Le Frazioni. Prof. Carlo Sbordone - Università degli Studi di Napoli Federico II LOGICAMENTE Le Frazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le Frazioni. Prof. Carlo Sbordone - Università degli Studi di Napoli Federico II LOGICAMENTE Le Frazioni"

Transcript

1 LOGICAMENTE 2014

2 Frazioni di oggetti Frazioni di insiemi di oggetti Frazioni di quantità

3 Molte informazioni che riceviamo quotidianamente contengono frazioni e percentuali: Vengo tra 3 4 d ora Vendo tutto con il 30 / di sconto frazioni e percentuali sono definite in relazione ad un tutto o una quantità unitaria dividendo il tutto in parti uguali.

4 Significato di FRAZIONE Esempi: 1 4 d ora 2 di un segmento 3 5 di euro di un segmento 3 20 di sconto 100

5 Questi esempi mostrano frazioni di oggetti, e quindi parti di insiemi. In seguito tratteremo le frazioni come numeri La frazione m n di un tutto, con m,n N = {1,2,...} 1 Caso m = 1 Se il tutto può essere diviso in n parti uguali allora 1 n coincide con una di quelle parti. del tutto

6 La frazione è costituita da m n del tutto m (di quelle parti) cioè da m parti ognuna delle quali è 1 n del tutto Il numeratore m della frazione m del tutto ci dice il numero delle n parti, mentre il denominatore n della frazione ci dice che tipo di parti sono state costituite (mezzi, terzi, quarti, quinti,...)

7 Frazioni: come numeri (singoli, anche se espressi in termini di una coppia di numeri naturali) Frazioni: come punti della retta dei numeri

8 Così come si giunge al concetto di numero naturale astraendo da esperienze con oggetti: 5 persone, 3 automobili,... o meglio 5 di persone, 3 di automobili,... 5,3,...

9 si può giungere al concetto di frazione come numeri astraendo da esperienze con frazioni di oggetti: 1 4 d ora, , 2 3,... di un segmento,...

10 Specie nel caso di frazioni improprie in cui può essere poco chiaro qual è il tutto è utile la rappresentazione sulla retta dei numeri in cui il tutto è sempre la lunghezza del segmento unitario [0, 1]

11 La parte tratteggiata rappresenta 4 3 o 4 6? Poco chiaro se non si precisa qual è il tutto La parte tratteggiata è 4 del rettangolo di sinistra, 3 ma è anche 4 del complesso dei due rettangoli, cioè 6 dell unione dei due rettangoli

12 Per individuare 4 sulla retta dei numeri 3 Dividiamo il segmento in 3 parti uguali e prendiamo in considerazione il segmento di primo estremo 0, unione di queste 4 parti. L altro estremo è 4 3

13 La retta dei numeri

14 Su una retta, disegnamo un punto, indicandolo con 0 (zero) Disegniamo a destra di 0 un segmento che chiamiamo segmento unitario

15 L estremo destro del segmento si indica con 1 (uno) Spostiamo il segmento verso destra finchè 1 diventi il suo estremo sinistro e indichiamo con 2 (due) l estremo destro e così via, 1,2,3,4,...

16 Definizione Un numero naturale è uno dei punti indicati sulla retta dopo lo zero. La retta con l insieme dei numeri naturali si chiama retta dei numeri. Un numero naturale è così definito in maniera concreta ed esplicita: è uno dei punti disegnati sulla retta dei numeri. Osservazione Questa definizione non è l ideale ma è accessibile a chiunque e facilita lo studio dei numeri frazionari.

17 Le frazioni come punti della retta dei numeri

18 Definiamo le frazioni 0 3, 1 3, 2 3, 3 3,4 3,... cioè la sequenza dei terzi Premesse (terminologia): 1) Se a e b sono due punti sulla retta dei numeri, con a alla sinistra di b [a,b] indica il segmento di estremi a e b.

19 2) [0,1] è il segmento unitario e la sua lunghezza è il tutto, Il punto 1 è l unità 1 è un terzo del tutto; 3 La lunghezza del segmento in grassetto è l estremo destro del segmento in grassetto.

20 Dividiamo in tre parti di uguale lunghezza tutti i segmenti [0,1],[1,2],[2,3],... e così otteniamo la sequenza dei terzi Ogni punto della sequenza misura la sua distanza da zero 7 3 è la lunghezza di [0, 7 3 ] 7 3 è 7 volte la lunghezza di [0, 1 3 ] 7 è la settima frazione, nella sequenza dei terzi, a destra di zero. 3 I numeri m 3 sono i multipli di 1 3 al variare di m N

21 IN GENERALE, dati i numeri naturali m ed n, dividiamo i segmenti [0,1],[1,2],[2,3],... in n parti uguali e otteniamo la sequenza degli n-simi 1 n, 2 n, 3 n,... Per definizione, la frazione m n rappresenta l m-sima frazione, nella sequenza degli n-simi, a destra di zero. Fissato n N, al variare di m N, si ottengono tutti i multipli interi m n di 1 n. Esattamente come per n = 1 al variare di m N, si ottengono tutti gli interi m

22 Osservazione Uno dei vantaggi di avere una definizione precisa di frazione è che si può facilmente introdurre una definizione di ordine (stretto). Definizione La frazione m m è minore di, se e solo se, m n n n retta dei numeri m è a sinistra di sulla n Si noti che tradizionalmente si dice che, per decidere se m n < m n, si deve calcolare un comune denominatore. Esempio Per provare che uso 2 3 < < 9 12

23 Particolari frazioni: , ,... con denominatori potenze di 10, (frazioni decimali) anche scritte come 36.19, rispettivamente, facendo uso del punto decimale che tiene conto della potenza di 10 che figura a denominatore. Nel numero si possono eliminare gli zeri finali pervenendo a scrivere Ma ciò equivale a verificare che = = e ciò richiede una dimostrazione.

24 Teorema (sulla semplificazione di frazioni) Per m,n,l N m n = lm ln Dim.(caso particolare numeri) 3 2 = dividiamo in 4 parti ciascun segmento tra punti consecutivi della sequenza dei mezzi.

25 Da cui, ognuno dei segmenti [0,1],[1,2],[2,3],... e così ripartito in 8 parti uguali ottenendo la sequenza degli ottavi. La frazione 3 che è il terzo punto 2 nella sequenza dei mezzi è ora il dodicesimo punto nella sequenza degli ottavi = 12 8 =

26 Mediante il Teorema sulla semplificazione di frazioni si può giustificare l uguaglianza: Ricordando che per definizione = 1.22 si ha = = = = 1.22 Pertanto si possono aggiungere o togliere zeri all estrema destra del punto decimale, lasciando inalterato il numero decimale.

27 Osservazione 1 Questa definizione di frazione, confrontata con quella tradizionale che si basa su un pezzo di pizza o una fetta di torta è più facile da applicare: abbiamo scelto di ripartire un segmento in 3 parti di uguale lunghezza piuttosto che un cerchio in 3 parti congruenti. Osservazione 2 Abbiamo preso atto del fatto che l uguaglianza (l 0) ml ( ) = m nl n equivale a dire che le due frazioni a 1 e 2 membro corrispondono allo stesso punto della retta dei numeri. Quindi, mentre di solito si caratterizza (*) dicendo che ml e m nl n sono frazioni equivalenti, per noi esse sono uguali.

28 Applicazioni (del Teorema sulla semplificazione di frazioni) 1) gli zeri finali dopo il punto decimale si possono sopprimere già visto! 2) due frazioni a c b d possono essere ridotte allo stesso denominatore bd Ciò vuol dire, posto a b = ad bd, n = b d c d = bc bd che le due frazioni a b = ad n, c d = bc n fanno parte della sequenza degli n-simi, rispettivamente nella posizione ad-sima e bc-sima. Si può dire che, se è ad < bc, allora ad n è a sinistra di bc n cioè a b < c d

29 Frazioni ridotte ai minimi termini (NON DARE TROPPO SPAZIO) Teorema << Per ogni frazione, ne esiste un unica, ad essa uguale, che sia ridotta ai minimi termini >> Dim (non banale, si basa sull Algoritmo di Euclide) 4 3 è meglio di 16 12? è una questione di gusti e non una necessità matematica

30 Addizione di frazioni Coerenza con le addizioni di interi, considerati come punti sulla retta dei numeri Esempio 3+5 è la lunghezza dell unione (concatenazione) dei due segmenti adiacenti di lunghezza 3 e 5

31 Analogamente date le frazioni la loro somma m n e k l m n + k l è la lunghezza della concatenazione dei due segmenti adiacenti di lunghezza m k e n l

32 Teorema : Dim. m n + k l = kn+lm ln Dalla definizione di somma di due frazioni k e m l n proprietà associativa: segue che vale la ( k l + m n )+ p q = k l +( m n + p q )

33 e la proprietà commutativa Dalla definizione di addizione segue k l = } l {{ l } k volte

34 e quindi nel caso particolare (l = n) ( ) k l + m l = k +m l Allora per la proprietà della semplificazione di frazioni e per (*), si ha k l + m l = kl +ml l l

35 In generale, se le due unità 1 e 1 l n sono diverse, entrambe le frazioni k l m 1 si esprimono in termini della nuova unità n ln Ad esempio: e = = =

36 Moltiplicazione di frazioni Coerenza con le moltiplicazioni di interi 0 Esempio 3 5 = sulla retta dei numeri 3 5 è il punto 3 sulla retta con unità di misura uguale a 5 e cioè: 3 5 = 15

37 Considerare 5 come unità di misura 1 è possibile se pensiamo ad una mano con le sue 5 dita un auto a 5 posti una costellazione di 5 stelle Con tale tipo di scelta per l unità il punto 3 rappresenta, sulla retta dei numeri, i seguenti 3 gruppi di oggetti

38 Nel caso di frazioni la moltiplicazione non è addizione ripetuta non vuol dire addizionare 1 4 a se stesso 3 5 volte

39 Definendo 3 5 di un numero a 3 di a 5 come la totalità di 3 parti, quando a è diviso in 5 parti uguali, allora 3 5 si ottiene dividendo il segmento [0, 1 4 ] in 5 parti uguali e prendendo la lunghezza dell unione di 3 di tali parti 3 1 di è 5 4 di di 1

40 Definizione = 3 5 di 1 4 m n k = m l n di k l = la totalità di m parti, quando il segmento [0, k l ] è diviso in n parti uguali. Si dimostra che vale il seguente Teorema

41 Teorema m n k l = mk nl Dim. Per il Teorema sulla semplificazione di frazioni m n = lm ln = m+...+m = m ln ln m }{{ ln } l m n è la lunghezza dell unione di l parti ciascuna lunga m ln Allora, la lunghezza dell unione di k di quelle parti è km ln

42 Corollario L area di un rettangolo i cui lati hanno lunghezza frazionaria m n e k l prodotto delle lunghezze. (2 interpretazione del prodotto di numeri interi o frazionari) Dim. Prima nel caso m = k = 1 e poi in generale 1 l 1 n è il

43 La divisione di frazioni Talvolta la definizione viene data utilizzando il Teorema sulla semplificazione di frazioni k l m n = k l ln m n ln = kln l mln n = kn lm = k l n m (INVERTI E MOLTIPLICA)

44 Tale modo di procedere per definire k l m n non è corretto, perchè si basa su operazioni su enti non ancora definiti. Se non sappiamo ancora cos è il 1 membro di k l m n come possiamo coinvolgerlo nei calcoli? Inoltre, il Teorema sulla semplificazione di frazioni afferma che a b = am bm purchè a,b,m N e non a,b frazioni

45 Esempio concreto Per comprendere, nel caso della divisione k l m n l algoritmo INVERTI E MOLTIPLICA

46 Un ragazzo spende ogni giorno esattamente la stessa quantità di soldi (dalla sua paghetta settimanale) Se con 2 3 della paghetta arriva da lunedì a venerdì, cioè sostiene i 5 7 delle spese settimanali, che frazione della paghetta spende ogni settimana? La quantità x che si cerca è data dalla proporzione 2 3 : 5 7 =x: 1 cioè x= =?

47 Le spese per 5 giorni si coprono con 2 della paghetta, quindi le spese per 3 1 giorno si coprono con della paghetta cioè con della paghetta. Moltiplico per 7 e ho 7 =

48 La divisione tra frazioni è resa possibile dal seguente Teorema Date due frazioni k l con l,m,n non nulli, esiste un unica frazione C tale che k = m l n C Dim. Basta scegliere C = nk. Se D fosse un altra frazione t.c. ml k (1) = m l n D Moltiplicando la (1) ad ambo i membri per n si ha m m n da cui nk ml = n m k l = n m (m n D) = ( n m m n ) D = D D = nk ml = C

49 APPROFONDIMENTO Definizione con significato geometrico Date due frazioni A e B con B 0, il quoziente A B è la lunghezza dell altro lato di un rettangolo la cui area vale A e uno dei lati ha lunghezza B A = A B B

50 Divisione tra interi positivi La divisione esatta tra interi positivi ha due possibili interpretazioni. Consideriamo ad esempio la divisione 15 : 5 1) È il numero di gruppi che si formano quando 15 oggetti vengono ripartiti in gruppi di 5 oggetti ciascuno Dunque si tratta di ripartire 15 oggetti in gruppi di 5 oggetti ciascuno: Alla domanda quanti gruppi da 5 stanno in 15? si risponde : 3

51 Consideriamo ora le due corrispondenti interpretazioni della divisione con resto tra due interi positivi qualsiasi m,n N 1) m : n è il massimo numero intero di gruppi che si possono formare quando m oggetti sono ripartiti in gruppi di n oggetti ciascuno Quanti gruppi da 5? Ovvero

52 2) m:n è il massimo numero intero di oggetti che sono in ciascun gruppo quando m oggetti sono ripartiti equamente in n gruppi 16 : 5 = 3 con resto R=1

53 Consideriamo la divisione tra frazioni 2 3 : 5 7 Nel contesto Quanti in un gruppo? essa corrisponde al problema << Quanti oggetti in un gruppo se distribuisco 2 3 di oggetto equamente fra 5 7 di un gruppo?>> Si cerca di determinare la frazione di un oggetto in un gruppo sapendo che i 2 3 di un oggetto riempiono i 5 7 di un gruppo

54 Ad esempio (Supposto che un individuo abbia sempre la stessa spesa giornaliera) Se con 2 3 di paga settimanale egli copre 5 di spese settimanali, con quale frazione della paga ne copre i 7, cioè copre l intera 7 7 spesa settimanale? Dall ipotesi segue che le spese per 1 7 coprono con 1 5 di 2 3 ottiene di settimana (per 1 giorno) si 2 di paga cioè con ; moltiplicando per 7 giorni si 15

55 Dunque con i 14 della paga egli copre le sue spese settimanali (e gliene 15 resta 1 per mettere da parte!) : 5 7 = : 1 INVERTI E MOLTIPLICA 2 3 : 5 7 = = 14 15

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO:

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO: PROBLEMI FONDAMENTALI CON LE FRAZIONI/RAPPORTI Le frazioni hanno applicazioni in moltissimi problemi. I tipi di problemi più frequenti sono: 1. Calcolare la frazione di un numero 2. Calcolare un numero

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

numeratore linea di frazione denominatore

numeratore linea di frazione denominatore numeratore denominatore linea di frazione A cura di Paola Arlandini, Stefania Ferrari, Deanna Mantovani Scuola Media A.Volta Bomporto a.s. 00/0 Questo articolo è stato scaricato da www.glottonaute.it INDICE

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica

Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A Prova scritta di matematica Scuola Galileiana di Studi Superiori Classe di Scienze Naturali - A. A. 016-017 Prova scritta di matematica Il candidato svolga quanti più possibile dei seguenti sei esercizi. Esercizio 1. Consideriamo

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ 9. Generalità Nelle unità precedenti abbiamo considerato insiemi di elementi (segmenti, angoli, superfici piane) con i quali abbiamo operato il confronto e la

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a b = a b a e b si dicono TERMINI del rapporto

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE FRAZIONI FRAZIONI La parola frazione nel linguaggio comune indica una parte di qualcosa, ad esempio di un Comune. In MATEMATICA una FRAZIONE è un NUMERO che indica una o più parti in cui è stata SUDDIVISA

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

FRAZIONI e NUMERI RAZIONALI

FRAZIONI e NUMERI RAZIONALI FRAZIONI e NUMERI RAZIONALI Frazioni Come per i numeri naturali, anche per gli interi relativi si definisce l'operazione di divisione come operazione inversa della moltiplicazione: Divisione di numeri

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a e b si dicono TERMINI del rapporto e il primo

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

RAPPORTI E PROPORZIONI

RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI Definizione: Dicesi rapporto fra due numeri, preso in un certo ordine, il quoziente della divisione fra il primo di essi e il secondo. Il rapporto tra i numeri

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare LE FRAZIONI Segna con X la defnizione giusta di frazione. X una frazione indica che ci sono diversi interi da dividere una frazione indica che un intero è stato diviso in parti uguali una frazione indica

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

La ragionevole efficacia dei numeri irrazionali

La ragionevole efficacia dei numeri irrazionali La ragionevole efficacia dei numeri irrazionali Prof. Carlo Sbordone - Università degli Studi di Napoli Federico II Prof.ssa Margherita Guida - ISIS Elena di Savoia -NA Con La Mente e Con Le Mani - 20

Dettagli

Le disequazioni di primo grado. Prof. Walter Pugliese

Le disequazioni di primo grado. Prof. Walter Pugliese Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

II modulo Le frazioni

II modulo Le frazioni II modulo Le frazioni Il concetto di frazione I numeri naturali (0, 1, 2, 3, ecc.) sono il primo fondamentale strumento che l uomo ha utilizzato per contare. Tuttavia ci si è ben presto resi conto che

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE le frazioni Termini della frazione NUMERATORE indica il numero delle parti che vengono considerate Linea di frazione (rappresenta la divisione) DENOMINATORE indica il numero delle parti uguali in cui è

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b

Dettagli

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE 6.1 Le proporzioni. Problemi del tre semplice e del tre composto Se consideriamo 4 numeri a, b, c, d; con b e d diversi da zero, essi formano una proporzione

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.

Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi. MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono

Dettagli

1.3.POLINOMI ED OPERAZIONI CON ESSI

1.3.POLINOMI ED OPERAZIONI CON ESSI 1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

I Numeri Interi Relativi

I Numeri Interi Relativi I Numeri Interi Relativi Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

A = {1 2, 3, 4, 5, 6, 7} B = {4, 8, 12, 16, 20, 24, 28}.

A = {1 2, 3, 4, 5, 6, 7} B = {4, 8, 12, 16, 20, 24, 28}. Consideriamo i due insiemi: INSIEMI DI NUMERI DIRETTAMENTE PROPORZIONALI A = {1 2, 3, 4, 5, 6, 7} B = {4, 8, 12, 16, 20, 24, 28}. Chiamiamo CORRISPONDENTI un numero del primo insieme e un numero del secondo

Dettagli

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5 LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale?

Radicale Intero Decimo Centesimo Millesimo ,2e Cosa ottengo se ad un numero razionale aggiungo o tolgo un numero irrazionale? ) I Numeri Irrazionali. I BM pag. 6. Es. pag. 7-7 Un numero è detto irrazionale quando è non possibile definirlo sotto forma di frazione, non ammette dunque una rappresentazione decimale finita o periodica.

Dettagli

Teoria dei numeri e Crittografia: lezione del 2 novembre Congruenze aritmetiche.

Teoria dei numeri e Crittografia: lezione del 2 novembre Congruenze aritmetiche. Teoria dei numeri e Crittografia: lezione del 2 novembre 2011 Congruenze aritmetiche. Ricordiamo la teoria delle congruenze aritmetiche. La nozione di divisore (e simmetricamente quella di multiplo si

Dettagli

2 non è un numero razionale

2 non è un numero razionale 2 non è un numero razionale 1. Richiami: numeri pari e dispari. Un numero naturale m è pari (rispettivamente dispari) se e solo se esiste un numero naturale r tale che m = 2r (rispettivamente m = 2r +

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

5 numeratore 7 denominatore

5 numeratore 7 denominatore LE FRAZIONI 1. La frazione a) Numeratore, denominatore b) Rappresentazione di una frazione c) Unità frazionaria, frazione propria, frazione impropria, frazione apparente. d) Rappresentazione di una frazione

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Il calcolo con le frazioni. Le quattro operazioni dai naturali ai razionali

Il calcolo con le frazioni. Le quattro operazioni dai naturali ai razionali Il calcolo con le frazioni Le quattro operazioni dai naturali ai razionali Trasmettere regole o ampliare il senso del numero? La seconda che hai detto, naturalmente! Infatti: Le regole non aiutano il bambino

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli

UNITÀ DIDATTICA 11 POLINOMI

UNITÀ DIDATTICA 11 POLINOMI UNITÀ DIDATTICA 11 POLINOMI 11.1 Definizione di polinomio. Grado e ordine di polinomi. Operazioni con i polinomi Si chiama polinomio, un monomio o una somma algebrica di due o Definizione di polinomio

Dettagli

Frazioni e numeri decimali

Frazioni e numeri decimali Frazioni e numeri decimali Sappiamo che uno stesso numero razionale può essere rappresentato sia sotto forma di frazione (in infiniti modi tra loro equivalenti) che sotto forma di numero decimale. Precisiamo

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli