BOLLETTINO UNIONE MATEMATICA ITALIANA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "BOLLETTINO UNIONE MATEMATICA ITALIANA"

Transcript

1 BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Cinzia Bisi Teoria della iterazione, mappe olomorfe che commutano e dinamica complessa al punto di Wolff Bollettino dell Unione Matematica Italiana, Serie 8, Vol. 4-A La Matematica nella Società e nella Cultura (2001), n.3 (Fascicolo Tesi di Dottorato), p Unione Matematica Italiana < L utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento. Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI

2 Bollettino dell Unione Matematica Italiana, Unione Matematica Italiana, 2001.

3 Bollettino U. M. I. La Matematica nella Società e nella Cultura Serie VIII, Vol. IV-A, Dicembre 2001, Teoria della iterazione, mappe olomorfe che commutano e dinamica complessa al punto di Wolff. BISI CINZIA Questo lavoro è principalmente focalizzato sulla teoria della iterazione, lo studio delle famiglie di mappe olomorfe che commutano e la dinamica complessa nel punto di Wolff, quando questo sta sul bordo, per auto-mappe olomorfe della palla unitaria aperta, in una e più variabili. La teoria della iterazione è un soggetto classico di grande interesse, con interessanti problemi aperti al vaglio in questi ultimi anni. È relativa allo studio del comportamento della successione ] f n ( nn, dove f n 4f i R i f (n-times) è la n-esima iterata di f. I primi risultati di base in tale materia uscirono alla fine del diciannovesimo secolo: Koenigs and Schroeder pubblicarono alcuni risultati poi rivelatisi produttivi sulla soluzione di certe equazioni funzionali, usando tecniche della iterazione. Nella prima metà del ventesimo secolo, altri fondamentali risultati vennero da Julia, Fatou, Denjoy, Hadamard, Wolff, Carathèodory e Valiron; attorno agli anni cinquanta Sternberg, Baker e Pommerenke dettero interessanti contributi alla materia. Tra i molti recenti risultati, le nostre ricerche si sono basate in particolare, e sono iniziate, dai lavori di Behan, Cowen [2], [3], MacCluer [4] e Perez-Marco [5]. Sin dall inizio della teoria, era chiaro che il comportamento delle iterate di una auto-mappa olomorfa del disco unitario D di C, fhol (D, D), dipendesse dalla esistenza di un punto fisso, e dal valore della derivata in quel punto fisso. Presto, risultati dovuti a Julia, Wolff e Caratheodory affermarono che ogni mappa f Hol(D, D) ha un punto fisso in D o un «punto fisso al bordo di D,» il cosiddetto punto di Wolff. Nell ultimo caso, la derivata f 8(t) nel punto di Wolff t di f è definita come limite non-tangenziale e segue essere 0 Ef 8(t) G1. La tesi si divide in tre capitoli. Il primo riguarda il caso di una variabile. La sezione 1.1 è dedicata a risultati classici relativi alla equazione di Schroeder e alla mappa di Koenigs, che corrisponde alla situazione in cui il punto fisso della automappa olomorfa del disco unitario aperto D, è in D. La sezione 1.2 studia le famiglie di mappe olomorfe da D in sè, che commutano. In questa sezione, noi studiamo il problema di caratterizzare il centralizzante di una data mappa fhol (D, D), senza punti fissi in D (cioè con punto di Wolff t sul bordo di D), nel caso parabolico, cioè quando il limite non-tangenziale di f 8(z) nel punto di Wolff t è uguale ad 1. Il giusto strumento per affrontare questo problema aperto sembrò essere il «modello lineare fratto» nel senso di Cowen, [2], [3]. Infatti un modello lineare fratto è un modo abbastanza sofisticato di associare un automorfismo di C o di D ad una mappa fhol (D, D), coniugandola per mezzo di una mappa analitica s f da D in sè o in C. Diversi risultati in questi ambiti dipendono direttamente dal comportamento della successione ] f n ( nn delle iterate di f. TEOREMA 1. Nel caso parabolico, con l ipotesi di convergenza «non-tangenziale» della successione delle iterate di f al punto di Wolff, il centralizzante di f

4 400 BISI CINZIA coincide con il semigruppo di pseudo-iterazione di f, cioè con le mappe g che dopo il coniugio con la stessa s f di f, diventano un automorfismo che commuta con l automorfismo associato a f. Nella sezione abbiamo inoltre dato una generalizzazione di un teorema classico di Pranger (vedi la sottosezione 1.1.3) relativo alla corrispondenza 1 : 1 tra le famiglie di mappe olomorfe di D che commutano e che fissano l origine, ed i semigruppi (in C) delle loro derivate prime in 0. La nostra generalizzazione riguarda il caso di auto-mappe olomorfe di D che commutano, con punto di Wolff al bordo: nel caso di convergenza non-tangenziale della successione delle iterate di una data mappa parabolica f, un semigruppo di Aut (D) o Aut (C) corrisponde al centralizzante di f, che coincide con il semigruppo di pseudo-iterazione di f. In questo contesto, la caratterizzazione del centralizzante di f nel caso parabolico, con l ipotesi della convergenza «tangenziale» della successione delle iterate al punto di Wolff al bordo, è ancora aperta. In questa direzione abbiamo fatto alcuni passi avanti nella teoria, dando condizioni che garantiscono l equivalenza tra essere nel semigruppo di pseudo-iterazione di una data mappa f e commutare con essa. Abbiamo anche trovato un «parziale controesempio» a quella equivalenza per mostrare che le condizioni date sono necessarie: abbiamo trovato due mappe f, g tali che f i g4g i f, gp f ed, allo stesso tempo, fp g. Nella sezione 1.5 studiamo la connessione tra l insieme di mappe che commutano con una data f, il semigruppo di pseudo-iterazione di f e la ciclicità dell operatore di composizione associato ad f. Nel caso di regolarità di fhol (D, D) (i.e. fc 2 (t) almeno), un lavoro di Bourdon e Shapiro risponde ad una congettura che Cowen ha avanzato alla fine del suo lavoro [2]; più precisamente Cowen ha asserito che se f 8(t) 41 allora Arg f 9(t) può essere usato per distinguere il caso in cui f è coniugato ad un automorfismo di C ed il caso in cui f è coniugato ad automorfismo di D; più precisamente f 9(t) immaginaria pura implica che l automorfismo associato ad f stia in Aut (D). Bourdon e Shapiro hanno provato questo fatto usando un diverso «modello lineare fratto» per mappe con una certa regolarità nel punto di Wolff. Essi sono sempre in grado di coniugare una mappa «regolare» ad una mappa lineare fratta (non necessariamente un automorfismo) del semipiano destro. Sino ad ora la congettura è ancora aperta nel caso di f almeno C 2 (t) con Def9(t) D0. Nel caso parabolico, quando lo spazio modello di f è D, la caratterizzazione del centralizzante di f per mezzo del semigruppo di pseudo-iterazione di f è nota; invece non è chiaro ancora se questa caratterizzazione è vera quando lo spazio modello di f è C. Il secondo capitolo della tesi è nell ambito delle più variabili. Prima di tutto abbiamo costruito un «modello» lineare fratto astratto per fhol (B n, B n ). Il modello è astratto perché è piuttosto difficile capire per mezzo di quale concreto dominio V di C n si possa coniugare f ad un automorfismo. Sino ad ora, non è chiaro quali ipotesi bisogna mettere su f per ottenere da f, per coniugio, un automorfismo di un dominio complesso noto. La seconda parte del capitolo 2, sezione 2.2, è dedicata allo studio geometrico di mappe lineari fratte della palla unitaria, prima di tutto come una possibile classe di rappresentanti di mappe in un modello lineare fratto il cui dominio modello è uguale a B n, e naturalmente per il loro interesse come migliore «approssimazione» degli auto-

5 TEORIA DELLA ITERAZIONE, MAPPE OLOMORFE ECC. 401 morfismi di B n. Abbiamo dato una classificazione originale delle mappe lineari fratte (a meno di coniugio per automorfismi) in relazione ai loro punti fissi e usando la loro principale proprietà di «rigidità» sulle «slices» di B n. Infatti una mappa lineare fratta di B n, così come un automorfismo di B n, ha la proprietà di mandare ogni «slice» (cioè uno spazio affine 1-dimensionale intersecato con B n ) in un altra «slice». DEFINIZIONE Sia P 0»4span C ]x B n : f(x) 4x( e p 0»4dim C P 0. If p 0 D0 e f(x 0 ) 4x 0, x 0 B n, sia P 1»4span C ]x2x 0 : f(x) 4x, x B n ( e p 1»4dim C P 1. Infine, sia P R 1»4span R ]x2x 0 : f(x) 4x, x B n ( e p R 1»4dim R P R 1. TEOREMA 2. Sia f una mappa lineare fratta di B n. Uno ed uno solo dei seguenti casi è possibile: (1.) p 0 40 se e solo se f ha un solo punto fisso isolato in B n e non ha punti fissi su B n ; (2.) p 0 D0 se e solo se f ha al meno un punto fisso al bordo. In questo caso: (i) p 1 40 se e solo se f ha un solo punto fisso al bordo. In questo caso è l unico punto fisso di f in B n se e solo se il coefficiente di dilatazione al bordo di f in quel punto è minore o uguale ad 1. Altrimenti f ha pure un punto fisso isolato dentro B n. (ii) p 1 41 se e solo se una (ed una sola) delle due affermazioni seguenti vale: (a) p R 1 41, f ha solo due punti fissi su B n, e f è coniugata ad una mappa che ha un automorfismo iperbolico (diverso dalla identità) come prima coordinata, i.e. f è coniugata ad una mappa della forma: z Og az 11b bz 1 1a, A 1 z 8 bz 1 1a h, ove a4cosh t, b4sinh t con tr2]0( e A 1 è una matrice (n21)3 (n21) con VA 1 VG1. (b) p R 1 42, f è coniugata ad una mappa della forma: z O (z 1, A 1 z 8), ove A 1 è una matrice (n21)3(n21) con VA 1 VG1. (iii) p 1 D1 se e solo se f è coniugata ad una mappa della forma z O (z 1, R, z p1, A p1 z (p1) ), dove A p1 è una matrice (n2p 1 21)3 (n2p 1 21) con VA p1 VG1 e z (p1) 4 (z p1 11, R, z n ). Un equivalente del Lemma di Wolff in una variabile vale pure per mappe olomorfe della palla unitaria di C n. Infatti ogni mappa olomorfa da B n in sé, ha sempre un punto fisso t in B n. Strumenti potenti per studiare e classificare le mappe lineari fratte f aventi il loro punto di Wolff t B n sono sembrati essere l autospazio delle direzioni che «puntano verso la palla» (cioè l «autospazio interno») e l «autospazio generalizzato». Abbiamo studiato anche la ciclicità degli operatori di composizione associati a mappe lineari fratte, e dato nuovi risultati usando le forme normali qui ottenute. L ultima parte del secondo capitolo, la sezione 2.3, è sull equazione di Schroeder per mappe olomorfe da B n in sé che fissano l origine. Cowen e MacCluer danno una condizione necessaria e sufficiente per l esistenza di una soluzione s della

6 402 BISI CINZIA equazione di Schroeder (cioè la mappa di Schroeder): s i f4 (df ) 0 i s quando fhol(b n, B n ) è non singolare in 0 ed è tale che f(0)40. Presentiamo nella tesi una nuova dimostrazione dei loro risultati basata sull uso di strumenti presi in prestito dalla dinamica complessa, che evitano tecniche di analisi funzionale come quelli scelti da Cowen e MacCluer. Nella medesima sezione 2.3 usiamo pure risultati di Cowen e MacCluer sulle mappe olomorfe che commutano, al fine di presentare un teorema di punto fisso di tipo-cartan. L ultimo capitolo è su un problema al bordo di una variabile: lo studio del «fiore di Fatou» con vertice il punto di Wolff al bordo, per una mappa fhol(d, D). In questo terzo capitolo studiamo la dinamica complessa di fhol(d, D) vicino al suo punto di Wolff al bordo in tre casi: Caso 1. Sia f di tipo parabolico non-automorfismo (i.e. con derivata prima angolare uguale ad 1 nel punto di Wolff t e con una successione di iterate convergente non-tangenzialmente a t) una mappa che ammette una espansione in serie nontangenziale nel punto di Wolff, sino all ordine n-esimo, con nf2. In queste ipotesi, proviamo che esiste sempre una regione invariante all avanti per f con t nella sua chiusura, cioè una regione P tale che f(p) P e t P. Tale regione è un petalo nel senso di Milnor. Caso 2. Sia f di tipo parabolico automorfismo (cioè con derivata prima angolare uguale ad 1 nel punto di Wolff t e con una successione di iterate convergente tangenzialmente a t) e sia fc 31e (t) (che implica che le prime tre derivate in senso usuale di f si estendono in modo continuo a DN ]t(). In queste ipotesi, usando il modello lineare fratto di Bourdon-Shapiro, proviamo che esiste sempre una regione invariante all avanti P per f con t nella sua chiusura. Poiché f è regolare abbastanza in t, questa regione è un orociclo. Caso 3. Sia f di tipo parabolico-automorfismo, nel senso dato prima, ma senza alcuna regolarità nel punto di Wolff t. In questo caso, con alcune ipotesi tecniche addizionali, troviamo una curva totalmente invariante (cioè invariante all avanti e all indietro) per f, con t nella sua chiusura, che limita una regione totalmente invariante P per f, nel senso di Perez-Marco. B I B L I O G R A F I A [1] M. ABATE, Iteration Theory of Holomorphic Maps on Taut Manifolds, Rende. Mediterranean Press, Cosenza (1989). [2] C. C. COWEN, Iteration and the Solution of Functions Analytic in the Unit Disk, Trans. Amer. Math. Soc., 265 (1981), [3] C. C. COWEN, Commuting Analytic Functions, Trans. Am. Math. Soc., 283 (1984), [4] C. C. COWEN and B. MACCLUER,Schroeder s Equation in Several Variables, Preprint (1999). [5] R. PEREZ-MARCO, Fixed Points and Circle Maps, Acta Math., 179 (1997), Dipartimento di Matematica «Ulisse Dini», Università di Firenze bisihmath.unifi.it Dottorato in Matematica (sede amministrativa: Firenze) Ciclo XII Direttore di ricerca: Prof. Graziano Gentili, Università di Firenze

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Maria Alessandra Vaccaro L azione del gruppo simplettico associata ad un estensione quadratica di campi Bollettino

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Carmelo Longo Su un tipo particolare di complessi lineari di piani in S 3r 1. Bollettino dell Unione Matematica Italiana, Serie 3, Vol. 9 (1954), n.2, p. 150 153.

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

CAPITOLO 9. Le serie di potenze

CAPITOLO 9. Le serie di potenze CAPITOLO 9 Le serie di potenze Ahlfors, pag. 33,..,45 Bozza da rivedere Le funzioni analitiche sono piú o meno polinomi in z, o i loro limiti, somme di serie di potenze in z. Prerequisiti fondamentali

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Roberta Gori Ragionando sul fallimento finito e le computazioni infinite usando l interpretazione astratta Bollettino

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Benedetto Scimemi ARITMETICA SUPERIORE di Harold Davenport Bollettino dell Unione Matematica Italiana, Serie

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Francesco Tschinke *-Algebre parziali di distribuzioni Bollettino dell Unione Matematica Italiana, Serie 8, Vol.

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Luigi Muracchini Osservazioni sulle trasformazioni puntuali analitiche fra spazi euclidei. Bollettino dell Unione Matematica Italiana, Serie 3, Vol. 8 (1953), n.1,

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora)

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora) DIARIO DEL CORSO DI TEORIA DEI GRUPPI SANDRO MATTAREI A.A. 2012/13 Prima settimana. Lezione di mercoledí 20 febbraio 2013 (un ora) Monoidi. Gli elementi invertibili di un monoide formano un gruppo. Esempi:

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Francesca Scozzari Teoria dei domini nell interpretazione astratta: equazioni, completezza e logica Bollettino

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

Esercizi e complementi di Analisi Complessa - 2

Esercizi e complementi di Analisi Complessa - 2 Esercizi e complementi di Analisi Complessa - 2 Samuele Mongodi - s.mongodi@sns.it 16 maggio 2011 1 Varietà complesse Consideriamo uno spazio topologico X, che sia una varietà reale di dimensione 2, paracompatto

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

A.A. 2015/2016 Corso di Analisi Matematica 2

A.A. 2015/2016 Corso di Analisi Matematica 2 A.A. 2015/2016 Corso di Analisi Matematica 2 Stampato integrale delle lezioni (Appendice di Teoria della Misura) Massimo Gobbino Indice Lezione 131. Introduzione alla teoria della misura: motivazioni.

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Martedì 4 Ottobre Settembre 2011 16-19 3 ore Numeri naturali. Definizione di minimo di un sottoinsieme di

Dettagli

Mappe Olomorfe Che Commutano

Mappe Olomorfe Che Commutano 1 Università degli Studi di Bologna Seminari di Geometria 1998-1999 Vol. 12, 1-35, Bologna 2000. Mappe Olomorfe Che Commutano FILIPPO BRACCI Dipartimento di Matematica Pura ed Applicata, Università degli

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili

R. Capone Analisi Matematica Calcolo Differenziale Funzioni di due variabili Richiami teorici Sia una funzione di due variabili definita in un insieme A e sia un punto interno ad A. Se R è un dominio regolare di centro e di dimensioni e la funzione della sola variabile x, risulta

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Un paio di esempi su serie e successioni di funzioni

Un paio di esempi su serie e successioni di funzioni Un paio di esempi su serie e successioni di funzioni 29 novembre 2010 1 Successione di funzioni Ricordiamo innanzitutto un po di definizioni. Definizione 1. Una successione di funzioni è una corrispondenza

Dettagli

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12.

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12. Appendice A Temi d esame Topologia 1. Anno accademico 2011/12. 1.1. prima prova parziale. (a) Dare la definizione di omotopia e di nullomotopia per funzioni continue. (b) Dimostrare che due funzioni continue

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Correzione secondo compitino, testo B

Correzione secondo compitino, testo B Correzione secondo compitino, testo B 7 aprile 2010 1 Parte 1 Esercizio 1.1. Tra le funzioni del vostro bestiario, le funzioni che più hanno un comportamento simile a quello cercato sono le funzioni esponenziali

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Che cos'è la congettura di Poincaré (adesso teorema di Perelman)?

Che cos'è la congettura di Poincaré (adesso teorema di Perelman)? Che cos'è la congettura di Poincaré (adesso teorema di Perelman)? Conferenza di Facoltà, Luca Migliorini (Dipartimento di Matematica Università di Bologna) Tra il 2002 e il 2003 appaiono negli archivi

Dettagli

Esame di ammissione al Dottorato di Ricerca in Matematica

Esame di ammissione al Dottorato di Ricerca in Matematica Esame di ammissione al Dottorato di Ricerca in Matematica Università di Lecce, 28 ottobre 2010, prova A Norme di svolgimento Il candidato svolga una, ed una sola, tra le dissertazioni proposte, illustrando

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

Algebra Commutativa a Genova

Algebra Commutativa a Genova Algebra Commutativa a Genova Matteo Varbaro Workshop di presentazione Dottorato Parte del gruppo di Algebra Commutativa Postdoc: Figure : Aldo Conca - Hop D. Nguyen - Shreedevi K. Masuti Ph.D.: Figure

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Guglielmo Guastalla Applicazioni di ricerca operativa nell ambito del traffico aereo Bollettino dell Unione Matematica

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Elena Sartori Simmetria radiale in alcuni problemi di frontiera libera per operatori ellittici e parabolici degeneri

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11)

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) 1. Disegnare sul piano di Argand-Gauss e porre in forma trigonometrica-esponenziale (i.e. determinarne modulo

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010

Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,

Dettagli

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013 Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo Universitá del Salento, 9 Aprile 2013 1 1 TEMA I Il candidato svolga una ed una sola delle dissertazioni proposte, illustrando sinteticamente

Dettagli

Intelligenza Artificiale. Soft Computing: Reti Neurali Generalità

Intelligenza Artificiale. Soft Computing: Reti Neurali Generalità Intelligenza Artificiale Soft Computing: Reti Neurali Generalità Neurone Artificiale Costituito da due stadi in cascata: sommatore lineare (produce il cosiddetto net input) net = S j w j i j w j è il peso

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti A. A. 2014-2015 L.Doretti 1 IDEA INTUITIVA DI LIMITE I Caso: comportamento di una

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI 3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI ESISTENZA DI UN PUNTO DI OTTIMO VINCOLATO Il problema di ottimizzazione vincolata introdotto nel paragrafo precedente può essere formulato nel modo seguente:

Dettagli

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche

Bilanciamento di tempi e costi Progetti a risorse limitate Note bibliografiche Indice Prefazione 1 1 Modelli di ottimizzazione 3 1.1 Modelli matematici per le decisioni.................... 4 1.1.1 Fasi di sviluppo di un modello................... 7 1.2 Esempi di problemi di ottimizzazione...................

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli