Le frazioni algebriche

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le frazioni algebriche"

Transcript

1 Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche perchè al denominatore presentano tutte un polinomio x 1 3 x 3 1 x 1 Un esempio di frazione che non può definirsi algebrica è x è rappresentato da un polinomio, al denominatore troviamo un numero. perchè, anche se il suo numeratore A parte questa differenza, tutte le operazioni che abbiamo studiato sulle frazioni numeriche seguono, sulle frazioni algebriche, esattamente gli stessi procedimenti. Le frazioni algebriche saranno utilizzate per lavorare su equazioni frazionarie. Sarà importante, quindi, saper effettuare su di esse le seguenti operazioni: Semplificazione di frazioni algebriche Addizione, sottrazione, moltiplicazione e divisione tra frazioni algebriche Espressioni con frazioni algebriche Semplificazione di frazioni algebriche Come le frazioni numeriche, anche le frazioni algebriche possono essere semplificate allo scopo di lavorare, successivamente con frazioni meno impegnative dal punto di vista del calcolo. La semplificazione di una frazione algebrica segue esattamente lo stesso meccanismo della semplificazione di una frazione numerica (studiato lo scorso anno). Ripassiamo, con un esempio, come funzionava e quali regole si applicavano per semplificare una frazione numerica. Semplificare la frazione Una regola studiata anno scorso diceva che una frazione è semplificabile se il massimo comun divisore tra il numeratore ed il denominatore risulta essere maggiore di 1. Nel caso in cui, infatti, l'mcd risulti essere uguale ad 1 vuol dire che numeratore e denominatore non hanno fattori comuni e, di conseguenza, la frazione non è semplificabile. Per semplificare una frazione è quindi necessario calcolare MCD tra numeratore e denominatore, scomponendo i numeri in fattori primi e prendendo solo i fattori comuni, una sola volta, con il minimo esponente. MCD (18;42) Significa che il fattore 6 è comune sia a 18 che a 42. Per cui avremo:

2 Per semplificare una frazione algebrica si segue esattamente lo stesso procedimento. Vediamolo con un esempio: Semplificare la frazione 2x 2 Per prima cosa è necessario scomporre i polinomi: 2X 2 2(X 1) X 2 1 (X 1)(X + 1) Differenza di quadrati Per cui avremo 2x 2 2 x 1 x 1 x 1 Per capire che cosa possiamo semplificare è ora necessario calcolare MCD tra numeratore e denominatore, prendendo solo i fattori comuni, una sola volta, con il minimo esponente. Nel nostro esempio MCD tra 2X 2 e X 2 1 è (X 1) che, come si vede dalla scomposizione, è l'unico fattore comune a numeratore e denominatore. A questo punto è possibile semplificare la frazione algebrica eliminando il fattore (X 1) sia dal numeratore che dal denominatore. 2x 2 2 x 1 x 1 x 1 2 x 1 N.B.: Ricorda che in una frazione algebrica è possibile semplificare solo fattori uguali eventualmente con esponenti diversi. Ricordiamo inoltre che per fattore si intende un numero, un monomio o un polinomio legato al resto dell'espressione tramite l'operatore di moltiplicazione. Mentre un addendo è numero, un monomio o un polinomio legato al resto dell'espressione tramite l'operatore di addizione (o sottrazione). Attenzione, quindi, a non semplificare in modo errato le frazioni algebriche. Vediamo un esempio di semplificazione errata 2y y 1 2 y y 1 La y presente al numeratore risponde alla definizione di fattore, la y presente al denominatore non è, invece, un fattore, ma è una parte del binomio y 1. Perciò questa semplificazione è errata. Riassumendo il procedimento per semplificare una frazione algebrica prevede: Scomporre tutti i polinomi in fattori primi Calcolare MCD tra numeratore e denominatore Se MCD 1 la frazione non è semplificabile Se MCD 1 la frazione è semplificabile eliminando MCD sia dal numeratore che dal denominatore.

3 Moltiplicazione e divisione tra frazioni algebriche L'esecuzione delle operazioni di moltiplicazione e di divisione tra frazioni algebriche non prevede alcuna differenza con le corrispondenti operazioni tra frazioni numeriche. Per eseguire la moltiplicazione è sufficiente seguire il seguente procedimento: Scomposizione di tutti i polinomi Eventuale semplificazione verticale delle frazioni Eventuale semplificazione incrociata delle frazioni Calcolo del numeratore e del denominatore del risultato Esempio Scomposizione di tutti i polinomi in fattori primi X 2 5X + 6 (X 2)(X 3) X 2 4 (X 2)(X + 2) X 2 + 4X + 4 (X + 2) 2 3X 9 3(X 3) Trinomio speciale Differenza di quadrati Quadrato di binomio Per cui avremo x 2 x 3 x 2 x 2 x x 3 Possiamo ora passare alle semplificazioni verticale ed incrociata x 2 x 3 x 2 2 x 2 x 2 3 x 3 A questo punto possiamo moltiplicare i due numeratori con i due denominatori ottenendo il risultato finale. x 2 3 Osservazione: Per semplificazione verticale si intende la semplificazione del numeratore con il proprio denominatore. Per semplificazione incrociata si intende la semplificazione di un numeratore con il denominatore di un'altra frazione. N.B.: la moltiplicazione è l'unica operazione che consente di semplificare le frazioni in modo incrociato. Per eseguire la divisione è sufficiente seguire il seguente procedimento: Scomposizione di tutti i polinomi Eventuale semplificazione verticale delle frazioni Trasformazione della divisione in moltiplicazione con l'inverso Eventuale semplificazione incrociata delle frazioni Calcolo del numeratore e del denominatore risultato

4 Esempio 3x 2 6x x 2 : x 2 4x 4 3x 9 Scomposizione di tutti i polinomi in fattori primi 3X 2 6X 3X(X 2) X 2 X 2 4X + 4 (X 2) 2 3X 9 3(X 3) Polinomio primo non scomponibile Quadrato di binomio Per cui avremo 3x 2 6x x 2 : x 2 4x 4 3x 9 3x x 2 : x 2 2 x 2 3 x 3 Possiamo ora passare alle semplificazioni verticali 3x x 2 : x 2 2 x 2 3 x 3 3 x x 2 : x 2 2 x 2 3 x 3 A questo punto è necessario invertire la seconda frazione trasformando la divisione in moltiplicazione ottenendo 3 x 2 3 x 3 x x 2 2 Infine possiamo eseguire le semplificazioni incrociate e concludere moltiplicando tra loro numeratori e denominatori 3 x 2 3 x 3 9 x 3 x x 2 2 x x 2

5 Addizione e sottrazione tra frazioni algebriche Le operazioni di addizione e sottrazione tra frazioni algebriche seguono esattamente gli stessi procedimenti delle analoghe operazioni nell'insieme Q. Esse sono le operazioni un po' più complesse e richiedono un po' di attenzione nel loro svolgimento. Procedimento 1 Scomposizione di tutti i polinomi 2 Eventuale semplificazione verticale delle frazioni 3 Calcolo del mcm tra i denominatori 4 Calcolo del numeratore 5 Eventuale semplificazione verticale del risultato Vediamo due esempi di applicazione di tale procedimento: 2x 4 2x 5x 2x 3 4x 2 x 2 x 2 4 Scomposizione dei polinomi 2X + 4 2(X + 2) 2X 3 + 4X 2 2X 2 (X + 2) X 2 4 (X + 2)(X 2) Differenza di quadrati L'espressione con i polinomi scomposti diventa 2 x 2 2x 5x 2x 2 x 2 x 2 x 2 x 2 A questo punto si può procedere con eventuali semplificazioni verticali, secondo le regole di semplificazione studiate. 2 x 2 2 x 5 x 2x 2 x 2 x 2 x 2 x 2 L'espressione semplificata diventa x 2 x 5 2x x 2 1 x 2 Ora è necessario procedere con il calcolo del mcm tra i denominatori, ricordando che tale valore si ottiene prendendo tutti i fattori (comuni e non comuni), una sola volta, con il massimo esponente. mcm(x; 2X(X+2); (X+2)) 2X(X+2) Calcoliamo ora il numeratore scegliendo, per ognuna delle frazioni, solo i fattori che compaiono nel mcm e non compaiono nel denominatore e moltiplicando tali fattori per il numeratore.

6 La prima frazione dell'esempio è x 2 x Il suo denominatore è costituito dal monomio X, mentre il suo numeratore è costituito dal binomio (X+2). Mcm calcolato precedentemente è 2X(X+2), quindi i fattori che compaiono in mcm, ma non nel denominatore sono 2 e (X+2). Tali fattori vanno moltiplicati per il numeratore ottenendo: 2(X+2)(X+2) Tale procedimento va ripetuto per tutte le frazioni dell'espressione ottenendo: 2 x 2 x 2 5 2x 2x x 2 Il calcolo procede al numeratore eseguendo le operazioni necessarie fino al raggiungimento di un polinomio non più riducibile: 2 x 2 4x 4 5 2x 2x x 2 2x 2 8x 8 5 2x 2x x 2 2x 2 10x 13 2x x 2 A questo punto il numeratore è un polinomio sul quale non posso più effettuare calcoli, ma solo verificare se risulta essere scomponibile. In questo caso il trinomio non è scomponibile e quindi l'esercizio termina. Espressioni e regole di precedenza Per svolgere espressioni con frazioni algebriche è necessario applicare le regole di precedenza delle operazioni che già sono note dal calcolo numerico e dal calcolo letterale. 1 Risolvere le parentesi dall'interno verso l'esterno. 2 Risolvere prima moltiplicazioni e divisioni, poi addizioni e sottrazioni. 3 Se le operazioni sono dello stesso gruppo, risolverle da sinistra verso destra.

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni INSIEME Q L'insieme dei numeri razionali (Q) è un'estensione dell'insieme dei numeri interi Z. Ai numeri positivi e negativi interi si aggiungono, così, anche i numeri decimali. Tale estensione, però,

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa:

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa: Frazioni algebriche Le frazioni algebriche sono frazioni con polinomi al numeratore e al denominatore, quindi sono le frazioni più generiche possibili: studiare e capire le regole delle loro operazioni

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO. CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 2014 Pagina 1 di 5 DISCIPLINA: MATEMATICA CLASSE: 1^ FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Addizione moltiplicazione, Naturali, Interi e sottrazione, divisione,

Dettagli

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s /14 Pagina 1 di 6 DISCIPLINA: MATEMATICA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 1 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 I numeri Naturali, Interi e Razionali

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

IL PROBLEMA. Somma fra frazioni algebriche. Lezione di matematica Prof Giovanni Ianne

IL PROBLEMA. Somma fra frazioni algebriche. Lezione di matematica Prof Giovanni Ianne IL PROBLEMA Somma fra frazioni algebriche Lezione di matematica Prof Giovanni Ianne Come facevi finora? Es: Fra frazioni numeriche: 1 5 = 6 9 Cosa fai?.. = Scomponi in fattori primi i denominatori: 6 =

Dettagli

Scomposizioni polinomiali

Scomposizioni polinomiali Scomposizioni polinomiali Le scomposizioni polinomiali sono uno degli argomenti fondamentali di tutta l'algebra di scuola superiore, essendo utilizzate in ogni altro argomento del programma di seconda

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Radicali. 2.1 Radici. Il simbolo

Radicali. 2.1 Radici. Il simbolo Radicali. Radici.. Radici quadrate Ricordiamo che il quadrato di un numero reale a è il numero che si ottiene moltiplicando a per se stesso. Il quadrato di un numero è sempre un numero non negativo; numeri

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Le eguaglianze algebriche: Identità ed Equazioni

Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Anno 1. M.C.D. fra polinomi

Anno 1. M.C.D. fra polinomi Anno 1 M.C.D. fra polinomi 1 Introduzione In questa lezione introdurremo il concetto di Massimo Comune Divisore (M.C.D.) fra polinomi. Al termine di questa lezione sarai in grado di: calcolare il M.C.D.

Dettagli

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili. I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA Classe 1BT A. S. 2015/2016

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA Classe 1BT A. S. 2015/2016 RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA Classe 1BT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio, i seguenti obiettivi in termini

Dettagli

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Anno 1. m.c.m. fra polinomi

Anno 1. m.c.m. fra polinomi Anno 1 m.c.m. fra polinomi 1 Introduzione In questa lezione introdurremo il concetto di minimo comune multiplo (m.c.m.) fra polinomi. Al termine di questa lezione sarai in grado di: calcolare il m.c.m.

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

PROGRAMMA A.S. 2014/2015

PROGRAMMA A.S. 2014/2015 MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi prime

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi prime Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Programmazione classi prime Programmazione di Matematica Titolo Modulo 1 Abilità di base Modulo 2 Insiemi, relazioni e funzioni Modulo

Dettagli

Programma di matematica classe I sez. B a.s

Programma di matematica classe I sez. B a.s Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Scomposizione di un polinomio in fattori

Scomposizione di un polinomio in fattori Scomposizione di un polinomio in fattori Scomporre in fattori primi un polinomio significa esprimerlo come il prodotto di due più polinomi non più scomponibili. Ad esempio x 2 9 = x 3) x + 3) }{{} fattore

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE

Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro

Dettagli

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5 LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.

1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO

APPUNTI DI MATEMATICA LE EQUAZIONI DI SECONDO GRADO APPUNTI DI MATEMATICA I radicali LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado ALESSANDRO BOCCONI Indice 1 I radicali 1.1 Introduzione......................................... 1. Definizione

Dettagli

1.3.POLINOMI ED OPERAZIONI CON ESSI

1.3.POLINOMI ED OPERAZIONI CON ESSI 1POLINOMI ED OPERAZIONI CON ESSI 11 Definizioni fondamentali Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi Sono polinomi: 6a+ b; 5ab+ b ; 6x 5yx 1 ; 7ab

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

Programma di matematica

Programma di matematica Anno scolastico 2015/2016 Classe I F Programma di matematica Ripasso: Numeri naturali : Rappresentazione sulla retta Operazioni: 1. addizione 2. sottrazione 3. moltiplicazione 4. divisione Numeri interi

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del II anno relativamente all asse culturale:

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del II anno relativamente all asse culturale: PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA Competenze da conseguire alla fine del II anno relativamente all asse culturale: C O M P E T ASSE MATEMATICO Utilizzare

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: tutto l anno Strategie didattiche: Per abituare gli allievi

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

PROGRAMMAZIONE COORDINATA TEMPORALMENTE. DISCIPLINA: Matematica

PROGRAMMAZIONE COORDINATA TEMPORALMENTE. DISCIPLINA: Matematica PROGRAMMAZIONE COORDINATA TEMPORALMENTE DISCIPLINA: Matematica Monte ore annuo 132 Libri di Testo Autori: MASSIMO BERGAMINI - GRAZIELLA BAROZZI Titolo: Algebra multimediale.blu con Statistica 1 Editore

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

Sco c mp m osiz i i z o i ne e d ei e i p oli l n i omi C sa s v uol d ire r e sc s o c mp m orr r e r e un polinomi m o?

Sco c mp m osiz i i z o i ne e d ei e i p oli l n i omi C sa s v uol d ire r e sc s o c mp m orr r e r e un polinomi m o? Scomposizione dei polinomi Cosa vuol dire scomporre un polinomio? Scomporre un polinomio significa trasformare il polinomio dato nel prodotto di più polinomi e/o monomi di grado inferiore al polinomio

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

Programma1D geometri

Programma1D geometri Sez. Amministrazione, Finanza e Marketing Sez. Costruzioni, Ambiente e Territorio Programma1D geometri A.S. 2013/2014 Prof. Materia Classe IRACA MARIA CARMELA MATEMATICA I D GEOMETRI TESTO ADOTTATO: Matematica

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: settembre Strategie didattiche: Per abituare gli allievi

Dettagli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI. Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI. Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli ------------------------------------------- Piazza IV Novembre

Dettagli

LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI

LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI Anno scolastico 2016/2017 Docente: Stefania Petronelli Matematica classe I sez. Internazionale L. Sasso La matematica a colori 1 ed. azzurra Petrini Gli insiemi:

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero. LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

Numeri naturali ed operazioni con essi

Numeri naturali ed operazioni con essi Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI Programmazione Didattica 1 e Disciplina: MATEMATICA Ore annue: 110 MODULO 1 TEORIA DEGLI INSIEMI E INSIEMI NUMERICI settembre

Dettagli

PROGRAMMA DI MATEMATICA CONTENUTI.

PROGRAMMA DI MATEMATICA CONTENUTI. PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

Anno 1. M.C.D. e m.c.m. fra monomi

Anno 1. M.C.D. e m.c.m. fra monomi Anno 1 M.C.D. e m.c.m. fra monomi 1 Introduzione In questa lezione impareremo come calcolare il massimo comune divisore (M.C.D.) e il minimo comune multiplo (m.c.m.) di due o più monomi. Infine introdurremo

Dettagli

Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche

Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche 1 Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche, che è verificata solo per particolari valori che vengono attribuiti alle variabili. L espressione che si

Dettagli

Massimo comun divisore

Massimo comun divisore Massimo comun divisore Da Wikipedia, l'enciclopedia libera. In matematica, il massimo comun divisore (M.C.D.) di due numeri interi, che non siano entrambi uguali a zero, è il numero naturale più grande

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base AREE QUADRATO Area = lato * lato lato = Area Area = diagonale * diagonale diagonale = Area : 2 2 RETTANGOLO Area = base * altezza base = area : altezza altezza = area : base TRIANGOLO Area = base * altezza

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico

Dettagli

B3. Scomposizione di polinomi

B3. Scomposizione di polinomi B3. Scomposizione di polinomi Quando si calcola una espressione contenente solo prodotti di polinomi si ottiene un polinomio, che è il risultato dell espressione. La scomposizione in fattori di polinomi

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale.

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale. Definizione di monomio Un monomio è un'espressione matematica che consiste in un prodotto di fattori qualsiasi, siano essi numerici o letterali I fattori letterali hanno per esponente un numero naturale

Dettagli

Elementi sulle diseguaglianze tra numeri relativi

Elementi sulle diseguaglianze tra numeri relativi Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b

Dettagli

Equazioni frazionarie e letterali

Equazioni frazionarie e letterali Equazioni frazionarie e letterali 17 17.1 Equazioni di grado superiore al primo riducibili al primo grado Nel capitolo 15 abbiamo affrontato le equazioni di primo grado. Adesso consideriamo le equazioni

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI Sezioni Associate: Scuole Secondarie di I grado Aldo Moro e la Sua Scorta di Ragogna e Pellegrino da S.D. di San Daniele del Friuli Istituto Statale

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

PIANO DI LAVORO DEL DOCENTE anno scolastico 2016/2017. Classe e Indirizzo 1^B AFM n. ore settimanali: 4 Monte orario annuale: 132

PIANO DI LAVORO DEL DOCENTE anno scolastico 2016/2017. Classe e Indirizzo 1^B AFM n. ore settimanali: 4 Monte orario annuale: 132 PIANO DI LAVORO DEL DOCENTE anno scolastico 2016/2017 Prof. BUGNA CINZIA Classe e Indirizzo 1^B AFM n. ore settimanali: 4 MATERIA MATEMATICA Monte orario annuale: 132 CONOSCENZE INSIEMI NUMERICI Ripasso

Dettagli

Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni numeriche

Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni numeriche PROGRAMMAZIONE MATEMATICA 2010-2011 CLASSE 1D prof. Giuseppe Giacomuzzi Competenze Abilità capacità Competenze Abilità capacità Utilizzare le tecniche e le procedure del calcolo per risolvere espressioni

Dettagli

5. SCOMPOSIZIONI E FRAZIONI

5. SCOMPOSIZIONI E FRAZIONI MATEMATICA C3 ALGEBRA 5. SCOMPOSIZIONI E FRAZIONI Wicker Composition photo bby: Cobalt3 taken from: http://www.flickr.com/photos/cobalt/3945539/ License: creative commons attribution share alike.0 SCOMPOSIZIONI

Dettagli