTILIZZARLI

RAPPRESENTARE CON UN COMPUTER FENOMENI CASUALI E UTILIZZARLI Fare scienza con il computer RAPPRESENTARE CON UN COMPUTER FENOMENI CASUALI E UTILIZZARLI Maria Peressi (peressi@ts.infn.it) Giorgio Pastore (pastore@ts.infn.it) 24 gennaio 211 - esempio semplice di fenomeno

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica Le distribuzioni teoriche di probabilità. La distribuzione di probabilità binomiale Corso di laurea in biotecnologie

Dettagli

Correzione primo compitino, testo B

Correzione primo compitino, testo B Correzione primo compitino, testo B gennaio 20 Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

Corso di Laboratorio 2 Programmazione C++ Silvia Arcelli. 9 Novembre 2015

Corso di Laboratorio 2 Programmazione C++ Silvia Arcelli. 9 Novembre 2015 Corso di Laboratorio 2 Programmazione C++ Silvia Arcelli 9 Novembre 2015 1 Generazione di numeri casuali Numeri casuali: valore assunto da una variabile aleatoria, il cui valore è per definizione impredicibile

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Algoritmi in C++ (seconda parte)

Algoritmi in C++ (seconda parte) Algoritmi in C++ (seconda parte) Introduzione Obiettivo: imparare a risolvere problemi analitici con semplici programmi in C++. Nella prima parte abbiamo imparato: generazione di sequenze di numeri casuali

Dettagli

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

Metodi Computazionali. Generazione di numeri pseudocasuali

Metodi Computazionali. Generazione di numeri pseudocasuali Metodi Computazionali Generazione di numeri pseudocasuali A.A. 2009/2010 Pseudo random numbers I più comuni generatori di numeri random determinano il prossimo numero random di una serie come una funzione

Dettagli

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

f (a)δa = C e (a a*)2 h 2 Δa

f (a)δa = C e (a a*)2 h 2 Δa Distribuzione di Gauss Se la variabile non e` discreta ma puo` variare in modo continuo in un certo intervallo e ad ogni suo valore resta assegnata una probabilita` di verificarsi, dalla distribuzione

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 24-28 Luglio 2017 www.u4learn.it Arianna Pipitone Introduzione alla probabilità MATLAB mette a disposizione degli utenti una serie di funzioni

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

MEDIA aritmetica semplice (Gli indicatori di posizione)

MEDIA aritmetica semplice (Gli indicatori di posizione) STATISTICA E RICERCA DIDATTICA Note di statistica e metodi di ricerca Il 94.5 % delle statistiche e' sbagliato. Woody Allen Non esistono i dati, solo interpretazioni! Friedrich Nietzsche Laurea in Scienze

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità A. A. /5 prova scritta (//5(docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento dei punti non facoltativi

Dettagli

Metodi Computazionali della Fisica Secondo Modulo: C++

Metodi Computazionali della Fisica Secondo Modulo: C++ Metodi Computazionali della Fisica Secondo Modulo: C++ Seconda Lezione Andrea Piccione () Metodi Comptazionali della Fisica - Secondo Modulo: C++ Milano, 09/1/08 1 / 9 La lezione di oggi Obiettivo: implementare

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Esercitazione N. 1 (11 ottobre 2016)

Esercitazione N. 1 (11 ottobre 2016) Esercitazione N. 1 (11 ottobre 2016) Un'urna contiene elementi. Vengono estratti di seguito elementi, ogni elemento una volta estratto è riposto nell'urna. Calcolare la probabilità dell evento: Problema

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli