Corso di Radioastronomia 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Radioastronomia 1"

Transcript

1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Seconda parte: antenne e telescopi radio e a microonde

2 Parte 2 Lezione 1 Le grandezze caratteristiche dei telescopi radio e a microonde

3 Bibliografia essenziale ( oltre al Pozar...)

4 Un sistema a microonde

5 Come osserva il cielo l'ottica di un telescopio?

6 Il fascio di antenna Antenna che punta una sorgente celeste

7 Il fascio di antenna Antenna che punta una sorgente celeste

8 Il fascio di antenna Antenna che punta una sorgente celeste

9 Il fascio di antenna Lobi laterali Antenna che punta una sorgente celeste

10 Il fascio di antenna Potenza normalizzata alla potenza massima: [Pn P / P(0,0)] Lobi laterali Angle (θ) Antenna che punta una sorgente celeste

11 Il fascio di antenna Potenza normalizzata alla potenza massima: [Pn P / P(0,0)] Lobi laterali Angle (θ) Antenna che punta una sorgente celeste

12 Il fascio di antenna Potenza normalizzata alla potenza massima: [Pn P / P(0,0)] La larghezza a metà altezza di un fascio di antenna è una stima della risoluzione angolare dell'antenna 0.2 Lobi laterali Angle (θ) Antenna che punta una sorgente celeste

13 Il fascio di antenna Potenza normalizzata in db: P(dB) = 10 log10(pn) Angle (θ)

14 Parametri di base di un'antenna

15 Angolo solido di antenna, FWHM L'angolo solido di antenna è l'integrale su 4p del fascio di antenna normalizzato Il fascio principale, o main beam, è la porzione del fascio di antenna ove P (θ,ϕ,ϕ) Pmax / 2. Se il fascio è simmetrico l'angolo che definisce il fascio principale si indica con θ,ϕfwhm oppure con θ,ϕhpbw FWHM: full width at half maximum HPBW: half power beam width

16 Direttività e dbi Direttività = Potenza per unitá di angolo solido lungo ( ) Potenza media per unitá di angolo solido È immediato verificare che Definiamo la direttività in dbi come

17 Direttività massima La direttività massima è definita come Dmax D(0,0) Angolo solido del main beam Nel linguaggio corrente come direttività di un'antenna si intende la direttività massima

18 Efficienza e guadagno di un antenna Se immaginiamo di utilizzare un antenna come trasmettitore possiamo definire efficienza dell antenna ηrad, il rapporto fra la potenza irradiata dall antenna, Pout e la potenza che viene fornita, Pin: Il guadagno di un antenna è definito come il prodotto fra la direttività e l efficienza. Se le perdite del sistema sono trascurabili e l efficienza è prossima a 1 allora il guadagno e la direttività coincidono

19 Area efficace di un'antenna Sorgente nota di flusso F(ν) Area efficace Ae(ν)) = P(ν) / F(ν) Telescopio di apertura D (area geometrica A = π D 2 / 4) Potenza misurata P(ν)

20 Relazione fra area efficace e direttività di un antenna ad apertura Molte antenne utilizzate in radioastronomia sono definite antenne ad apertura. Esempi tipici sono le antenne a riflettore (i classici radiotelescopi) e le antenne a tromba (feed-horn) Per queste antenne è possibile dimostrare che esiste una relazione fra la direttività massima a una certa lunghezza d onda e l area efficace: Considerando che Dmax = 4π / Ωa, la relazione è equivalente a

21 Efficienza di apertura L'area efficace indica quanta superficie del telescopio viene effettivamente utilizzata per ricevere la radiazione. È una quantità che dipende dalla frequenza Il rapporto fra l'area efficace e l'area geometrica di un telescopio definisce l'efficienza di apertura ed è sempre minore di 1 (tipicamente si possono ottenere efficienze che vanno dal 30 al 60%).

22 Dimostrazione della relazione fra direttività e area efficace

23 Approcci alla dimostrazione In letteratura esistono due approcci per dimostrare la relazione fra direttività e area efficace, che è una relazione valida a livello generale: La prima è descritta, ad esempio, nel Balanis, Antenna theory and design, paragrafo 2.16, e si basa sull analisi di un caso particolare di due antenne affacciate, una trasmittente e una ricevente. La seconda è descritta nel Wilson, Tools of Radio Astronomy, paragrafo 7.1.3, e si basa su un esempio di un ricevitore che osserva una sorgente termica in un ambiente in equilibrio termodinamico. Entrambe le dimostrazioni fanno riferimento a un caso particolare che viene poi generalizzato

24 Dimostrazione 1 (dal Balanis, Antenna theory and design) Consideriamo il sistema in figura: due antenne sono affacciate, una fa da trasmettitore (antenna 1) e una fa da ricevitore (antenna 2).

25 Dimostrazione 1 (dal Balanis, Antenna theory and design)

26 Dimostrazione 1 (dal Balanis, Antenna theory and design)

27 Dimostrazione 2 (dal Wilson, Tools of radio astronomy)

28 Dimostrazione 2 (dal Wilson, Tools of radio astronomy)

29 Dimostrazione 2 (dal Wilson, Tools of radio astronomy)

30 L approssimazione di campo lontano

31 L approssimazione di campo lontano Consideriamo una sorgente di radiazione elettromagnetica. Se siamo abbastanza vicini alla sorgente saremo in presenza di onde sferiche, mentre a distanze sufficientemente grandi possiamo considerare l onda come piana Vediamo ora come formalizzare questa condizione nel caso di un antenna che trasmette o riceve un segnale (vedremo dal teorema di reciprocità che le proprietà in campo lontano di un antenna in trasmissione o in ricezione sono le stesse)

32 L approssimazione di campo lontano Possiamo dire che un antenna è in campo lontano rispetto a una sorgente quando la fase dell onda è la stessa su tutta l apertura dell antenna Per dare una definizione più operativa di questa condizione, un antenna è definita in campo lontano rispetto a una sorgente quando il massimo errore di fase all apertura dell antenna è inferiore a π/8, ovvero Facciamo un calcolo nel caso di un antenna a riflettore

33 L approssimazione di campo lontano

34 L approssimazione di campo lontano

35 L approssimazione di campo lontano

36 L approssimazione di campo lontano

37 L approssimazione di campo lontano Approssimazione di campo lontano In alcuni casi molto particolari (ad esempio antenne a dipolo molto corte) questa condizione risulta insufficiente e, in questi casi, si preferisce applicare un altra condizione: r > 2λ. In tutti i casi in cui si utilizzino antenne a riflettore, comunque, viene utilizzata la relazione standard

38 Il teorema di reciprocità

39 Il teorema di reciprocità enunciato e condizioni di validità Consideriamo due antenne, 1 e 2. Supponiamo che 1 sia l antenna trasmittente collegata a un generatore, G, e 2 sia l antenna ricevente collegata a uno strumento di misura, M. Il teorema afferma che la corrente misurata da M rimane la stessa anche se scambiamo G con M, ovvero non importa quale antenna trasmette e quale riceve.

40 Il teorema di reciprocità enunciato e condizioni di validità Un altro modo di enunciare il teorema è il seguente: le proprietà di un antenna sono le stesse sia in trasmissione che in ricezione Il teorema richiede che siano verificate le seguenti condizioni: (1) il mezzo in cui si propaga il segnale è isotropo, (2) non vi sono perdite ohmiche nei sistemi di trasmissione e ricezione e, (3) le due antenne sono a distanza tale da poter essere considerate nel far field l una rispetto all altra

41 Il teorema di reciprocità dimostrazione Per dimostrare il teorema partiamo dalle equazioni di Maxwell per i due sistemi Antenna 1 Antenna 2

42 Il teorema di reciprocità dimostrazione (1.1) (1.2)

43 Il teorema di reciprocità dimostrazione (1.3)

44 Il teorema di reciprocità dimostrazione

45 Il teorema di reciprocità dimostrazione Questa relazione mostra che la risposta del sistema non non varia anche se scambiamo la sorgente con il ricevitore

46 La temperatura di brillanza

47 La radiazione di corpo nero Un corpo nero è un oggetto che assorbe tutta la radiazione elettromagnetica incidente (e quindi non ne riflette). Per la conservazione dell'energia, tutta la radiazione assorbita viene re-irradiata con uno spettro che dipende dalla temperatura assoluta del corpo ed è indipendente dalle caratteristiche della radiazione assorbita. Qualunque corpo a temperatura T è sorgente di radiazione elettromagnetica. Se T è costante (equilibrio termodinamico) allora lo spettro della radiazione è di corpo nero.

48 Formula e unità di misura La potenza emessa da un corpo nero per unità di superficie, unità di lunghezza d'onda ed unità di angolo solido (ovvero la brillanza) di un corpo nero è data da: Le unità di misura sono W m-1 m-2 sr-1 Per convertire B(λ) in B(ν) non basta semplicemente sostituire ν = c / λ nell'equazione. Dobbiamo invece uguagliare la potenza emessa in un intervallo di lunghezze d'onda [λ, λ+ddλ] con la potenza emessa in un intervallo di frequenze [ν, ν+ddν]

49 Formula come funzione della frequenza Eguagliando B(λ) dλ = B(ν) dν, considerando che ν = c/λ e che dν = (c/ (c/λ2) dλ, si ottiene In questo caso le unità di misura sono: W Hz-1 m-2 sr-1.

50 10 billion K 1 billion K 100 million K 10 million K 1 million K K K Sun K 1000 K 100 K Radio and microwaves 3K Infrared Ultraviolet, X-rays, Gamma rays Optical

51 Approssimazioni Appross. Rayleigh-Jeans hν) / kt << 1 Appross. di Wien hν) / kt >> 1

52 La temperatura di brillanza Consideriamo una sorgente con brillanza superficiale B(ν). Possiamo scrivere la seguente relazione: TB viene definita temperatura di brillanza 1. TB ha le unità di misura di una temperatura 2. Se hν / kt << 1 e B(ν) è un corpo nero allora TB corrisponde alla temperatura termodinamica della sorgente

53 Relazione con la temperatura termodinamica C'è una relazione fra la potenza emessa da una sorgente e la temperatura di brillanza Per emissioni di corpo nero a frequenze tali che hν / kt << 1 la temperatura di brillanza coincide con la temperatura termodinamica Per un corpo nero la relazione generale (cioè valida a qualsiasi frequenza) fra temperatura di brillanza e quella termodinamica è:

54 Relazione con la temperatura termodinamica

55 La temperatura di antenna

56 Potenza misurata osservando una sorgente Consideriamo un'antenna collegata a un ricevitore che osserva una superficie estesa caratterizzata da una temperatura di brillanza TB(θ,φ) Ci domandiamo: qual è la potenza misurata dal ricevitore quando l'antenna punta in una direzione (θ,ϕ0,φ0)?

57 Potenza misurata osservando una sorgente Alla potenza misurata contribuisce il segnale proveniente da tutte le direzioni Naturalmente il contributo del segnale proveniente sull'asse ottico è maggiore di quello proveniente dalle altre direzioni

58 Banda di misura Un ricevitore non è sensibile a tutte le frequenze ma solo a un intervallo di frequenze centrato in una frequenza centrale ν 0. La larghezza di questo intervallo è definito larghezza di banda. Potenza misurata In un ricevitore ideale la banda è una funzione top-hat ν0 Δν/2 ν0 ν0 + Δν/2 frequenza

59 Banda di misura Un ricevitore non è sensibile a tutte le frequenze ma solo a un intervallo di frequenze centrato in una frequenza centrale ν 0. La larghezza di questo intervallo è definito larghezza di banda. Potenza misurata In un ricevitore reale la risposta in banda può essere complessa e normalmente va misurata in laboratorio ν0 Δν/2 ν0 ν0 + Δν/2 frequenza

60 Potenza misurata osservando una sorgente La potenza rilevata da un telescopio è: Si considera solo metà della potenza in quanto i ricevitori a microonde sono sensibili ad una delle due componenti di polarizzazione Area efficace Brillanza superficiale Fascio di antenna Larghezza di banda del ricevitore

61 Potenza misurata osservando una sorgente La potenza rilevata da un telescopio è: La potenza misurata è la convoluzione della brillanza superficiale con il fascio di antenna

62 La temperatura di antenna Scriviamo la brillanza, Bν in funzione della temperatura di brillanza, TB La potenza misurata, P, si può scrivere come:

63 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

64 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

65 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

66 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

67 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

68 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

69 La temperatura di antenna Ricordiamo che ΩaAeff = λ2 Temperatura di antenna Otteniamo

70 Potenza misurata da un ricevitore La potenza misurata è proporzionale alla temperatura di antenna. L'approssimazione a destra vale se la temperatura di antenna non varia molto all'interno della banda di misura

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e di antenna

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e di antenna Fascio di antenna, spettro di corpo nero, temperatura di brillanza e di antenna Aniello (a.k.a. Daniele) Mennella Università degli Studi di Milano Dipartimento di Fisica 28 settembre 2016 Un sistema a

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Seconda parte: antenne e telescopi radio e a microonde Parte 2 Lezione 1 Le grandezze caratteristiche dei telescopi radio e

Dettagli

Il sole a microonde. Aniello (a.k.a. Daniele) Mennella. Università degli Studi di Milano Dipartimento di Fisica

Il sole a microonde. Aniello (a.k.a. Daniele) Mennella. Università degli Studi di Milano Dipartimento di Fisica Il sole a microonde Aniello (a.k.a. Daniele) Mennella Università degli Studi di Milano Dipartimento di Fisica 6 ottobre 2016 Lezione 02 Il sole: un corpo nero? Il Sole può essere considerato un emettitore

Dettagli

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna Fascio di antenna, spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Fascio di antenna,

Dettagli

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna

Lezione 4. Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Lezione 4 Brillanza superficiale e intensità specifica, temperatura di brillanza e di antenna Il fascio di antenna Un'antenna puntata in una certa direzione nel cielo riceve (o trasmette) radiazione anche

Dettagli

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna

Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Spettro di corpo nero, temperatura di brillanza e temperatura di antenna Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Lo spettro di corpo nero Perché il

Dettagli

Misure e requisiti sperimentali di misure di spettro e anisotropia del fondo cosmico

Misure e requisiti sperimentali di misure di spettro e anisotropia del fondo cosmico Misure e requisiti sperimentali di misure di spettro e anisotropia del fondo cosmico Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Richiamiamo la temperatura

Dettagli

Lo spettro di corpo nero

Lo spettro di corpo nero Lo spettro di corpo nero Perché il fondo cosmico ha uno spettro di corpo nero? L'evoluzione dello spettro del fondo cosmico di microonde con l'espansione dell'universo La temperatura di brillanza. Definizione

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Programma del corso Parte 1- Introduzione e concetti di base Breve storia della radioastronomia La nascita della radioastronomia,

Dettagli

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di SISTEMI PASSIVI Ogni corpo a temperatura T diversa da 0 K irradia spontaneamente potenza elettromagnetica distribuita su tutto lo spettro Attraverso un elemento da della superficie del corpo, fluisce p

Dettagli

Antenne e Collegamento Radio

Antenne e Collegamento Radio Antenne e Collegamento Radio Trasmissione irradiata Oltre ad essere guidato attraverso le linee di trasmissione, il campo elettromagnetico si può propagare nello spazio (radiazione) Anche la radiazione

Dettagli

Misure e requisiti sperimentali di misure di anisotropia del fondo cosmico

Misure e requisiti sperimentali di misure di anisotropia del fondo cosmico Misure e requisiti sperimentali di misure di anisotropia del fondo cosmico Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Concetti di base nelle misure di

Dettagli

Termografia a infrarossi

Termografia a infrarossi Termografia a infrarossi Nella radiometria a microonde si verifica che hν

Dettagli

Architetture di ricevitori coerenti a microonde

Architetture di ricevitori coerenti a microonde Architetture di ricevitori coerenti a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Ricevitori total power (Definizione) Un ricevitore total power è un ricevitore che

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura 1: collegamento tra due antenne nello spazio

Dettagli

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la

E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la 1 E noto che la luce, o radiazione elettromagnetica, si propaga sottoforma di onde. Un onda è caratterizzata da due parametri legati fra loro: la lunghezza d onda ( ), definita come la distanza fra due

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Lezione 2. Basi di ottica, telescopi, antenne

Lezione 2. Basi di ottica, telescopi, antenne Lezione 2 Basi di ottica, telescopi, antenne La formazione dell'immagine La radiazione che viene intercettata da un telescopio: una serie di onde piane provenienti dalle diverse regioni del cielo Il piano

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 3 Caratteristiche principali delle linee di trasmissione Linee

Dettagli

Corso di Radioastronomia 2

Corso di Radioastronomia 2 Corso di Radioastronomia 2 Aniello (Daniele) Mennella Davide Maino Dipartimento di Fisica Prima parte: principali meccanismi di emissione e assorbimento Parte 1 Lezione 2 L emissione di sincrotrone La

Dettagli

Corso di introduzione all'astrofisica A.A. 2013/2014. Programma svolto

Corso di introduzione all'astrofisica A.A. 2013/2014. Programma svolto Corso di introduzione all'astrofisica A.A. 2013/2014 Programma svolto Lezione 1 Astronomia ad occhio nudo Com'è fatto l'occhio. Elementi di base della visione ad occhio nudo. La risoluzione angolare dell'occhio,

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

"Antenne" Docente: Prof. Graziano CERRI. Programma dell insegnamento

Antenne Docente: Prof. Graziano CERRI. Programma dell insegnamento "Antenne" Docente: Prof. Graziano CERRI Programma dell insegnamento Corso di Laurea in Ingegneria Elettronica Vecchio Ordinamento Corso di Laurea in Ingegneria delle Telecomunicazioni Nuovo Ordinamento

Dettagli

Antenne per Radioastronomia

Antenne per Radioastronomia Antenne per Radioastronomia Giorgio Sironi Dipartimento di Fisica G.Occhialini Milano 11 Gennaio 2008 1 L Antenna ha la funzione di trasferire con la massima efficienza il segnale elettromagnetico dal

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia della Fisica Sulla Storia dell Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie. Asiago 22-26 Febbraio 2016 GLOSSARIO: Corpo Nero Biagio Buonaura GdSF & Liceo Scientifico

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 2 Strumentazione per osservazioni radio e millimetriche La banda

Dettagli

La radiazione di corpo nero - I. Edoardo Milotti CdS Fisica A. A

La radiazione di corpo nero - I. Edoardo Milotti CdS Fisica A. A La radiazione di corpo nero - I Edoardo Milotti CdS Fisica A. A. 2007-8 Il flusso lavico che scende dal cratere del vulcano Stromboli verso il mare (6 marzo 2007, foto di M. Fulle, http://www.swisseduc.ch/stromboli/).

Dettagli

Antenne e Telerilevamento. Esame

Antenne e Telerilevamento. Esame ESAME DEL 21/05/2001 ESERCIZIO 1 (10 punti) Si progetti un antenna filare a monopolo con top loading per la frequenza di 2 MHz, in modo che presenti una resistenza di irradiazione di 1 Ω. La distribuzione

Dettagli

Illuminotecnica - Grandezze Fotometriche

Illuminotecnica - Grandezze Fotometriche Massimo Garai - Università di Bologna Illuminotecnica - Grandezze Fotometriche Massimo Garai DIN - Università di Bologna http://acustica.ing.unibo.it Massimo Garai - Università di Bologna 1 Radiazione

Dettagli

Olimpiadi Italiane di Astronomia MAGNITUDINI

Olimpiadi Italiane di Astronomia MAGNITUDINI Olimpiadi Italiane di Astronomia Preparazione alla fase interregionale delle Olimpiadi Italiane di Astronomia MAGNITUDINI By Giuseppe Cutispoto Magnitudine apparente La magnitudine apparente (m) di una

Dettagli

Misure di polarizzazione mediante ricevitori differenziali a microonde

Misure di polarizzazione mediante ricevitori differenziali a microonde Misure di polarizzazione mediante ricevitori differenziali a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Corso di laboratorio di strumentazione spaziale I A. Mennella

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

Magnitudini e Diagramma H-R Giuseppe Cutispoto

Magnitudini e Diagramma H-R Giuseppe Cutispoto Magnitudini e Diagramma H-R Giuseppe Cutispoto INAF Osservatorio Astrofisico di Catania gcutispoto@oact.inaf.it Versione: 4 febbraio 018 Magnitudine apparente La magnitudine apparente (m) di una stella

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 2 Elementi di propagazione di segnali elettromagnetici nel vuoto

Dettagli

Grandezze radiometriche

Grandezze radiometriche Grandezze radiometriche La Radiometria ha per oggetto la misurazione dell energia irradiata da una o più sorgenti in una qualunque regione dello spettro elettromagnetico. Si consideri una sorgente di radiazione

Dettagli

DEFINIZIONI (D.Lgs. 81/08)

DEFINIZIONI (D.Lgs. 81/08) Radiazioni Ottiche Artificiali -ROA- Cosa sono Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Fonte ISPESL 1 DEFINIZIONI (D.Lgs. 81/08) si intendono per radiazioni ottiche:

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Quinta parte: interferometria Parte 5, Lezione 2 Interferometria a sintesi di apertura Il principio di ricostruzione dell immagine

Dettagli

Figura 1 Trasformazione proibita dal Secondo Principio

Figura 1 Trasformazione proibita dal Secondo Principio ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare

Dettagli

Facoltà di Ingegneria Università di Parma. Antenne a Riflettore. A. Cucinotta 1

Facoltà di Ingegneria Università di Parma. Antenne a Riflettore. A. Cucinotta 1 Facoltà di Ingegneria Università di Parma Antenne a Riflettore A. Cucinotta 1 Antenne a Riflettore Le a. a bocca radiante sono a. che irradiano (o captano) potenza nello (dallo) spazio attraverso un apertura

Dettagli

Classificazione delle sorgenti

Classificazione delle sorgenti Classificazione delle sorgenti La Radiometria ha per oggetto la misurazione dell energia irradiata da una o più sorgenti in una qualunque regione dello spettro elettromagnetico. Come per un antenna, una

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

LASER PRINCIPI FISICI

LASER PRINCIPI FISICI Corso di Tecnologie Speciali I LASER PRINCIPI FISICI Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale LASER Light Amplification

Dettagli

Corso di Radioastronomia 2

Corso di Radioastronomia 2 Corso di Radioastronomia 2 Aniello (Daniele) Mennella Davide Maino Dipartimento di Fisica Prima parte: principali meccanismi di emissione e assorbimento Parte 1 Lezione 4 L emissione da polvere interstellare

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass

Ottica fisiologica, ovvero perché funzionano i Google Glass Ottica fisiologica, ovvero perché funzionano i Google Glass Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

SCATTERING MOLECOLARE

SCATTERING MOLECOLARE SCATTERING MOLECOLARE I fenomeni di maggiore interesse sono quelli dovuti alle molecole e agli atomi che costituiscono i gas atmosferici, e alle particelle presenti in sospensione nell atmosfera (aerosoli

Dettagli

Fondamenti di Astrofisica

Fondamenti di Astrofisica Fondamenti di Astrofisica Lezione 2 AA 2010/2011 Alessandro Marconi Dipartimento di Fisica e Astronomia Dimensioni tipiche 1.5 m 1.5 10 2 cm Dimensione tipica dell uomo 6.4 10 3 km 6.4 10 8 cm Diametro

Dettagli

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 217-18 - MARCO BREAN 1 Diffusione da corpi metallici i consideri il campo monocromatico ( E, H) irraggiato dalla distribuzione di corrente impressa J o, in un

Dettagli

S.Barbarino - Appunti di Microonde. Cap. 6. Antenne indipendenti dalla frequenza

S.Barbarino - Appunti di Microonde. Cap. 6. Antenne indipendenti dalla frequenza SBarbarino - Appunti di Microonde 61 - Generalità Cap 6 Antenne indipendenti dalla frequenza Come precedentemente affermato il rapporto fra le frequenze più alte e quelle più basse per il modo assiale

Dettagli

Reciprocità: tra miti e leggende sul guadagno di un'antenna. Dr. Ing. Francesco Orfei, PhD

Reciprocità: tra miti e leggende sul guadagno di un'antenna. Dr. Ing. Francesco Orfei, PhD Reciprocità: tra miti e leggende sul guadagno di un'antenna Dr. Ing. Francesco Orfei, PhD iz0abd@gmail.com Indice Introduzione Attenuazione in spazio libero Area efficace, direttività e guadagno di un

Dettagli

VINCI FINE INSTRUMENTS MONTEROTONDO ROMA Tel mail web : https//

VINCI FINE INSTRUMENTS MONTEROTONDO ROMA Tel mail web : https// UnitÄ fotometriche: lumen, candele, lux. Con la comparsa nel mercato di lampade e lampadine a LED sono diventati comuni anche i termini di lumen, candele e lux. UnitÄ di misura fotometriche molto importanti

Dettagli

Fondamenti di Trasporto Radiativo

Fondamenti di Trasporto Radiativo Fondamenti di Trasporto Radiativo Luminosità e Flusso della radiazione Sorgente astrofisica che emette energia de in tempo dt. La luminosità è la quantità di energia irraggiata nell unità di tempo: L =

Dettagli

Guadagno d antenna Come misurarlo?

Guadagno d antenna Come misurarlo? A.R.I. - Sezione di Parma Conversazioni del 1 venerdì del mese Guadagno d antenna Come misurarlo? Venerdi, 6 dicembre 2013, ore 21 - Carlo, I4VIL DIRETTIVITA E GUADAGNO La direttività D è il rapporto tra

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

ANTENNE. Funzionamento, parametri, applicazioni, misure. (B. Preite) mercoledì 8 febbraio Corso di Compatibilità Elettromagnetica

ANTENNE. Funzionamento, parametri, applicazioni, misure. (B. Preite) mercoledì 8 febbraio Corso di Compatibilità Elettromagnetica ANTENNE Funzionamento, parametri, applicazioni, misure (B. Preite) 1 Indice degli argomenti Definizioni Genesi di un antenna Proprietà generali Dipolo marconiano Dipolo hertziano Parametri delle antenne

Dettagli

Fondamenti di Trasporto Radiativo

Fondamenti di Trasporto Radiativo Fondamenti di Trasporto Radiativo Luminosità e Flusso della radiazione Sorgente astrofisica che emette energia de in tempo dt. La luminosità è la quantità di energia irraggiata nell unità di tempo: L =

Dettagli

Introduzione alla strumentazione di laboratorio norme di sicurezza

Introduzione alla strumentazione di laboratorio norme di sicurezza Introduzione alla strumentazione di laboratorio norme di sicurezza Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Introduzione alle norme di sicurezza Setup

Dettagli

Radiazione di corpo nero

Radiazione di corpo nero Radiazione di corpo nero La radiazione emessa da un corpo, come effetto della sua temperatura, é detta radiazione termica. Un corpo non isolato emette ed assorbe radiazione dall ambiente circostante. In

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Terza parte: ricevitori coerenti Parte 3, Lezione 2 Il ricevitore total power e le sue caratteristiche di segnale e di rumore

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

Ottica fisiologica (1): sorgenti e radiometria

Ottica fisiologica (1): sorgenti e radiometria Ottica fisiologica (1): sorgenti e radiometria Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

Caratterizzazione in laboratorio di componentistiche a microonde

Caratterizzazione in laboratorio di componentistiche a microonde Caratterizzazione in laboratorio di componentistiche a microonde Dott.ssa Paola Battaglia Dott. Cristian Franceschet Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Caratterizzazione

Dettagli

Crisi della Fisica Classica & Fisica Quantistica

Crisi della Fisica Classica & Fisica Quantistica Crisi della Fisica Classica & Fisica Quantistica Guido Montagna Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia February 5, 2018 G. Montagna, Università di Pavia & INFN (Dipartimento

Dettagli

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA Bocchi Carlotta matr. 262933 Borelli Serena matr. 263448 Lezione del 5/05/2016 ora 8:30-10:30 NOZIONI DI ILLUMINOTECNICA ILLUMINOTECNICA Che cos'è la luce e le cara7eris9che delle onde ele7romagne9che

Dettagli

Il corpo nero e l ipotesi di Planck

Il corpo nero e l ipotesi di Planck Il corpo nero e l ipotesi di Planck La crisi della fisica classica Alla fine del XIX secolo ci sono ancora del fenomeni che la fisica classica non riesce a spiegare: lo spettro d irraggiamento del corpo

Dettagli

Laboratorio di Fisica Moderna Cosmologia

Laboratorio di Fisica Moderna Cosmologia Laboratorio di Fisica Moderna Cosmologia Programma di oggi Da dove vengono le mappe di CMB Le mappe di CMB del satellite Planck Estrazione dello spettro di potenza Localizzazione del primo picco Misura

Dettagli

Trasmissione del calore:

Trasmissione del calore: Trasmissione del calore: - Conduzione - Convezione - Irraggiamento Cos è la Convezione: È lo scambio di calore che avviene tra una superficie e un fluido che si trovano a diversa temperatura e in movimento

Dettagli

Capitolo 1. La formula di Planck per lo spettro di corpo nero. 1.1 Radiazione di corpo nero

Capitolo 1. La formula di Planck per lo spettro di corpo nero. 1.1 Radiazione di corpo nero Capitolo 1 La formula di Planck per lo spettro di corpo nero 1.1 Radiazione di corpo nero Consideriamo una cavità riempita di un mezzo dielettrico omogeneo isotropo, con µ r 1 e ǫ r η 2, η essendo l indice

Dettagli

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione L'identificazione della luce come fenomeno ondulatorio è dovuta principalmente a Fresnel e Huyghens ed è basata

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a BUON CONDUTTORE Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a σ ωε (137). Mentre in un materiale con conducibilità infinita il campo deve essere nullo, la presenza di

Dettagli

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC 23. Guadagno di un quadripolo Filtri passivi isposta in frequenza dei circuiti C-L-LC In un quadripolo generico (fig. ) si definisce guadagno G il rapporto tra il valore d uscita e quello d ingresso della

Dettagli

Introduciamo la strategia generale per misurare le anisotropie del. foregrounds in misure di anisotropia di fondo cosmico

Introduciamo la strategia generale per misurare le anisotropie del. foregrounds in misure di anisotropia di fondo cosmico Introduciamo la strategia generale per misurare le anisotropie del fondo cosmico Definiamo i principali requisiti ottici (risoluzione angolare, lobi laterali) Definiamo i requisiti di stabilità del ricevitore

Dettagli

Propagazione radio. Trasmissione radio dell informazione

Propagazione radio. Trasmissione radio dell informazione Propagazione radio Trasmissione radio dell informazione d 1 Caratterizzazione della propagazione Frequenza di trasmissione Distanza Tx - Rx Conformazione geografica del territorio (Orografia) Caratteristiche

Dettagli

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA 1 ANTENNE IN RICEZIONE SU PIANO DI MASSA Esaminiamo il problema di una antenna in ricezione in presenza di un C.E.P. piano. Supponiamo di avere un antenna filiforme verticale investita da un campo elettromagnetico

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Mezzi Trasmissivi TELECOMUNICAZIONI. Disturbi e distorsioni in un collegamento

Mezzi Trasmissivi TELECOMUNICAZIONI. Disturbi e distorsioni in un collegamento Dipartimento di Ingegneria dell Informazione, Elettronica e delle Telecomunicazioni Università degli Studi di Roma La Sapienza Mezzi Trasmissivi TELECOMUNICAZIONI Disturbi e distorsioni in un collegamento

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia della Fisica Sulla Storia dell Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie. Asiago 22-26 Febbraio 2016 GLOSSARIO: Radiazione elettromagnetica -Spettro Biagio Buonaura

Dettagli

L irraggiamento termico

L irraggiamento termico L irraggiamento termico Trasmissione del Calore - 42 Il calore può essere fornito anche mediante energia elettromagnetica; ciò accade perché quando un fotone, associato ad una lunghezza d onda compresa

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Trasmissione del calore

Trasmissione del calore Trasmissione del calore In natura esistono tre modi diversi attraverso i quali il calore si può trasmettere da un corpo a temperatura più bassa a uno a temperatura più alta, oppure, entro un medesimo corpo,

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Richiami Teorici sulle barriere acustiche

Richiami Teorici sulle barriere acustiche Le barriere acustiche rappresentano la soluzione più comune per la riduzione del rumore immesso da infrastrutture di trasporto verso i ricettori presenti nell area di territorio disturbata. Tali opere

Dettagli

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da:

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da: SIMULAZIONE II PROVA DI FISICA ESAME DI STATO LICEI SCIENTIFICI. SOLUZIONI QUESITI Soluzione quesito Detta la potenza media assorbita, la potenza elettrica media emessa sarà:,,,, L intensità è uguale alla

Dettagli

Soluzioni Eletromagnetiche per l Hi-Tech

Soluzioni Eletromagnetiche per l Hi-Tech Soluzioni Eletromagnetiche per l Hi-Tech Materiale di supporto: proprietà antenne Prof. Luca Catarinucci Innovation Engineering Department University of Salento - Lecce - Italy Le equazioni di Maxwell

Dettagli

Misura della costante di Planck dallo spettro di corpo nero di una lampada ad incandescenza.

Misura della costante di Planck dallo spettro di corpo nero di una lampada ad incandescenza. Edoardo Milotti Metodi di Trattamento del Segnale, A. A. 206-207 Misura della costante di Planck dallo spettro di corpo nero di una lampada ad incandescenza. L esperimento che segue consente di ottenere

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Caratterizzazione di doppi bipoli rumorosi Universita Politecnica delle Marche A.A. 2014-2015 A.A. 2014-2015 Sistemi di Telecomunicazione 1/13 Temperatura equivalente di rumore

Dettagli

Attenuazione geom. Flusso di energia: 1 R

Attenuazione geom. Flusso di energia: 1 R Rayleigh waves Love waves Attenuazione geom. Φ ( E, ω) = 2 π RH ( ω) I( E) RA Flusso di energia: 2 A( R) 1 R Spherical Earth Lontano dagli antipodi lo spreading varia come sin Ampiezze minime a 90, poi

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Lezione 21 - Onde elettromagnetiche

Lezione 21 - Onde elettromagnetiche Lezione 21 - Onde elettromagnetiche Nella prima metà dell 800 Maxwell dimostrò definitivamente che un raggio di luce non è altro che una configurazione di campi elettrici e magnetici in moto Si deve quindi

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 DOWNLOAD Il pdf di questa lezione (onde2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 10/10/2017 LE ONDE NELLO SPAZIO Finora si è considerata

Dettagli