= (1 / t ) R ( 1 - (1 + t )-n ) C = ( R/t ) ( 1 - (1 + t )-n ) C < R (1/t) ( 1 - ( 1 + t )-n ) R/t ( 1 + t )-n < R/t C. n > log (1/a) / log (1+t )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "= (1 / t ) R ( 1 - (1 + t )-n ) C = ( R/t ) ( 1 - (1 + t )-n ) C < R (1/t) ( 1 - ( 1 + t )-n ) R/t ( 1 + t )-n < R/t C. n > log (1/a) / log (1+t )"

Transcript

1 1 RENDITE RENDITA Pagamnto priodico (n volt) di somma R, t intrss (fisso rifrito a ogni priodo) Valor attual n pagamnti futuri ( capital) C = i=1,n ( 1 + t )-i R = i=1,n i R [con = (1 + t ) -1, 1/ = 1 + t, t = (1- ) / C = i=1,n i R = i=0,n-1 i R = ( 1 - n ) / (1 - ) R = (1 / t ) R ( 1 - (1 + t )-n ) Formula bas C = ( R/t ) ( 1 - (1 + t )-n ) C = C(n,R,t) Linar in C R, C = C(t) dcrscnt risptto a t ( R = R(t) crscnt ) C = C(n) crscnt risptto ad n ( R R(n) dcrscnt) [Dall vari formul si ha anch C < nr, R > tc ] S n C ( R/t ) (rndita infinita) Fissato t s R > t C smpr possibil dtrminar minimo n t.c C < R (1/t) ( 1 - ( 1 + t )-n ) Condizion quival a R/t ( 1 + t )-n < R/t C (1 + t) n < 1 t C / R = a, 0 < a <1 - n log( 1 + t ) < log(a) n log( 1 + t ) > - log( a) = log(1/a) n > log (1/a) / log (1+t ) Alcuni problmi sull rndit comportano ch il capital raggiunga il valor W tra k ( n? ) anni. In qusto caso basta ricordar/applicar ch

2 2 RENDITE il capital attual C dara origin a C(1+t)k. Ogni capital (vrsamnto ) R al tmpo j da origin al tmpo k al capital R(1+t)k-j Quindi i vrsamnti R ai vari tmpi 1,, n producono complssivamnt (al tasso t) al tmpo n i=1,n (1 + t )n-i R = (1 + t )n i=1,n (1 + t )-i R = C (1+t)n C (1+t)n = (R/t) ( 1 - ( 1 + t )-n ) (1+t)n = (R/t) ( (1+t)n -1 ) Intrss non linar sono possibili stim & calcoli 1) (stima molto grzza ) (1+t)n > (1+nt) (1+t)-n > -1/(1+nt) C = R (1/t) (1-(1+t) -n ) > R (1/t) (1-1/(1+nt)) = nr/(1+nt) t > (R/C -1/n ) = t1 [ la valutazion ultrior C(1+nt) > nr ] 2) (stima ragionvol solo s (1+t)-n molto piccolo (n molto grand ) n*t>300 (330?) ) C = (R/t) (1-(1+t)-n ) < (R/t) t < R/C = t2 si ha anch com limit suprior C = i=1,n ( 1 + t )-i R < i=1,n R(1+t)-1 =(nr ) (1+t)-1 C (1+t) C < nr t < (nr-c)/c= n(r/c)-1 Un ultrior stima smplic potrbb ssr la mdia tra t 1 t 2 cio t12 = R/C - 1/ (2 n) 3) Si puo anch usar la rlazion mdia aritmtica-mdia gomtrica infatti

3 3 RENDITE (1/n) i=1,n (1+t)-i i=1,n (1+t)-i )1/n = (1+t)-n(n+1)/2n = (1+t)-(n+1)/2 pr cui infin i=1,n (1+t)-i n (1+t)-(n+1)/2 C = i=1,n (1+t)-i R n R (1+t)-(n+1)/2 (1+t) (nr/c) 2/(n+1) t (nr/c) 2/(n+1) -1 4) mtodo itrativo Trovar t noti n R C quival a risolvr l quazion non linar (in t) F(t) = C con F(t) = (R/t) (1-(1+t) -n ) E possibil scrivr la rlazion anch t = R/C (1-(1+t)-n ) = H(t) ch si puo prstar ad itrazioni tipo punto fisso. Infatti si ha H (t) = nr/c (1+t)-n-1 t >0 (1+t)i (1+t)n alla soluzion) nr (1+t)-n < i=1,n R(1+t)-i = C, (alla soluzion ) n (R / C) (1+t)-n < 1 ovvro H (t) < (1+t) -1 < 1 La formula t+ = H(t) si puo scrivr smplicmnt t+ = R/C (1-(1+t)-n ) = (1/C) t C(t,nR) ovvro t+ = t (C(t)/C ) Risultano pro piu vloci altri mtodi ( mtodo di Nwton, cc ). Una buon punto inizial puo ssr il valor

4 4 RENDITE R / C - 1 / (2n) = (t1+ t2) / 2 Classich applicazioni dll rndit i) Pagamnto di un dbito (mutuo/prstito) In molti casi il pagamnto di un dbito avvin attravrso una rstituzion ratal (n anni ma anch smstri msi cc ) Caso classico : un capital finanzia in part l acquisto di una casa il rimborso avvin attravrso un pagamnto priodico di una somma costant ii) Costituzion di un capital Un capital C a tasso t divnta dopo n anni una somma S = C(1+t)n E possibil accumular la somma S al tmpo n attravrso il pagamnto pr n anni di una rndita R (tasso t) quivalnt al capital (valor attual C ) a condizion ch l somm vrsat siano progrssivamnt smpr invstit a tasso t. Esmpio Funziona scondo qusto schma il mccanismo dl TFR. E prvisto un pagamnto annual (part dlla rtribuzion) un rndimnto fissato (lgato all inflazion) Il numro n dipnd dalla durata (ta dl pnsionamnto/fin rapporto). Il capital accumulato puo ssr trasformato, almno in part, in una rndita (di durata incrta) iii) Confronto acquisto/ affitto In alcuni casi occorr dcidr tra alcun situazioni Puo intrssar dcidr tra un acquisto (przzo W) o il possibil affitto annual (A ) pr un lungo priodo (n anni). Una possibil indicazion il confronto tra il capital W il capital il valor attual (tasso t) dlla rndita gnrata dall affitto Un scondo caso il confronto tra du possibili macchinari quivalnti ma di przzi divrsi (M1 M2), di durata divrsa (n1 n2 ) sps annuali di gstion divrs (G1 G2) A tasso t il macchinario 1 prvd un costo C1 = M1 + (rndita G1 pr n1 anni) s vntualmnt rinnovato quival ad una rndita C1 pagata ora succssivamnt ogni n1 anni Il confronto tra i costi ( l rndit ottnut ) prmtt di calcolar il macchinario piu conomico ( s si vuol la rndita annual quivalnt.) iv) Indicazion valor azion Alcun socit pr azioni distribuiscono priodicamnt una part dgli utili ( dividndi). Puo intrssar, noto il tasso t, supponndo i dividndi costanti nl tmpo, il valor attual dlla rndita infinita confrontar tal valor con il valor di borsa dll azion.

5 5 RENDITE v) Franchising (acquisto diffrito) Alcuni contratti (franchising) prvdono ch sia possibil affittar un bn pr k anni pagando un affitto priodico A al trmin di k anni sia possibil (ma non obbligatorio) acquistar la proprita dl bn pagando una somma ora stabilita S (maxi rata final) Puo intrssar confrontar (pr smpio) - il costo dll acquisto immdiato W - il valor attual attual dlla rndita A (k anni) il valor attual dl riscatto S - il costo dll acquisto immdiato attravrso una somma dll rat costanti (altra rndita) vi) Immobil : usufrutto/ nuda proprita In alcuni casi possibil acquistar la nuda proprita di un bn (s. immobil) a costo C risparmiando un valor W risptto all acquisto complto. S si suppon ch l immobil sara disponibil tra n anni ( in alcuni casi n noto, in altri solo possibil stimarlo) il risparmio W quival ad una rata R ( n anni a tasso t). Il confronto tra R, il possibil affitto dll immobil, il possibil rndimnto dlla somma impgnata ( = C ) da indicazioni sulla complssiva convninza dll oprazion. Rimborso di un capital (cnno) Un caso di calcolo dll rndita quando si contra un mutuo. Un capital C vin rimborsato in n priodi ( anni o smstri) al tasso t. Un altro modo di rimborso dl dbito potrbb ssr il pagamnto pr gli anni 1..n dll intrss tc il rimborso final (anno n) dl capital C Il pagamnto complssivo risulta nr poich [ C = i=1,n ( 1 + t )-i R < i=1,n R(1+t)-1 =(nr ) (1+t)-1 (nr) > C (1+t) ] da conti prcdnti C > nr/(1+nt) C(1+t) < nr < C (1+nt)

6 6 RENDITE Il pagamnto risulta comprso tra qullo prvisto pr la rstituzion dopo un priodo qullo complssivamnt prvisto nl caso di soli intrssi con rstituzion final dl capital. Dalla formula bas C = ( R/t ) ( 1 - (1 + t )-n ) tc = R - R(1 + t )-n < R La somma R costant corrispond quindi ad un pagamnto costant R = tc +E con E = R(1 + t )-n [Altra formula : C = ( R/t ) ( 1 - (1 + t )-n ) = ( R/t ) ( (1 + t )n -1)/ (1 + t )n R = tc((1 + t )n) / ( (1 + t )n -1) E = R(1 + t )-n = (tc ) / ( (1 + t )n -1 ) ] Una somma S,invstito al tasso t, produc dopo k anni S(1+t) k La somma E pagata ai tmpi 1,..n produc quindi (tasso t, tmpo n ) (E) j=0,n-1 (1 + t ) j = (E/t) ( (1 + t )n -1 ) = Sostitundo si ottin ( (1 + t )n -1 ) ( R(1 + t )-n ) / t = ( R/t ) ( 1 - (1 + t )-n ) = C Quindi la somma E, pagata oltr agli intrssi, invstita a tasso t, produrrbb al tmpo n il capital da rstituir. Si puo immaginar l importo vrsato in una banca ch al tmpo n lo rstituisc al crditor. Chi fa (implicitamnt ) da banca in ralta il crditor ch incassa l somm R=tC+E In casi normali una banca vra corrispondrbb un tasso di intrss s < t

7 7 RENDITE ( chi contra il mutuo piu rischioso dlla banca) : risulta convnint pagar R anzich pagar solo tc, rinnovar il dbito risparmiar R-tC a mno ch non si abbia la possibilita di un invstimnto ch rnda piu di t. FUNZIONI EXCEL UTILI {Notazion : C capital, R rata, t tasso intrss n numro priodi Sgni : + ricvuto pagato quindi sgno opposto pr C R } 1) Rata = PMT(t,n,-C) 2) Capital (valor attual rndita) = PV( t,n,-r) 3) Tasso intrss = RATE(n,-R,C) 4) Numro priodi fissati capital rata tasso = NPER(t,-R,C) { calcola la soluzion di quazion quindi valor non intro } 5) Valor futuro di pagamnti priodici = FV(t,n,-R) [ NB: a) t puo anch rapprsntar un altro tasso s : inflazion/rinvstimnto cc b) FV acctta n ngativi FV(t,-n,-R) da il valor attual di un flusso priodico ( n priodi) corrispondnti a R {= PV(t,n,-R)} ] NOTA Nll vrsioni italian di xcl l vari funzioni si chiamano PMT RATA PV VA RATE TASSO NPER NUM.RATE FV VAL.FUT

8 8 RENDITE Nl sgunt schma sono indicat l soluzioni di alcuni problmi classici lgati all rndit RENDITE Incognita FORMULA Funzion xcl Sgni : + ricvuto pagato quindi sgno opposto pr C R C = C (capital attual) C ( R/t )* ( 1 - (1 + t ) -n ) = PV( t,n,-r) R (rata) R = t C (1+t)n / ( (1+t)n 1 ) N (numro rat (minimo ) n > log (1/a) / log (1+t ) a= 1 t C / R [in italiano VA] = PMT(t,n,-C) [in italiano RATA] (soluzion dll quazion valor non intro) = NPER(t,-R,C) [in italiano NUM.RATE ] Tasso (stima grossolana ) (R/C -1/n ) < t < R/C (valor satto) = RATE(n,-R,C) [in italiano TASSO] CF capital futuro (dopo n anni) C (1+t) n = ( R/t )* ( (1+t)n -1 ) = FV(t,n,-R) [ in italliano VAL.FUT R variabil E possibil ch la rata R sia variabil. E facil studiar i du casi Rk+1 = q Rk, q>0, Rk+1 = Rk + s, s >0

9 9 RENDITE Caso Rk+1 = q Rk Nl caso si pon pr cui R0 = R1 /q Rk =qk R0 C = i=1,n Ri ( 1 + t )-i C = i=1,n ( 1 + t )-i qi R0 = i=1,n i R0 [con = q(1 + t )-1, 1/ = (1 + t)/q, (1- ) = 1- q / (1 + t )-1 = (1+t-q)/(1+t) C = i=1,n i R0 = i=0,n-1 i R0 = ( 1 - n ) / (1 - ) R0 = (1- qn(1+t)-n) qr0/(1+t) (1+t)/(1+t-q) = R1/(1+t-q) (1- qn(1+t)-n) Caso R k+1 = R k + s si ha C = i=1,n Ri ( 1 + t )-i [ = R 1 ( 1 + t )-1 + R 2 ( 1 + t ) R n-1 ( 1 + t )-(n-1) +R n ( 1 + t )-n = R1( 1 + t ) -1 + (R1+ s) ( 1 + t ) (R1+ (n-1)s) ( 1 + t ) -n C(1+t) = i=1,n Ri ( 1 + t )-i+1 [ = R1 + R2( 1 + t )-1 + R3( 1 + t ) Rn-1 ( 1 + t )-(n-2), +Rn ( 1 + t )-(n-1) R1 + (R1+ s) ( 1 + t ) ( R1+ (n-1)s ) ( 1 + t )-n-1

10 10 RENDITE tc = C(1+t)-C = R1 + s i=1,n-1 ( 1 + t )-i - Rn ( 1 + t )-n [ R n = R 1 + (n-1)s = R 1 + ns - s ; - R n = - R 1 -ns +s ] tc = R1 + s i=1,n ( 1 + t )-i - R1 ( 1 + t )-n - ns ( 1 + t )-n Ct = (R+s/t + ns ) ( 1-( 1 + t )-n ) -ns C = (R+s/t + ns) (1/t) ( 1-( 1 + t )-n ) - ns/t Nlla tablla sono riassunt l formul principali rlativ al capital quivalnt ad una rndita (costant o variabil) Standard :rata costant (n anni ) C = ( R/t ) ( 1 - (1 + t )-n ) Numro rat infinito Rata crscnt Rk+1 = Rk + s Rata non costant Rk+1 = q Rk Rk =qk R0 C = R/t C = (R+s/t + ns) (1/t) * ( 1-( 1 + t )-n ) - ns/t C = R1/(1+t-q) (1- qn(1+t)-n) ***

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d)

Esempi domande. PIL nominale nell'anno t *100 PIL reale nell'anno t. Dalla definizione di deflatore discende che è vera anche la d) Esmpi domand A) S il cofficint di risrva obbligatoria è dl 5% allora il moltiplicator montario a) è pari a b) è pari a 3 c) è pari a 4 d) è pari a 5 ) nssuna l prcdnti RISOSTA: nlla formulazion più smplic

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q.

Forza d interesse. Università degli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Univrsità dgli Studi di Catania Facoltà di Economia D.E.M.Q. Fora d intrss Lgg di capitaliaion a du variabili Opraion finaniaria : -C + C C+ Intrss prodotto in [ + ] da un capital C invstito

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1 " k " 3) e

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1  k  3) e Elmnti di Analisi Matmatica Ricrca Oprativa prova dl 5 gnnaio 06 ) Discutr il sgunt problma di Programmazion Linar: Trovar il massimo di p,, = 8 + + 8 con i vincoli k 0 ( " k " ) " + + 5 # + + = % 7 +

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

bobozza RISOLUZIONE N.95 /E Roma, 27 settembre 2011 Al Ministero dell Economia e delle Finanze

bobozza RISOLUZIONE N.95 /E Roma, 27 settembre 2011 Al Ministero dell Economia e delle Finanze - bobozza Dirzion Cntral Srvizi ai Contribunti Sttor Gstion Tributi Ufficio Gstion Dichiarazioni RISOLUZIONE N.95 /E Roma, 27 sttmbr 2011 Al Ministro dll Economia dll Finanz Dipartimnto dll Finanz Dipartimnto

Dettagli

DESCRIZIONE ALIQUOTA DETRAZIONE

DESCRIZIONE ALIQUOTA DETRAZIONE I.M.U. (IMPOSTA MUNICIPALE PROPRIA) ANNO 2012 Dlibra di Consiglio Comunal n. 12 dl 24 april 2012 Art. 13 dl D.L. 6.12.2011, n. 201 convrtito in L. n. 214/2011, com modificato dal D.L. 2.3.2012, n. 16,

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

(x) diversi da zero per tutti gli x nel loro dominio, mediante la prima proprietà invariantiva, può essere trasformata nell'equivalente:

(x) diversi da zero per tutti gli x nel loro dominio, mediante la prima proprietà invariantiva, può essere trasformata nell'equivalente: Disquazioni razionali intr fratt Prmssa La risoluzion dll disquazioni rapprsnta un capitolo ssnzial nllo studio dll funzioni d è quindi un argomnto di studio ch, affrontato ni primi anni dl Lico scintifico,

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Scadenze dal 16 al 28 febbraio 2017

Scadenze dal 16 al 28 febbraio 2017 Trviso, lì 13 fbbraio 2017 Ai Signori Clinti Loro Sdi Circolar N. 04/B / Scadnz / Fbbraio / 2017 Scadnz dal 16 al 28 fbbraio 2017 Fbbraio 2017 l m m g v s d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

ESERCITAZIONE N.3 MODELLO IS/LM IN ECONOMIA APERTA

ESERCITAZIONE N.3 MODELLO IS/LM IN ECONOMIA APERTA ESERCITAZIONE N.3 ODELLO IS/L IN ECONOIA AERTA ESERCIZIO 1 r stimolar l attività conomica il govrno di un conomia aprta oprant in rgim di cambi flssibili dcid di procdr ad una riduzion dll impost. a) Spigat

Dettagli

Curva di domanda. Curva di domanda

Curva di domanda. Curva di domanda Curva di domanda Schda/curva di domanda Rlazion fra la quantità domandata di un crto bn d il suo przzo unitario uantità dl bn ch il consumator è disposto ad acquistar al variar dl przzo dl bn Curva di

Dettagli

TRUST 1. TRUST REGION (Pb min F(x) )

TRUST 1. TRUST REGION (Pb min F(x) ) TRUST 1 TRUST REGION (Pb min F(x) ) A partir da un punto x si costruisc un modllo m (p) = F(x) + F(x) t p + 1/2 p t Bp [B =?, vari possibilita s. B = I, B = D (diagonal), B df pos, B = 2 F(x), B = 2 F(x)

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

EQUAZIONI E DISEQUAZIONI TRASCENDENTI EDT

EQUAZIONI E DISEQUAZIONI TRASCENDENTI EDT EDT EQUAZIONI E DISEQUAZIONI TRASCENDENTI I critri di quivalnza pr l quazioni sono stati introdotti nll'unità «EQUAZIONI» (paragrafo ). Nlla prsnt unità, con la sigla CFEE indichiamo il critrio fondamntal

Dettagli

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel SIACATO PENSIONATI ITALIANI 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.150 FUNZIONE PUBBLICA 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.310 In una situazion di grav carnza conomica pr i comuni pr

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

CORSI ACCADEMICI DI 1 E 2 LIVELLO RINNOVO ISCRIZIONE A.A. 2018/2019

CORSI ACCADEMICI DI 1 E 2 LIVELLO RINNOVO ISCRIZIONE A.A. 2018/2019 Al Dirttor dl Consrvatorio di Musica di Mantova CORSI ACCADEMICI DI 1 E 2 LIVELLO RINNOVO ISCRIZIONE A.A. 2018/2019 Domanda da prsntar dal 1 Luglio al 31 Luglio 2018 MARCA DA BOLLO 16,00 Il Sottoscritto

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Ottimizzazione economica degli scambiatori di recupero.

Ottimizzazione economica degli scambiatori di recupero. Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Ottimizzazion conomica dgli scambiatori di rcupro Quadrni dl Dipartimnto MARCO GENTILINI OTTIMIZZAZIONE

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Principi d applicazioni dl mtodo dgli lmnti finiti Formulazion bas con approccio agli spostamnti METODO DEGLI ELEMENTI FINITI PER N PROBLEMA 2D Si considri un problma piano, il cui dominio sia qullo rapprsntato

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Se A rango max & G pos def su ker (A) K non singolare

Se A rango max & G pos def su ker (A) K non singolare Programmazion quadratica min Q(x)= 1/2 x t Gx +d t x vincoli Ax=b Q(x)= Gx+d, (Ax-b)= A t S x* ottimo sist vttor m* (Gx* +d ) +A t m*=0 & Ax* = b S K la matric G A t A 0 K (x,m)= (-d,b) S x (punto ) stima

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

PLC: S Di seguito un breve elenco delle principali nuove caratteristiche:

PLC: S Di seguito un breve elenco delle principali nuove caratteristiche: Industry Automation USO ESTERNO Nr. 2011/1.2/18 Data: 27.5.11 PLC: S7 300 Rilascio dll vrsioni innovat dll S7-300 Compatt La famiglia di controllori SIMATIC S7-300 si è arricchita con l nuov vrsioni dlla

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli