Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scomposizione in fattori di un polinomio. Prof. Walter Pugliese"

Transcript

1 Scomposizione in fattori di un polinomio Prof. Walter Pugliese

2 La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado inferiore Esempio: x " 16 = x ' 4 x ' + 4 x ' 4 può essere scomposto ulteriormente in x + 2 x 2. Quindi: x 4 16 = x + 2 x 2 x Invece x ' + 4 non è scomponibile ed è possibile verificarlo applicando il teorema di Ruffini. Definizione: Un polinomio è riducibile se è possibile scomporlo nel prodotto di polinomi, tutti di grado minore. Un polinomio non riducibile si chiama irriducibile. Osservazione: Da questo momento ci porremo il problema di scomporre un polinomio in fattori irriducibili. Non è semplice capire quando un polinomio è irriducibile. Per il momento ci accontentiamo di osservare che sono irriducibili tutti i binomi di primo grado.

3 I metodi per la scomposizione dei polinomi Purtroppo non esiste un metodo generale per ottenere la scomposizione di un polinomio riducibile. Studieremo allora i metodi più comuni basati su regole algebriche che conosciamo. I metodi sono: Raccoglimento a fattore comune Raccoglimento parziale Scomposizione riconducibile a prodotti notevoli Scomposizione di particolari trinomi di secondo grado Scomposizione mediante il teorema e la regola Ruffini

4 Il raccoglimento a fattore comune Se in tutti i termini di un polinomio è contenuto uno stesso fattore, che può anche essere un numero, allora è possibile mettere in evidenza tale fattore con un raccoglimento a fattore comune Esempi: ab + ac + ad = a b + c + d 5x " 10x 7 35x ' = 5x ' x ' 2x 7 3 a + b + x a + b = a + b 3 + x

5 Il raccoglimento parziale Consideriamo il seguente polinomio P: P = ac + bc + ad + bd + ae + be I primi due termini hanno in comune il fattore c, il terzo e il quarto il fattore d, il quinto e il sesto il fattore e. Raccogliamo i fattori comuni: P = c a + b + d a + b + e a + b Il polinomio è ora formato dalla somma di tre termini che anno in comune il fattore a + b. Raccogliamo dunque a + b : P = a + b c + d + e Questo metodo di scomposizione viene detto raccoglimento parziale. Esempi: 3ax + 3bx + ay + by = 3x a + b + y a + b = a + b ax a 2bx + 2b = a x 1 2b x 1 = x 1 3x + y a 2b 2ay + 3by + 2a + 3b = y 2a + 3b + 1 2a + 3b = (2a + 3b)(y + 1)

6 Scomposizione riconducibile a prodotti notevoli Usando i meccanismi inversi dei prodotti notevoli, è possibile scomporre in fattori alcuni polinomi: a ' b ' = a + b a b a ' + 2ab + b ' = a + b ' a ' 2ab + b ' = a b ' a ' + b ' + c ' + 2ab + 2ac + 2bc = a + b + c ' a 7 + 3a ' b + 3ab ' + b 7 = a + b 7 a 7 3a ' b + 3ab ' b 7 = a b 7 Per la differenza o la somma di due cubi abbiamo: a 7 b 7 = a b a 7 + b 7 = a + b a ' + ab + b ' a ' ab + b '

7 La scomposizione di particolari trinomi di secondo Consideriamo il trinomio di secondo grado: Esso è particolare per due motivi: grado x ' + 8x + 15 Il coefficiente di x 2 è 1 I numeri 8 e 15 sono, rispettivamente la somma e il prodotto di 3 e 5 Ebbene, se proviamo a moltiplicare i due binomi x + 3 e x + 5, otteniamo proprio il trinomio x ' + 8x In generale un trinomio di secondo grado del tipo x ' + sx + p è scomponibile nel prodotto x + a (x + b) se s = a + b e p = ab. In altri termini: Esempi: x 2 + a + b x + ab = (x + a)(x + b) x 2 + 7x + 12 = x + 4 (x + 3) s = p = 4 R 3 x 2 3x 10 = x 5 (x + 2) s = p = 5 R 2

8 La scomposizione mediante il teorema e la regola di Ruffini Il teorema di Ruffini permette spesso di scomporre in fattori un polinomio. Sappiamo infatti che, se riusciamo a trovare uno zero di un polinomio A(x), cioè un valore a tale che A a = 0, potremo affermare che il polinomio A(x) è divisibile per il polinomio B x = (x a). La divisione A(x): B(x) produrrà un polinomio quoziente Q x e un resto R = 0. A questo punto il polinomio A(x) potrà essere così scomposto: A x = B x R Q x = (x a) R Q(x) Regola (zeri di un polinomio): Tutti gli zeri di un polinomio a coefficienti interi possono essere cercati fra le frazioni [, dove m è un divisore del termine noto e n è un divisore del coefficiente del \ termine di grado massimo.

9 Esempio (La scomposizione mediante il teorema e la regola di Ruffini): Dato il polinomio A x = 2x 7 5x ' + 5x 6. Per prima cosa devo ricercare uno zero del polinomio A x ovvero un valore a tale che A a = 0. I divisori del termine noto sono m = 1,2,3,6 mentre quelli del coefficiente del termine di grado massimo sono n = 1,2. Pertanto i possibili zeri del polinomio A x sono da ricercare tra i valori [ \, ovvero : c c ; ' c ; 7 c ; e c ; c ' ; ' ' ; 7 ' ; e ' ; cioè: 1; 2; 3; 6; c ' ; 7 ' ; E possibile verificare che: a = 2, cioè il polinomio A x assume valore zero per x = 2, quindi A x è divisibile per x a. il quoziente della divisione A x : (x a) cioè della divisione 2x 7 5x ' + 5x 6 : x 2 è Q x = 2x 2 x + 3 Quindi: A x = x a R Q(x) 2x 3 5x 2 + 5x 6 = (x 2)(2x 2 x + 3) Il polinomio dato è stato quindi scomposto nel prodotto di due polinomi.

10 M.C.D. e m.c.m. fra polinomi Per calcolare il massimo comune divisore e il minimo comune multiplo fra polinomi, utilizziamolo stesso procedimento già illustrato per i numeri naturali e per i monomi. Scomponiamo innanzitutto i polinomi in fattori irriducibili, raccogliendo anche gli eventuali coefficienti numerici in comune. Il calcolo del M.C.D.: Il M.C.D. fra due o più polinomi è il prodotto dei loro fattori irriducibili comuni, presi una sola volta con l esponente minore. Il calcolo del m.c.m. : Il m.c.m. fra due o più polinomi è il prodotto dei loro fattori irriducibili comuni e non comuni, presi una sola volta, con l esponente massimo.

11 Esempio M.C.D. fra polinomi Determiniamo il M.C.D. fra i seguenti polinomi. a ' b b 7, a 7 b 7, a 7 2a ' b + ab '. Scomponiamo in fattori irrudicibili: a ' b b 7 = b a ' b ' = b a + b a b (tre fattori) a 7 b 7 = a b a 2 + ab + b 2 (due fattori) a 7 2a ' b + ab ' = a a ' 2ab + b ' = a a b 2 (due fattori) L unico fattore comune è a b che prendiamo con l esponente minore. Quindi: M.C.D.= a b

12 Esempio m.c.m. fra polinomi Determiniamo il mc.m. fra i seguenti polinomi. a ' b b 7, a 7 b 7, a 7 2a ' b + ab '. Scomponiamo in fattori irrudicibili: a ' b b 7 = b a ' b ' = b a + b a b (tre fattori) a 7 b 7 = a b a 2 + ab + b 2 (due fattori) a 7 2a ' b + ab ' = a a ' 2ab + b ' = a a b 2 (due fattori) Scegliamo i fattori comuni e non comuni con l esponente massimo: m.c.m.= ab a + b a b 2 a 2 + ab + b 2

13 Le frazioni algebriche Abbiamo già visto che un polinomio A è divisibile per un polinomio B se esiste un polinomio Q che, moltiplicato per B, dà come prodotto A. A: B = Q se e solo se B R Q = A Quando il polinomio A non è divisibile per B, il quoziente si può indicare solo mediante una frazione algebrica. Definizione: Dati due polinomi A e B, con B diverso dal polinomio nullo, la frazione A B algebrica. viene detta frazione Ogni monomio o polinomio può essere considerato una frazione algebrica il cui denominatore è il monomio 1. Dunque l insieme delle frazioni algebriche include l insieme dei polinomi.

14 Le condizioni di esistenza delle frazioni algebriche Una frazione algebrica può perdere significato per particolari valori dati alle lettere. Per esempio la frazione: x 3 x 2 non ha significato per x = 2, poiché non può avere denominatore nullo. Una frazione algebrica perde significato per tutti e soli quei valori delle lettere che annullano il denominatore. Usiamo la sigla C.E. per indicare le condizioni di esistenza di una frazione algebrica. Esempio: La frazione noc n no" perde significato quando x = 0 e x = 4. Scriviamo C.E.:x 0 x 4.

15 Frazioni algebriche equivalenti Come già visto per le frazioni numeriche, diciamo che anche due frazioni algebriche sono equivalenti se sono uguali i due prodotti in croce. Esempio: ros r ~ ru os u r u vrs infatti: a b a ' + ab = a a ' b ' a 7 + a ' b a ' b ab ' = a 7 ab ' a 7 ab ' = a 7 ab '

16 La semplificazione delle frazioni algebriche Se dividiamo il numeratore e il denominatore di una frazione algebrica per lo stesso polinomio (diverso da 0), otteniamo una frazione algebrica equivalente. Vale cioè anche per le frazioni algebriche la proprietà invariantiva. Esempio : Data la frazione a 7 b + 2a ' b ' + ab 7 a " + 3a 7 b + 3a ' b ' + ab 7 Scomponiamo in fattori numeratore e denominatore e poniamo le C.E. ab a ' + 2ab + b ' a a 7 + 3a ' b + 3ab ' + b 7 ' ab a + b = C. E. : a 0 a + b 0 a a + b 7 Dividiamo numeratore e denominatore per i fattori comuni a a + b '. La frazione semplificata è: b a + b

17 L addizione e la sottrazione di frazioni algebriche La somma algebrica di due o più frazioni algebriche, che hanno lo stesso denominatore, è la frazione algebrica che ha per denominatore lo stesso denominatore, e per numeratore la somma algebrica dei numeratori. Esempio: Data la somma 5 a + b a ' + + ab a ' b 1 ab + b ' Scomponiamo in fattori i denominatori e poniamo le C.E. 5 a + b + a(a + b) a ' b 1 b a + b C. E. : a 0 b 0 a + b 0 Riduciamo le frazioni allo stesso denominatore, cioè al m.c.m. fra i denominatori. Eseguiamo poi le somme algebriche al numeratore Šrsv rvs u or u r u s rvs = Šrsvru v'rsvs u or u r u s rvs = rsvsu r u s(rvs) Scomponiamo in fattori il numeratore per semplificare la frazione e scriviamo il risultato b(7a + b) a ' b(a + b) = 7a + b a ' (a + b)

18 La moltiplicazione di frazioni algebriche Il prodotto tra due o più frazioni algebriche è una frazione algebrica che ha per numeratore il prodotto dei numeratori e per denominatore il prodotto dei denominatori. Esempio: a ' + 2ab + b ' ab b ' R a' ab a " + a 7 b Scomponiamo in fattori numeratori e denominatori e poniamo le C.E. Semplifichiamo a + b ' b a b R a a b a 7 a + b Moltiplichiamo numeratori e denominatori C. E. : a 0 b 0 a + b 0 a b 0 a + b b a + b a ' b R 1 a '

19 La divisione di frazioni algebriche Il quoziente di due frazioni algebriche è la frazione algebrica che si ottiene moltiplicando la prima frazione per la reciproca della seconda. A B : C D = A B R D C N.B.: Le condizioni di esistenza sono B 0, D 0 per l esistenza delle frazioni algebriche, e C 0 perché sia possibile eseguire la devisione. Esempio 1: Esempio 2: 6a ' b 5cd : 8a' d ' = 6a' b 5cd R d' 8a ' = 3bd 20c x + y x ' y xy ' : xy x ' y ' = x + y xy x y R x + y C. E. : c 0 d 0 a 0 x y xy = x + y ' x ' y ' C. E. : x 0 y 0 x + y 0 x y 0

20 La potenza di frazioni algebriche La potenza di una frazione algebrica è la frazione algebrica che ha per numeratore la potenza del numeratore e per denominatore la potenza del denominatore. Esempio 1: Esempio 2: a + b ' a ' 2b 7 = 3a ' ' = 9a" 2b 4b ' a + b' 7 a ' 2b 7

MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO

MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO 1 Scomposizione e frazioni algebriche Scomposizione in Fattori Scomporre in fattori un polinomio significa scriverlo sotto forma di un prodotto

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

DIVISIONE TRA POLINOMI IN UNA VARIABILE

DIVISIONE TRA POLINOMI IN UNA VARIABILE DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica healthinsurance@tin.it DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria

Dettagli

Scomposizione in fattori

Scomposizione in fattori Scomposizione in fattori 13 Scomporre un polinomio in fattori significa scrivere il polinomio come il prodotto di polinomi e monomi che moltiplicati tra loro danno come risultato il polinomio stesso. Si

Dettagli

LA DIVISIONE FRA POLINOMI E LA SCOMPOSIZIONE IN FATTORI

LA DIVISIONE FRA POLINOMI E LA SCOMPOSIZIONE IN FATTORI CAPITOLO [numerazione araba] [numerazione devanagari] [numerazione cinese] LA DIVISIONE FRA POLINOMI E LA SCOMPOSIZIONE IN FATTORI 79 Salire su un taxi numero 79 lascerebbe indifferente la maggior parte

Dettagli

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z

2 xab ; a2 x 3 y. 3a; 4b 2 ; 0,75y 3 z 1 Premessa. In questa sezione verranno richiamati alcuni concetti fondamentali dell algebra, quella parte della matematica che si occupa dello studio del cosiddetto calcolo letterale, utili ai fini della

Dettagli

U.D. N 05 La fattorizzazione dei polinomi

U.D. N 05 La fattorizzazione dei polinomi Unità Didattica N 05 La fattorizzazione dei polinomi 51 U.D. N 05 La fattorizzazione dei polinomi 01 La messa in evidenza totale 0 La messa in evidenza parziale 03 La differenza di due quadrati 04 Somma

Dettagli

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

matematica per le seconde

matematica per le seconde lorenzo pantieri matematica per le seconde degli istituti professionali www.ipscesena.it Questo lavoro, scrit- to per gli alunni dell Istituto Versari-Macrelli di Cesena, spiega il programma di matematica

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab

Dettagli

IL PROBLEMA. Somma fra frazioni algebriche. Lezione di matematica Prof Giovanni Ianne

IL PROBLEMA. Somma fra frazioni algebriche. Lezione di matematica Prof Giovanni Ianne IL PROBLEMA Somma fra frazioni algebriche Lezione di matematica Prof Giovanni Ianne Come facevi finora? Es: Fra frazioni numeriche: 1 5 = 6 9 Cosa fai?.. = Scomponi in fattori primi i denominatori: 6 =

Dettagli

FATTORIZZAZIONE DI UN POLINOMIO

FATTORIZZAZIONE DI UN POLINOMIO FATTORIZZAZIONE DI UN POLINOMIO Così come avviene con i numeri ( 0 = 5), la fattorizzazione di un polinomio è la scomposizione di un polinomio in un prodotto di due o più polinomi. Esempio: = + + Un polinomio

Dettagli

5. SCOMPOSIZIONI E FRAZIONI

5. SCOMPOSIZIONI E FRAZIONI MATEMATICA C3 ALGEBRA 5. SCOMPOSIZIONI E FRAZIONI Wicker Composition photo bby: Cobalt3 taken from: http://www.flickr.com/photos/cobalt/3945539/ License: creative commons attribution share alike.0 SCOMPOSIZIONI

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili. I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma

Dettagli

Radicali. 2.1 Radici. Il simbolo

Radicali. 2.1 Radici. Il simbolo Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.! Divisione tra polinomi ( 2.2 del testo)! La regola di Ruffini ( 2.3 del testo)! I prodotti notevoli ( 2.3

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

I monomi Prof. Walter Pugliese

I monomi Prof. Walter Pugliese I monomi Prof. Walter Pugliese I monomi Def.: Il monomio è un espressione letterale in cui compaiono soltanto moltiplicazioni tra numeri e lettere. Gli esponenti delle lettere sono numeri naturali. Esempi:

Dettagli

5) 1 2 essendo x1 e x2 due

5) 1 2 essendo x1 e x2 due SCOMPOSIZIONE IN FATTORI 1) Raccoglimento a fattore comune ( Applicabile ad un polinomio di un numero qualunque di termini purchè i termini presentino almeno una lettera o un numero che si ripete in tutti)

Dettagli

Anno 1. m.c.m. fra polinomi

Anno 1. m.c.m. fra polinomi Anno 1 m.c.m. fra polinomi 1 Introduzione In questa lezione introdurremo il concetto di minimo comune multiplo (m.c.m.) fra polinomi. Al termine di questa lezione sarai in grado di: calcolare il m.c.m.

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

3. SCOMPOSIZIONI E FRAZIONI

3. SCOMPOSIZIONI E FRAZIONI MATEMATICA C3 ALGEBRA 3. SCOMPOSIZIONI E FRAZIONI Cobalt3, Wicker Composition http://www.flickr.com/photos/cobalt/3945539/ SCOMPOSIZIONI SCOMPOSIZIONE IN FATTORI. Cosa significa scomporre in fattori Scomporre

Dettagli

UNITÀ DIDATTICA 11 POLINOMI

UNITÀ DIDATTICA 11 POLINOMI UNITÀ DIDATTICA 11 POLINOMI 11.1 Definizione di polinomio. Grado e ordine di polinomi. Operazioni con i polinomi Si chiama polinomio, un monomio o una somma algebrica di due o Definizione di polinomio

Dettagli

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007 Polinomi Docente: Francesca Benanti 16 Febbraio 2007 1 L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli interi poichè

Dettagli

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli.

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli. Polinomi Docente: Francesca Benanti 2 febbraio 2008 Page 1 of 25 1. L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli

Dettagli

Scomposizione di un polinomio in fattori

Scomposizione di un polinomio in fattori Scomposizione di un polinomio in fattori Scomporre in fattori primi un polinomio significa esprimerlo come il prodotto di due più polinomi non più scomponibili. Ad esempio x 2 9 = x 3) x + 3) }{{} fattore

Dettagli

1.3.POLINOMI ED OPERAZIONI CON ESSI

1.3.POLINOMI ED OPERAZIONI CON ESSI 1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Sco c mp m osiz i i z o i ne e d ei e i p oli l n i omi C sa s v uol d ire r e sc s o c mp m orr r e r e un polinomi m o?

Sco c mp m osiz i i z o i ne e d ei e i p oli l n i omi C sa s v uol d ire r e sc s o c mp m orr r e r e un polinomi m o? Scomposizione dei polinomi Cosa vuol dire scomporre un polinomio? Scomporre un polinomio significa trasformare il polinomio dato nel prodotto di più polinomi e/o monomi di grado inferiore al polinomio

Dettagli

L insieme dei numeri naturali N Prof. Walter Pugliese

L insieme dei numeri naturali N Prof. Walter Pugliese L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,

Dettagli

Anno 1. M.C.D. fra polinomi

Anno 1. M.C.D. fra polinomi Anno 1 M.C.D. fra polinomi 1 Introduzione In questa lezione introdurremo il concetto di Massimo Comune Divisore (M.C.D.) fra polinomi. Al termine di questa lezione sarai in grado di: calcolare il M.C.D.

Dettagli

Anno 1. Divisione fra polinomi

Anno 1. Divisione fra polinomi Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa

Dettagli

Scomposizione di polinomi. Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore

Scomposizione di polinomi. Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore Scomposizione di polinomi Scomporre un polinomio significa riscriverlo nel PRODOTTO di due o più polinomi di grado inferiore Raccoglimento a fattor comune Il raccoglimento a fattor comune consiste nel

Dettagli

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2.

270 Capitolo 10. Monomi. d ) 7 2 a3 x 4 y 2 per a = 1 2, x = 2, y = 1 2 ; e ) 8 3 abc2 per a = 3, b = 1 3, c = 1 2. 70 Capitolo 10. Monomi 10.9 Esercizi 10.9.1 Esercizi dei singoli paragrafi 10.1 - L insieme dei monomi 10.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

B3. Scomposizione di polinomi

B3. Scomposizione di polinomi B3. Scomposizione di polinomi Quando si calcola una espressione contenente solo prodotti di polinomi si ottiene un polinomio, che è il risultato dell espressione. La scomposizione in fattori di polinomi

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

3.Polinomi ed operazioni con essi

3.Polinomi ed operazioni con essi MatematicaC Algebra1 1.Lebasidelcalcololetterale1.Polinomieoperazioniconessi....Polinomi ed operazioni con essi 1. Definizioni fondamentali Un polinomio è una somma algebrica di monomi, ciascuno dei quali

Dettagli

Riepilogo scomposizione polinomi

Riepilogo scomposizione polinomi Riepilogo scomposizione polinomi. Ci sono fattori comuni? Se sì, fai un raccoglimento totale. Esempio: ax ay a=a x y 2. Quanti sono i termini del polinomio? Due Somma di quadrati: non si scompone. Esempio:

Dettagli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli

CONOSCENZE 1. espressioni letterali e monomi. 2. le operazioni con i monomi 3. i polinomi 4. le operazioni con i polinomi. 5. i prodotti notevoli ALGEBRA IL CALCOLO LETTERALE PREREQUISITI l l l conoscere e operare con tutte le operazioni nell'insieme R conoscere e utilizzare le proprietaá delle operazioni conoscere e utilizzare le proprietaá delle

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice

Dettagli

Sezione 9.9. Esercizi 189

Sezione 9.9. Esercizi 189 Sezione 9.9. Esercizi 189 9.9 Esercizi 9.9.1 Esercizi dei singoli paragrafi 9.1 - L insieme dei monomi 9.1. Individua tra le espressioni letterali di seguito elencate, quelle che sono monomi. E 1 = 5x

Dettagli

Prodotti Notevoli e Scomposizione. Feo Maurizio

Prodotti Notevoli e Scomposizione. Feo Maurizio Prodotti Notevoli e Scomposizione Feo Maurizio August 12, 2013 2 Preambolo Gli appunti che seguono non vogliono sostituire il testo, ma rappresentano solo una bozza per raccogliere in maniera organica

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014 Pagina 1 di 5 DISCIPLINA: MATEMATICA CLASSE: 1^ FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Addizione moltiplicazione, Naturali, Interi e sottrazione, divisione,

Dettagli

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO APPUNTI DI MATEMATICA I radicali LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado ALESSANDRO BOCCONI Indice 1 I radicali 1.1 Introduzione......................................... 1. Definizione

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa:

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa: Frazioni algebriche Le frazioni algebriche sono frazioni con polinomi al numeratore e al denominatore, quindi sono le frazioni più generiche possibili: studiare e capire le regole delle loro operazioni

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero. LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14 Pagina 1 di 6 DISCIPLINA: MATEMATICA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 1 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Naturali, Interi e Razionali

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Capitolo 2 Svolgimento degli esercizi proposti

Capitolo 2 Svolgimento degli esercizi proposti Copyright 010 - The McGraw-Hill Companies srl Capitolo Svolgimento degli esercizi proposti 1. Vi sono solo termini contenenti potenze di x, e tutti hanno coefficiente numerico uguale a 1, perciò raccogliamo

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale.

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale. Definizione di monomio Un monomio è un'espressione matematica che consiste in un prodotto di fattori qualsiasi, siano essi numerici o letterali I fattori letterali hanno per esponente un numero naturale

Dettagli

PROGRAMMA A.S. 2014/2015

PROGRAMMA A.S. 2014/2015 MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. ..3. Prodotti notevoli Per quanto visto in precedenza, in generale per moltiplicare un polinomio di m termini per uno di n termini devono effettuarsi m n moltiplicazioni, così per esempio per moltiplicare

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.

1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

Prodotti notevoli Quadrato di un binomio

Prodotti notevoli Quadrato di un binomio Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Polinomi Prodotti notevoli. Esempi di polinomi

Polinomi Prodotti notevoli. Esempi di polinomi Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

PON Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire.

PON Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. PON 2007 2013 Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. Derive - 2 ESPRESSIONI E POLINOMI Vallo della Lucania 26 settembre 2008

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Polinomi. Corso di accompagnamento in matematica. Lezione 1

Polinomi. Corso di accompagnamento in matematica. Lezione 1 Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1

Dettagli

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO. CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo

Dettagli

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri

I monomi. ITIS Feltrinelli anno scolastico R. Folgieri I monomi ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 I monomi Abbiamo usato spesso le lettere al posto dei numeri quando dovevamo enunciare delle proprietà o delle regole generali.

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli