Errata Corrige Teoria della probabilità e variabili aleatorie con applicazioni McGraw-Hill-Italia: marzo ISBN:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Errata Corrige Teoria della probabilità e variabili aleatorie con applicazioni McGraw-Hill-Italia: marzo ISBN:"

Transcript

1 Errata Teoria della probabilità e variabili aleatorie con applicazioni McGraw-Hill-Italia: marzo 005. ISBN: Alberto Bononi e Gianluigi Ferrari

2 5 Estrazione di carta da mazzo da 54 Estrazione di carta da mazzo da 5 8 A i A j i k A i A j Ø i j 9 F N (S f N (S 9 F N (E 0 f N (E 0 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 6 : : : : : : : : : : (6, (6,... (6, 5 (6, 6 (6, (6,... (6, 5 (6, 6 8 D n,k n(n (n...(n (n (k n! (n k! D n,k n(n (n...(n (k n! (n k! 6 P {scala reale} P {scala reale} Ottavo gruppo (8, 9, 0, J, Q, K Ottavo gruppo (9, 0, J, Q, K 7 P {poker}. 0 4 P {poker} P {full} P {full} P {flush} P {flush} P {scalasemplice} P {scalasemplice} P {tris} P {tris}. 0 9 ci sono ( 4 possibili combinazioni per T3 ci sono ( 4 possibili combinazioni per T3 9 possiamo concludere che ci sono possiamo concludere che ci sono casi favorevoli casi favorevoli 9 P {doppiacoppia} P {doppiacoppia} P {coppia} 0. P {coppia} 0.4 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 (, (,... (, 5 (, 6 33 : : : : : : : : : : (6, (6,... (6, 5 (6, 6 (6, (6,... (6, 5 (6, 6 October 4, 005

3 3 34 l evento B {(E, O (3, } {(O, E (, 3} l evento B {(E, O (3, } {(E, O (, 3} 40 P {(A B} P(B A 3P(A 3 P {(A P(B 3 B} P(B A 3P(A 3 P(B 69 Due treni X ed Y arrivano ä casoïn stazione tra le 8:00 e le 8:0. Il treno X si ferma 4 minuti, mentre Y si ferma 5 minuti. Assumendo che X e Y... 6 Per la formula di Bayes si ha Per la definizione di probabilitá condizionata si ha Due treni X ed Y arrivano ä casoïn stazione tra le 8:00 e le 8:0. Assumendo che X e Y P (B (t 4 t/0 P (B (t 4 t3 /0 77 il grafico di una PDF f X ( che contiene il grafico di una PDF f ( che contiene 80 P (E 0.3 P (E { n i n P i < X i + } f ( { n i n P i < X i + } f ( i 99 e ( η σ du πσ du e ( η σ π σ e (u η σ du πσ du e (u η σ π σ 00 f ( λe λ U( f X ( λe λ U( 0 0 du b a b a se a b a a du b a b a 04 p i e λ λ i λ λi p i! i e i! se a b October 4, 005

4 4 04 i0 p i e λ i0 λ i i! e λ e λ i0 p i e λ i0 λ i i! e λ e λ 05 supponiamo di voler calcolare P { 0} supponiamo di voler calcolare e P { } P {X 0} e P {X } 0 l incognita F Y l incognita F Y (y g ( G g ( G 3 P {Y G} P {X > } F X ( P {Y G} ( P {X } F X 5 se per un vettore ŷ si ha se per un vettore ŷ si ha g(x ŷ... allora P {Y ŷ} g( ŷ... allora P {Y ŷ} P { 0 < < } P { 0 < X < } 5 mostrato in Figura 6.4. mostrato in Figura 6. 7 P {Y G} P {X } F X ( P {Y G} P {X } F X ( 7 in Figura 6.4. in Figura sugli intervalli (, G e G, sugli intervalli (, e, 8 Y g (X a + b Y g (X ax + b 0 g ( a cos ( i + θ g ( a cos ( i + θ 33 dq ( /d / πe / dq ( /d X / πe / 47 E [cy + yz E [cg (X + dh (X E [cy + dz E [cg (X + dh (X October 4, 005

5 5 56 Nelle note:... nei corsi di ingegneria usa e jωx al posto di e jωx Nelle note:... nei corsi di ingegneria usa e jωt al posto di e jωt 58 E [X φ ( X (0 n ( p p + np E [X φ ( X (0 n (n p + np ( 59 λ y p e y dy ( ( λ α y p e y dy ( α λ s Γ(p 0 λ s α s Γ(p 0 α s 73 f X ( X t f X( F X U ( t f (c la condizione di normalizzazione + f X ( Md si rispettata per ordinate y comprese fra y 0 e 0 y d. X ( X t f X( F X U ( t (t... la condizione di normalizzazione + f X ( Md sia rispettata... per ordinate y comprese fra y c e y d. P {(, y D} f XY (, y ddy (,y D P {(X, Y D} f XY (, y ddy (,y D 06 f XY (, y πσ X σ Y ρ " ( η X e ρ σ X ρ ( η X(y η Y σ X σ Y ( y η + σ Y # Y f XY (, y πσ X σ Y ρ» e ( ηx ρ σ X ρ ( η X(y η Y + (y η Y σ X σ Y σ Y f XY f X ( f Y (y dove f X é la PDF... e f Y é la PDF... f XY f X ( f Y (y dove f X ( é la PDF... e f Y (y é la PDF... 7 Calcolo della CDF di Y g (X, Y Calcolo della CDF di Z g (X, Y 3... non si sovrappone al rettangolo f G (u,... 8 Θ arctan ( Y X π + arctan ( Y X, π Θ π, π Θ 3π... non si sovrappone al rettangolo f X (u,... arctan ( Y Θ X, X > 0 π + sgn (Y arctan ( Y X, X < 0 October 4, 005

6 6 8 θ h (, y arctan ( y > 0 π + arctan ( y < 0 θ h (, y arctan ( y > 0 πsgn (y + arctan ( y < 0 60 f X (w f Y (w e w U ( f X (w f Y (w e w U (w 6 f ( 3 f (,, 3 63 f ( 3 f (, 3 E [g (X, Y g (, yf XY (, y ddy E [g (X, Y g (, yf XY (, yddy 63 E [g (X, Y g ( i, k p XY ( i, y k i j E [g (X, Y g ( i, y k p XY ( i, y k i j 83 E X i i E N [E X i N n i [ n E N [E X i N n i [ n E N [E X i i ϕ (np {N n} n E X i i E N [E X i N i [ n E X i N n P {N n} n i ϕ (np {N n} n October 4, 005

7 7 86 [ n n Cov a i X i, b j Y j n i i j j n a i b j Cov [X i, Y j [ n m Cov a i X i, b j Y j n i i j j m a i b j Cov [X i, Y j [ n 86 E [Z E j b jy j [ n j b m jν j E [Z E j b jy j m j b jν j 87 [ n Cov a i X i, i Cov [Z, Z n b j Y j j [ n Cov a i X i, i Cov [Z, Z m b j Y j j E [(Z E [Z (Z E [Z [( n n E a i X i a i µ i i ( n b j Y j j i n b j ν j j [ n E a i (X i µ i E n i i [ n n i n b j (Y j ν j j n a i b j (X i µi (Y j ν j j n a i b j E [(X i µ i (Y j ν j j i j n a i b j Cov [X i, Y j E [(Z E [Z (Z E [Z [( n n E a i X i a i µ i i ( m b j Y j j i m b j ν j j [ n E a i (X i µ i E n i i [ n n i m b j (Y j ν j j m a i b j (X i µi(y j ν j j m a i b j E [(X i µ i (Y j ν j j i j m a i b j Cov [X i, Y j 90 P { X n η X < ǫ } > σ Xn ǫ P { Xn η X < ǫ } σ Xn ǫ October 4, 005

8 Var X i i Var X i i... [ N E i Var[X i N E i Var [X i +Var i E [X i N +Var i E [X i 300 dove η [E [X...[X n T η X [E [X...[X n T 308 E [XY + + f XY (, y ddy E [XY + + yf XY (, y ddy 30 f Y (y y 0 f XY (, y e y d ye y f Y (y y 0 e y d ye y f XY (, y d 34 φ Z (s E [ e sz n i φ Z (s φ Z (s E [ e sz n i φ X i (s 30 φ Y (s + s σ + O (s 3 φ Y (s + s σ + O (s 30 dove O (s é un infinitesimo di ordine s, cio una funzione di s tale che lim s 0 O(s s 0 30 lim n φ Zn (s ( n lim n [ + s σ s + O 3 nσ σ 3 n 3/ dove o (s é un infinitesimo di ordine s, cio una funzione di s tale che lim s 0 o(s s 0 lim n φ Zn (s ( n lim n [ + s σ s + O nσ σ n October 4, 005

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio Variabili aleatorie multiple X = (X 1,..., X n ) vettore aleatorio F X (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) caso particolare n = 2 (variabile doppia) F X,Y (x, y) = P(X x, Y y) V.a. discreta: (X,

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie Variabili (vettori e matrici) casuali Variabile casuale (o aleatoria): Variabile che può assumere un insieme di valori ognuno con una certa probabilità La variabile aleatoria rappresenta la popolazione

Dettagli

CP110 Probabilità: Esame 27 gennaio Testo e soluzione

CP110 Probabilità: Esame 27 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 27 gennaio, 213 CP11 Probabilità: Esame 27 gennaio 213 Testo e soluzione 1. (6 pts) Tre amici dispongono di 6 monete da un euro e

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

Lezione 13 Corso di Statistica. Domenico Cucina

Lezione 13 Corso di Statistica. Domenico Cucina Lezione 13 Corso di Statistica Domenico Cucina Università Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 20 obiettivi della lezione comprendere il concetto di variabile aleatoria continua familiarizzare

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 6: Combinazioni di variabili aleatorie

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 6: Combinazioni di variabili aleatorie Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini ezione 6: Combinazioni di variabili aleatorie Combinazioni di più variabili aleatorie continue Distribuzione

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Analisi Matematica 2. Prove Parziali A.A. 2012/2017

Analisi Matematica 2. Prove Parziali A.A. 2012/2017 Analisi 2 Polo di Savona Analisi Matematica 2 Prove Parziali A.A. 2012/2017 1- PrPzAmT.TEX [] Analisi 2 Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale 23/11/2011 Si consideri la funzione

Dettagli

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 13 Aprile 211 CdL in STAD, SIGAD - docente: G Sanfilippo Motivare dettagliatamente le risposte su fogli allegati e scrivere le risposte negli appositi

Dettagli

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 4 Gennaio 5 CdL in STAD, SIGAD Motivare dettagliatamente le risposte su fogli

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 26 Giugno 2018 Scritto del 26-6 -18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi

Università di Pavia Econometria. Richiami di teoria delle distribuzioni statistiche. Eduardo Rossi Università di Pavia Econometria Richiami di teoria delle distribuzioni statistiche Eduardo Rossi Università di Pavia Distribuzione di Bernoulli La variabile casuale discreta Y f Y (y; θ) = 0 θ 1, dove

Dettagli

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile

Dettagli

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X

Dettagli

Generazione di distribuzione di probabilità arbitrarie

Generazione di distribuzione di probabilità arbitrarie Generazione di distribuzione di Abbiamo visto come generare eventi con distribuzione di uniforme, ed abbiamo anche visto in quale contesto tali eventi sono utili. Tuttavia la maggior parte dei problemi

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

LEZIONE 2.6. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.6 p. 1/15

LEZIONE 2.6. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.6 p. 1/15 LEZIONE 2.6 p. 1/15 LEZIONE 2.6 corso di statistica Francesco Lagona Università Roma Tre LEZIONE 2.6 p. 2/15 variabili aleatorie continue consideriamo la distribuzione del fatturato mensile in una popolazione

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

Coppie di variabili aleatorie

Coppie di variabili aleatorie Coppie di variabili aleatorie 1 Coppie di variabili aleatorie Definizione: Si definisce vettore aleatorio la coppia (,) dove,, sono definite sullo stesso spazio campione : S R, : S R (, ) : S R Esempio:

Dettagli

Richiami di probabilità e statistica

Richiami di probabilità e statistica Richiami di probabilità e statistica Una variabile casuale (o aleatoria) X codifica gli eventi con entità numeriche x ed è caratterizzata dalla funzione di distribuzione di probabilità P(x) : P(x)=Pr ob[x

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità e Statistica Esercitazioni a.a. 2009/200 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Variabili casuali I Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Il valore atteso del prodotto di v.a.i. Valore atteso (8)

Il valore atteso del prodotto di v.a.i. Valore atteso (8) Il valore atteso del prodotto di v.a.i. Valore atteso (8) Siano X,Y : Ω N v.a. indipendenti (per semplicità a valori in N) E(X Y) = k Nk P(X Y = k) = h i P(X,Y = h,i) h,i N = h i P(X=h) P(Y=i) h,i N =

Dettagli

CP410: Esame 2, 30 gennaio Testo e soluzione

CP410: Esame 2, 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 23-4, I semestre 3 gennaio, 24 CP4: Esame 2, 3 gennaio 24 Testo e soluzione Cognome Nome Matricola Firma . Per ogni n N, sia X n la variabile aleatoria

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-27/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. La successione di funzioni {f n } + n definite

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

MODELLI STATISTICI, RICHIAMI

MODELLI STATISTICI, RICHIAMI MODELLI STATISTICI, RICHIAMI Corso di Tecniche di Simulazione, a.a. 2005/2006 Francesca Mazzia Dipartimento di Matematica Università di Bari 11 Aprile 2006 Francesca Mazzia (Univ. Bari) MODELLI STATISTICI,

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Teoria dei Segnali 1

Teoria dei Segnali 1 Formulario di Teoria dei Segnali 1 Parte 2: Teoria della Probabilità 1 This documentation was prepared with LATEX by Massimo Barbagallo formulario di teoria dei segnali 1 Teoria della probabilità Denizioni

Dettagli

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 COGNOME e NOME... N. MATRICOLA... Esercizio 1. (V. 12 punti.) Supponiamo di avere due urne che

Dettagli

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x)

1. Si scelga a caso un punto X dell intervallo [0, 2], con distribuzione uniforme di densità. f X (x) = [0,2](x) Esercizi di Calcolo delle Probabilità della 3 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio.. Sia (X, Y ) un vettore aleatorio bidimensionale con densità uniforme

Dettagli

0 se y c 1 (y)) se c < y < d. 1 se y d

0 se y c 1 (y)) se c < y < d. 1 se y d Capitolo. Parte IX Exercise.. Sia X una variabile aleatoria reale assolutamente continua e sia (a,b) un intervallo aperto (limitato o illimitato) di R, tale che P(X (a,b)) =. Sia ϕ : (a,b) R una funzione

Dettagli

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti Capitolo 1 Elementi di Statistica Descrittiva 1.5 Esercizi proposti Esercizio 1.5.1 In questo caso n = 24 e, dopo aver ordinato i dati (usando il metodo stem-and-leaf per esempio), 3 4 4 5 5 5 6 6 7 7

Dettagli

Soluzione scritto 4 marzo 2011

Soluzione scritto 4 marzo 2011 .. Esercizio. Scrivere ANALISI VETTORIALE Soluzione scritto 4 marzo l integrale generale dell equaz. y + y tan(t) =, π < t < π ; un integrale particolare dell equaz. y + y tan(t) = t cos(t); un integrale

Dettagli

! # %# & # & # #( # & % & % ( & )!+!,!++

! # %# & # & # #( # & % & % ( & )!+!,!++ ! # %# & # & # #( # &! # % & % ( & )!+!,!++ ! # % & & ( ) +,.! / ( # / # % & ( % &,. %, % / / 0 & 1.. #! # ) ) + + + +) #!! # )! # # #.. & & 8. 9 1... 8 & &..5.... < %. Α < & & &. & % 1 & 1.. 8. 9 1.

Dettagli

{ } { } { } {( ) ( ) ( ) { } { } ( ) ( { } ( ) Valor medio statistico (o valore atteso): Se g(x) è una funzione di V.A., si ha:

{ } { } { } {( ) ( ) ( ) { } { } ( ) ( { } ( ) Valor medio statistico (o valore atteso): Se g(x) è una funzione di V.A., si ha: Variabili Aleatorie Valor medio statistico (o valore atteso: μ + { } ( = E = x f ( x dx Se g( è una funzione di V.A., si ha: + { ( } = ( ( E g g x f x dx Esempi di valore atteso di funzione di variabile

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

Modelli a code d attesa dei sistemi operativi

Modelli a code d attesa dei sistemi operativi Definizioni Preliminari Topologie Tandem (1 dispositivo I/O Tandem (2 dispositivi I/O) Coda chiusa Coda aperta Definizioni Preliminari variabili aleatorie: il risultato di un esperimento dall esito incerto

Dettagli

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012 Statistica I. Ingegneria Gestionale. Scritto del 17/07/01 Cerchiare, su questo foglio, le risposte corrette e risolvere per esteso gli esercizi sui fogli assegnati. Esercizio 1. Un operatore finanziario

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2011/12 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 0/ Esercizio Prova scritta del 7/06/0 Siano X e Y due v.a. indipendenti, con distribuzione continua Γ(, ). Si trovino la distribuzione di X Y e di (X Y ). Esercizio

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data:

Teoria dei Fenomeni Aleatori AA 2012/13. Il Modello Lognormale La funzione di densità di probabilità lognormale è data: Il Modello Lognormale La funzione di densità di probabilità lognormale è data: ( ln x a) 1 f ( x ) = exp x > 0 X b x b π in cui a e b sono due costanti, con b> 0. Se X è una v.a. lognormale allora Y lnx

Dettagli

Correzione Esercitazione 1. Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale. = n! k i!

Correzione Esercitazione 1. Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale. = n! k i! Correzione Esercitazione 1 Esercizio 1. La risposta alla domanda dell esercizio ci viene fornita dal coefficiente multinomiale ( n = n! k r k i! che ci dice in quanti modi possiamo mettere n oggetti in

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

CAPITOLO 9. Vettori Aleatori

CAPITOLO 9. Vettori Aleatori CAPITOLO 9 Vettori Aleatori 9 9 Vettori Aleatori 3 9 Vettori Aleatori In molti esperimenti aleatori, indicando con Ω l insieme dei possibili risultati, al generico risultato dell esperimento, ω Ω, sono

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI 1 Primo ordine - variabili separabili Sia dato il problema di Cauchy seguente: { y = a(x)b(y) Si proceda come segue y(x 0 ) = y 0 (1) Si calcolino le radici dell equazione b(y)

Dettagli

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti

Secondo appello di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano A.A. 2018/2019. Prof. M. Bramanti Secondo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 8/9. Prof. M. Bramanti Es. 6 7 Tot. Punti Cognome e nome in stampatello codice persona o n di matricola n d ordine

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

COMPITO DI SCIENZE NATURALI 23 gennaio Modulo di probabilità e statistica SOLUZIONI

COMPITO DI SCIENZE NATURALI 23 gennaio Modulo di probabilità e statistica SOLUZIONI COMPITO DI SCIENZE NATURALI 23 gennaio 22 Modulo di probabilità e statistica SOLUZIONI. In Svizzera, al primo gennaio di ogni anno, tutti i cittadini vengono sottoposti a vaccinazione contro l influenza

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

0 se x<0 x/2 se 0 x<1. 2/3 se 1 x<2 1 se x 2

0 se x<0 x/2 se 0 x<1. 2/3 se 1 x<2 1 se x 2 Teoria del 19.1.008 Test di:calcolo delle probabilità - studenti IOL docente: E.Piazza Una risposta a ciascuno dei 10 test qui assegnati è considerata valida se e soltanto se tutti i valori di verità relativisonostatiindicati

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016 Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016 CdL Sociologia e Criminologia Simone Di Zio Dove siamo MODULO 3. L Inferenza statistica 3.1 Probabilità e variabili casuali 3.2 Le tecniche di campionamento

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2013/2014 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2013/2014 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 13/14 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Ancona, 13 gennaio 14 1. In una data università, le studentesse

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 20/10/201 NOME: COGNOME: MATRICOLA: Esercizio 1 Se supponiamo

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1 Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio 2015 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Parte prima

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Parte prima Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Parte prima Università Roma Tre - Dipartimento di Matematica e Fisica 15 novembre 2017 Introduzione Introduzione In ogni misurazione sono

Dettagli

VARIABILI CASUALI DI USO COMUNE

VARIABILI CASUALI DI USO COMUNE + VARIABILI CASUALI DI USO COMUNE VARIABILE CASUALE UNIFORME UNIFORME DISCRETA xi pi /N /N...... N /N X~ U(N); X~ R(N) N Me = μ = )() Lezione 3 μ N = x i i= N pi = N + N i = = 6N i= (+ = μ μ = N = γ 0

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Stima puntuale di parametri Ines Campa Probabilità e Statistica -

Dettagli

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A)

Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 2016 Terza parte (Compito A) Politecnico di Milano, Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 - Seconda Prova - 2 Febbraio 216 Terza parte (Compito A) Sia data, per ogni valore del parametro reale

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

Funzioni di più variabili

Funzioni di più variabili Funzioni di più variabili Dr. Daniele Toffoli Dipartimento di Scienze Chimiche e Farmaceutiche, UniTS Dr. Daniele Toffoli (DSCF, UniTS) Concetti di calcolo 1 / 48 Outline 1 Generalità e rappresentazioni

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

Variabile aleatoria vettoriale

Variabile aleatoria vettoriale Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabile aleatoria vettoriale Sommario della lezione 4 Esperimenti combinati VA vettoriali La Gaussiana multidimensionale Medie e

Dettagli