Aritmetica modulare. Alessio Bernazzi 08/02/2017

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Aritmetica modulare. Alessio Bernazzi 08/02/2017"

Transcript

1 Aritmetica modulare Alessio Bernazzi 08/02/2017 Tutti sapete cos è la divisione euclidea, o divisione col resto (o almeno spero). In aritmetica modulare, quando si fanno operazioni con un numero, si prende in considerazione il resto della sua divisione per un altro numero. Nota importante: la divisione euclidea è definita sugli interi. Quando parliamo di qualche a, b o n parliamo di numeri interi. Non buttate dentro i moduli quando ci sono variabili non intere!. Si dice che a è congruo a b modulo n (a b(mod n)) se il resto della divisione di a e b per n è lo stesso, e si legge a congruo a b modulo n. Per esempio, 3 7(mod 4) perché 3 e 7 danno entrambi resto 3 se divisi per 4. Si può anche fare la stessa cosa con un numero negativo; 3 1(mod 4). Per brevità, invece di scrivere (mod n) scriveremo soltanto (n). Notiamo che, in quanto n modulo n è uguale a 0, posso sottrarre o aggiungere quante volte voglio n a entrambi i membri senza cambiare il risultato dell espressione: x 58(mod7) x (mod7) x 2(mod7) Quindi in modulo n due numeri sono uguali se la loro differenza è un multiplo di n: a b k n(n) a b 0(n) a b(n) Elenchiamo alcune proprietà dei moduli: Posso sommare n quanto voglio ed è come aggiungere 0; a b(n) a+kn b+jn(n) Posso sommare/sottrarre o moltiplicare per cose uguali entrambi i membri (attenzione! NON posso dividere tranquillamente! E quando si moltiplica si intende per qualcosa di diverso da 0, come nelle equazioni normali) a b(n) c d(n) a+c b+d(b);a c b d(n) La divisione posso farla liberamente se il numero per cui divido è coprimo con il modulo, ma per ora ci interessa poco questo aspetto. a b(n) a x b x (n) 1

2 Dalla prima proprietà vediamo che i numeri, in modulo n, non sono proprio così infiniti ; per dirlo meglio, posso crearmi un insieme di rappresentanti tali che ogni numero è uguale ad uno di questi. Guardiamo la seguente tabella per modulo 5: Ogni colonna è fatta da numeri che differiscono di un multiplo di 5; dunque sono tutti uguali modulo 5. Quindi, presa una riga a caso, ogni altro numero intero sarà uguale ad un elemento della riga. Di solito si prendono come rappresentanti i numeri da 0 ad n-1 (la seconda riga nella tabella) e si lavora come se esistessero solo questi (per questo ho detto che non sono così infiniti). Ok, più o meno abbiamo visto cosa sono i moduli. Ma a cosa servono? Perché guardare il resto della divisone di un numero per n (e poi, quale n?) invece che il numero stesso? Nelle gare i moduli possono servire principalmente a 2 cose: eliminare possibili soluzioni di equazioni (o simili) oppure trovare le cifre finali di un numero. Per esempio, se chiedo di trovare le ultime 2 cifre di 77 66, basta esaminare il numero modulo 100: il resto della divisione sono proprio le ultime due cifre. Se invece voglio vedere quando è che un equazione NON ha soluzione posso cercare un modulo che me lo mostri, come quando il testo mette davanti cose astruse, apparentemente irrisolvibili tramite metodi normali. Le soluzioni di 4x 2 +6xy = 42y sono praticamente ingestibili a prima vista, sia che si lavori su x e y reali che sugli interi. Ma se sappiamo che i numeri sono interi possiamo guardare l equazione modulo 2 e diventa 0x+0xy 0+13(2) 0 1(2) In modulo due l equazione non ha soluzione e dunque non ce l ha nemmeno negli interi. L ultima frase va capita bene e non bisogna abusarne: se non ci sono soluzioni modulo n, allora non ci sono soluzioni negli interi; non è necessariamente vero il viceversa. Come mai? Guardare modulo 2 significa guardare la parità; se x è pari è congruo a 0, se è dispari è congruo a 1. Il motivo per cui l equazione di prima non ha soluzione è che ho a sinistra due numeri pari e a destra un pari e un dispari; questo ragionamento è formalizzato con il modulo e si generalizza con la divisibilità per un n qualsiasi. Se l equazione non ha soluzione modulo 15, significa che c è un problema con la divisibilità per 15 dei numeri, così come ora c è con la parità. Perché non è vero il viceversa? 4x 2 +3 = 3y +2y 2 In modulo 2: 1 y(2) 2

3 Abbiamo ottenuto che c è soluzione modulo 2 se y è dispari. Allora vuol dire che qualsiasi dispari mi dà soluzione? Se y=5, 4x 2 = 50, che non ha soluzione sugli interi. Quel che mi dice il modulo è che, se c è soluzione, allora y è dispari. Se y non fosse dispari, la parità non tornerebbe; ma non qualsiasi y dispari mi dà soluzione. Esercizi: Il problema accennato prima: trovare la cifra delle unità di Qual è la cifra delle unità di 17 17? (A) 1, (B) 3, (C) 5, (D) 7, (E) 9. (Archimede 2006) Due numeri interi a,b sono tali che a+b+ab è divisibile per 10. Cosa si può dedurre sui numeri a e b? A)Che sono entrambi pari B)Che sono entrambi dispari C)Che sono uno pari e l altro dispari D)Che uno di essi è divisibile per 5 E)Che sono entrambi divisibili per 10 (Archimede 1995) 2 - Qual è la 2015 a cifra dopo la virgola della scrittura decimale di 4 7? (A) 7 (B) 1 (C) 5 (D) 2 (E) 4 (Archimede 2015) 7 - Qual è la cifra delle unità di 7 89? (A) 5 (B) 3 (C) 9 (D) 7 (E) 1 (Archimede 2015) 9 - Luca scrive sulla lavagna tutti i numeri pari consecutivi da 2 a 2010 (compresi), poi Giovanna cancella tutti quelli che sono multipli di 3. Quanti numeri rimangono? (A) 670 (B) 710 (C) 840 (D) 905 (E) 1005 (Archimede 2010) Qual è la cifra delle unità del numero ? (Provinciale 1999) Quali sono le ultime DUE cifre di 66 66? Per il problema della cifra finale, intanto notiamo che dipende soltanto dalla cifra delle unità; non importa se il numero che sto considerando è 77 o o (70+7) (10) Allora se vogliamo la cifra delle unità di possiamo studiare quella di 7 66 In questa tabella ho 3

4 messo la cifra delle unità delle potenze dei numeri da 0 a 9. x x 2 x 3 x 4 x 5 x 6 x 7 x La cifra delle unità nelle potenze è periodica, e questo periodo è al massimo 4 (per chi ne sa già qualcosa, 4 è φ(10), dunque l ordine moltiplicativo di un numero modulo 10 divide 4). Il periodo di 7 è 4; dunque (10) e anche 7 4k 7 0. Allora (10) La cosa che è importante notare qua è che le potenze di un numero x in modulo n possono essere un numero finito di valori diversi. Questo deriva dalla finitezza dei rappresentanti modulo n: se x 1 x, x 2 y, x 3 z, prima o poi arriverò ad un valore che ho già incontrato. Guardiamo 5 modulo 7: 5 1 5(7); 5 2 = 25 4(7); 5 3 = (7) 5 4 = (7) 5 5 = (7) 5 6 = (7) 5 7 = (7) Come stavamo dicendo, anche le potenze di 5 hanno un periodo in modulo 7, e questo è 6 perché , , e così via. L unico numero che non viene preso di sicuro è 0, perché se 5 k 0(7), anche 5 k+1 0(7) e tutti i successivi, distruggendo il ciclo. Definiamo quindi ordine moltiplicativo di x modulo n il più piccolo d tale che x d 1(n); ord n (x) = d. L ordine moltiplicativo di un numero è al massimo n: se prendiamo x in modulo n e lo eleviamo alla prima, poi alla seconda, poi alla terza e così via, quando arriviamo a fare x n sicuramente troveremo un valore che abbiamo già incontrato (perché ci sono n numeri nei rappresentanti e lo 0 non lo tocchiamo mai, quindi n-1 elementi possibili). Introduciamo quindi il Piccolo teorema di Fermat: a n a(p) con p primo. Nota: noi abbiamo solo dimostrato che l ordine di un numero modulo p è minore o uguale di p-1; il 4

5 teorema invece ci dice che lo divide. Possiamo dimostrarlo o per induzione oppure dando per buono che esiste un elemento di ordine p-1 (che è vero) e scrivendo tutti gli altri elementi come potenze di quel numero. Siamo tentati di dire che allora anche a n 1 1(n) (che sarebbe la forma in cui il teorema è enunciato di solito); ma abbiamo già detto che non possiamo dividere per a impunemente. Infatti 0 7 0(7) è vera ma 0 6 1(7) è falsa; la seconda forma funziona se e solo se a e p sono coprimi, cioè a è diverso da 0 modulo p. Come mai abbiamo bisogno di p primo? Se prendiamo 3 in modulo 15, (15). Il piccolo teorema di Fermat non funziona, ma perché? In modulo 15, le potenze seguono cicli diversi. Per esempio, se prendiamo un x che non divide 5 (come 3) allora 3 k diviso 15 non può dare come resto 5. Dove abbiamo sbagliato? Perché il ragionamento di prima funziona finché prendiamo un modulo primo? Se n non è primo (come 15) è ovvio che 3 k non potrà mai essere congruo a 5 (basta guardare 3 k = 15q +r, se r fosse divisibile per 5 potrei raccogliere 5 a destra e deriverebbe che 5 divide 3); le potenze di x non necessariamente incontrano tutti i numeri tranne 0 (dunque non esiste un generatore e non si può fare un ragionamento come quello che accennavo poco fa). Cerchiamo di capire cosa possiamo dire allora sull ordine di un numero in modulo n non primo; dobbiamo prima introdurre la funzione di Eulero. Funzione φ e teorema di Eulero Sia n un numero intero e sia p α 1 1 pα pαr r la sua scomposizione in fattori primi. Allora il numero di elementi minori di n coprimi con n è uguale a φ(n) = (p α 1 1 pα )(p α 2 2 pα )...(p αr r p αr 1 r ) Un esempio facile per capire come si usa la phi di Eulero: se voglio i numeri minori di 315 e coprimi con esso, per prima cosa lo scompongo: 315 = Il numero che cerco è φ(315), cioè ( )( )( ). Quindi per calcolare la phi di un numero lo scompongo in primi e tolgo ad ogni fattore sè stesso con l esponente diminuito di 1. Nota: la phi di un primo p è p 1. La dimostrazione (per chi è interessato) si fa calcolando prima la phi di p k e mostrando che phi è moltiplicativa, cioè φ(ab) = φ(a)φ(b) Da qua si può dimostrare il teorema di Eulero: Se a ed m sono coprimi, allora a φ(m) 1(m) Se m è primo, φ(m) è proprio m 1 e otteniamo il Piccolo teorema di Fermat. Ometto la dimostrazione del teorema perché richiede l utilizzo di diversi concetti di aritmetica non affrontati qua. Extra: Residui quadratici e teorema di Wilson Alcuni numeri che negli interi non sono quadrati lo sono in modulo n. Ad esempio, 3 in modulo 11 è 5 2 = Come stabilire se un numero è un quadrato o no? Quanti sono i quadrati in modulo n? 5

6 Per un modulo p primo, la risposta è che i quadrati sono p+1 2 e un numero n è un quadrato se e solo se n p 1 2 = 1(p). Sapere quando un numero è un quadrato serve soprattutto a risolvere equazioni in cui compaiono termini elevati al secondo grado; basta provare i numeri che sappiamo essere quadrati come soluzione e vedere se torna o meno. Teorema di Wilson: (p 1)! 1(p) p primo; Provate ad usarlo per risolvere questo problema: Quanto vale il resto della divisone per 53 di p(0) + p(1) + + p(2014) sapendo che p(t) = (50t + 1)(49t+2)...(2t+49)(t+50)? Un problema abbastanza difficile: Su una lavagna sono stati scritti i numeri da 1 a 30. Luca vuole riuscire ad ottenere lo 0 sulla lavagna procedendo nel seguente modo: prende due numeri a e b e sceglie una delle seguenti operazioni da effettuare: 1) a+b 2) a-6b 3) 8a-13b Successivamente cancella i due numeri dalla lavagna e aggiunge il numero ottenuto dall operazione effettuata; esiste un metodo per far vincere Luca? in che modo può riuscirci? Suggerimento: se il risultato deve essere 0, allora deve anche essere 0 modulo n, ma la somma dei numeri di partenza è , che non è 0 in tanti moduli. Cercate alloradi capire cosafanno le operazioni 1), 2) e 3) in mod n, dopo aver scelto un n giusto, e vedere se è possibile o no arrivare a 0. Risolvere l equazione: x 2 +5x+2 0(7) Risolvere l equazione: Risolvere l equazione: x 21 +2x 4 +2x 2 2x 1 0(125) x21+3x 0(27) 6

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Aritmetica modulare. Veronica Gavagna

Aritmetica modulare. Veronica Gavagna Aritmetica modulare Veronica Gavagna Aritmetica modulare o Aritmetica dell orologio Da http://proooof.blogspot.it/2010/04/alice-bob-e-eva-lorologio.html Alice, Bob e Eva L'orologio Che ore saranno tra

Dettagli

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se ( a, b Z) (p ab = (p a p b). Teorema 1. Sia p Z, p ±1. Allora p è primo se e solo se ( a, b Z)

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) 0. Come usare questi appunti In questi appunti troverete alcune

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data Classe 1-3 - ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data 1. Quale valore deve avere il perché la seguente uguaglianza sia vera? 24,5 : 100 = 2,45 : [ ] B. 1 [ ] C. 0,1 [

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi Teoria dei Numeri Lezione del 31/01/2011 Stage di Massa Progetto Olimpiadi Criteri di Divisibilità 2: ultima cifra pari 3: somma (o somma della somma) delle cifre divisibile per 3 4: ultime due cifre divisibili

Dettagli

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23)

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23) Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE

PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Liceo Scientifico Gullace PREPARAZIONE ALLE GARE DI MATEMATICA - CORSO BASE Aritmetica 014-15 1 Lezione 1 DIVISIBILITÀ, PRIMI E FATTORIZZAZIONE Definizioni DIVISIBILITÀ': dati due interi a e b, diciamo

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

Esercizi di Algebra. Anna Bigatti. 13 Novembre Ora vogliamo definire una operazione +, cioè dobbiamo definire quando fa a + b.

Esercizi di Algebra. Anna Bigatti. 13 Novembre Ora vogliamo definire una operazione +, cioè dobbiamo definire quando fa a + b. Esercizi di Algebra Anna Bigatti 13 Novembre 2000 1 Operazioni in Z n Definizione 11 Siano a, b Z Diciamo che a = b in Z n oppure, equivalentemente, se n divide a b se e solo se esiste k Z tale che a =

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. IL TEOREMA FONDAMENTALE DELL ARITMETICA: DIMOSTRAZIONE VELOCE. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 1 2. Il Teorema Fondamentale dell Aritmetica. 2 3. L insieme dei numeri primi è

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di

Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

Temi di Aritmetica Modulare

Temi di Aritmetica Modulare Temi di Aritmetica Modulare Incontri Olimpici 013 SALVATORE DAMANTINO I.S.I.S. MALIGNANI 000 - CERVIGNANO DEL FRIULI (UD) 15 Ottobre 013 1 Relazione di congruenza modulo un intero Definizione 1.1. Sia

Dettagli

Numero decimale con la virgola -- numero binario

Numero decimale con la virgola -- numero binario Numero decimale con la virgola -- numero binario Parlando del SISTEMA DI NUMERAZIONE BINARIO abbiamo visto come è possibile trasformare un NUMERO decimale INTERO in un numero binario. La conversione avviene

Dettagli

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail:

TEORIA DEI NUMERI. Progetto Giochi matematici. Mail: TEORIA DEI NUMERI Progetto Giochi matematici Referente: prof. Antonio Fanelli Mail: fanelli.xy@gmail.com TEORIA DEI NUMERI Parte della Matematica che studia i numeri naturali ed interi e le relative proprietà.

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

Criteri di divisibilità

Criteri di divisibilità Criteri di divisibilità Criterio di divisibilità per 9. Supponiamo, ad esempio, di voler dividere 2365 palline a 9 persone. Sappiamo che per stabilire se un numero è divisibile per 9 occorre sommare tutte

Dettagli

Fattorizzazione di interi e crittografia

Fattorizzazione di interi e crittografia Fattorizzazione di interi e crittografia Anna Barbieri Università degli Studi di Udine Corso di Laurea in Matematica (Fattorizzazione e crittografia) 14 Maggio 2012 1 / 46 Il teorema fondamentale dell

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7. 1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

1 Proprietà elementari delle congruenze

1 Proprietà elementari delle congruenze 1 Proprietà elementari delle congruenze Un altro metodo di approccio alla teoria della divisibilità in Z consiste nello studiare le proprietà aritmetiche del resto della divisione euclidea, o, come si

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z 1 Premessa. In questa sezione verranno richiamati alcuni concetti fondamentali dell algebra, quella parte della matematica che si occupa dello studio del cosiddetto calcolo letterale, utili ai fini della

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

IV-2 Forme quadratiche

IV-2 Forme quadratiche 1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che:

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che: Definizione 1. Dato un insieme A, un operazione su A è una applicazione da A A a valori in A. Definizione 2. Se A è un insieme con una operazione, dati a, b A diciamo che a divide b (e scriviamo a b) se

Dettagli

35 è congruo a 11 modulo 12

35 è congruo a 11 modulo 12 ARITMETICA MODULARE Scegliamo un numero m che chiameremo MODULO Identifichiamo ogni altro numero con il suo resto nella divisione per m Tutti i numeri col medesimo resto si trovano insieme nella classe

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

2 non è un numero razionale

2 non è un numero razionale 2 non è un numero razionale 1. Richiami: numeri pari e dispari. Un numero naturale m è pari (rispettivamente dispari) se e solo se esiste un numero naturale r tale che m = 2r (rispettivamente m = 2r +

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

CONVERSIONE DA DECIMALE A BINARIO

CONVERSIONE DA DECIMALE A BINARIO CONVERSIONE DA DECIMALE A BINARIO Il procedimento per convertire in forma binaria un certo numero decimale n consiste nello scrivere, andando da destra verso sinistra, le cifre oppure seguendo delle determinate

Dettagli

Università del Piemonte Orientale

Università del Piemonte Orientale Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)

Dettagli

M.C.D.(3522, 321) = 3 = ( 36) (395) 321

M.C.D.(3522, 321) = 3 = ( 36) (395) 321 Capitolo 1 Congruenze Lineari 1.1 Prerequisiti Identita di Bezout: M.C.D.(a, b) = αa + βb con α e β opportuni interi. In altre parole il M.C.D.(a, b) é combinazione lineare di a e b. Quando la combinazione

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi. MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

B5. Equazioni di primo grado

B5. Equazioni di primo grado B5. Equazioni di primo grado Risolvere una equazione significa trovare il valore da mettere al posto dell incognita (di solito si utilizza la lettera x) in modo che l uguaglianza risulti verificata. Ciò

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Scomposizione di un numero primo come somma di due quadrati

Scomposizione di un numero primo come somma di due quadrati Scomposizione di un numero primo come somma di due quadrati M. Alessandra De Angelis Relatore : Prof. Andrea Loi Università degli studi di Cagliari Corso di laurea triennale in Matematica 31 Marzo 2015

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente

Dettagli

Soluzioni delle Esercitazioni I 19-23/09/2016

Soluzioni delle Esercitazioni I 19-23/09/2016 Esercitazioni di Matematica Esercitazioni I 9-3/09/06 Soluzioni delle Esercitazioni I 9-3/09/06 A. Polinomi Si ha:. (x+y)(3xy xy) = 6x y x y +3xy 3 xy.. (x y) = 4x 4xy +y. 3. Se non ci si ricorda lo sviluppo

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

Stage di preparazione olimpica - Lucca

Stage di preparazione olimpica - Lucca Stage di preparazione olimpica - Lucca Esercizi di Aritmetica - docente Luca Ghidelli - luca.ghidelli@sns.it 18 gennaio 2013 1 Diofantea risolubile Trovare tutti gli interi (relativi) x e y tali che xy

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n.

+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n. "Come si fa" a svolgere vari tipi di esercizi 1 numeri e congruenze (algoritmi avvertenze casi speciali esempi) Attenzione gli argomenti non sono in ordine Alcuni degli esercizi presentati erano parte

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Quesiti. 1. Un numero primo Qual è il più grande numero primo minore di 30 che può essere espresso come somma di due numeri primi?

Quesiti. 1. Un numero primo Qual è il più grande numero primo minore di 30 che può essere espresso come somma di due numeri primi? Quesiti 1. Un numero primo Qual è il più grande numero primo minore di 30 che può essere espresso come somma di due numeri primi? 2. La calcolatrice Elena ha una calcolatrice con 15 tasti: 10 sono bianchi

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa:

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa: Frazioni algebriche Le frazioni algebriche sono frazioni con polinomi al numeratore e al denominatore, quindi sono le frazioni più generiche possibili: studiare e capire le regole delle loro operazioni

Dettagli

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge

Dettagli

Dal messaggio a sequenze di numeri

Dal messaggio a sequenze di numeri Dal messaggio a sequenze di numeri Le classi resto modulo n := Z n Due numeri interi a, b, si dicono congrui modulo n (con n intero >1) se divisi per n hanno lo stesso resto: a=bmodn a= kn+b a-b = kn con

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Il nano sulle spalle del gigante

Il nano sulle spalle del gigante Il nano sulle spalle del gigante il sottile legame che separa matematica e informatica Miriam Di Ianni Università di Roma Tor Vergata Cosa è un problema? Dal dizionario: In matematica e in altre scienze,

Dettagli

La divisione di numeri naturali: esercizi svolti

La divisione di numeri naturali: esercizi svolti La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione

Dettagli