Soluzioni. Utilizziamo la separazione di variabili. Cerchiamo una soluzione del problema della forma. 2 R (incognita da determinare).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni. Utilizziamo la separazione di variabili. Cerchiamo una soluzione del problema della forma. 2 R (incognita da determinare)."

Transcript

1 Es. Es. Es. Es. 4 Total Politcnico di Milano - Inggnria Enrgtica Mtodi Analitici Numrici 4 Sttmbr 07 Cognom: Nom: Matricola: Esrcizio. Utilizzndo il mtodo di sarazion dll variabili, dtrminar una soluzion u = u(, t) >< u(, u(, t)+u(, t) =0 in Q =(0, ) u(, 0) = 0, u(, 0) = + cos() in (0, >: u(, t) =0, in (0, Utilizziamo la sarazion di variabili. Crchiamo una soluzion dl roblma dlla forma u(, t) = (t) (), ov C ([0, +)) C ([0, ]), con, 6= 0. Drivando tal funzion sostitundola nll quazion, si vd ch soddisfano l idntità 00 (t)+ (t) (t) = 00 () () = R (incognita da dtrminar). Considrando l quazion r, si dduc ch ssa risolv il roblma ai limiti < 00 () () =0, (0, ), : 0 (0) = 0 ( ) =0 il qual ammtt soluzioni non banali s, solo s = n = n al 0 in qusti casi () = n () =c n cos(n), (0, ) (c n costanti incognit da dtrminar). Si noti ch la soluzion 0() =c 0, corrisondnt all autovalor n = 0 è costant. Pr quanto riguarda, ssa risolv il roblma < 00 (t)+(+n ) (t) =0, t (0, +), : (0) = 0 ch ammtt com soluzioni (t) = n (t) =d n sin t n +,n 0, t (0, +) (d n costanti incognit da dtrminar). Quindi, una gnrica soluzion dl roblma ha la forma u(, t) = +X Bn sin t n + cos(n), (, t) Q,

2 ov abbiamo osto B n = c n d n. Notiamo subito u(, t) = X B n n + cos t n + cos(n), n=0 da cui, utilizzando la condizion 0) (finora non considrata) u(, 0) = X B n n + cos(n) = + cos(). n=0 Quindi, r il rinciio di idntità dll sri di Fourir (our, analogmnt, utilizzando il torma di ortogonalità), abbiamo subito ch B 0 =, 0B = B n =0 n 6= 0,. Concludiamo quindi ch u(, t) =sint + sin t 0 cos(), (, t) Q. 0

3 Esrcizio. Dtrminar una soluzion u = u(, t) dl roblma di u(, u(, t) R,t>0, >: u(, 0) =, R. Vrificar i risultati. Posto K t () = (4 t) / (nuclo dl calor) () = (dato inizial), utilizzando la formula fondamntal abbiamo quindi ch u(, t) =(K t )() = Z + K t (y) ( y)dy = Z + 4 t 4 t y y +y dy. Pr calcolar slicitamnt gli intgrali all riga sora, ricordiamo rliminarmntl intgral gaussiano Z + z dz =. Dalla smlic guaglianza Dduciamo quindi ch 0 r + y y + q + A + Z + y y +y dy = Z + + q y + r = 4oniamo z = y + +! dy q () dy = q dz = q + Tornando alla formula gnral, si ha dunqu Z + z dz = 4 t + +. u(, t) = 4 t 4 t + ( + + ) = + +, R,t>0.

4 Esrcizio. Calcolar la trasformata di Fourir dlla funzion f() = cos +9, R. Notiamo rliminarmnt ch valggono l sgunti guaglianz cos = + cos() = + 4 i + i, Prtanto considriamo la dcomosizion ov abbiamo dfinito f() = f ()+ 4 f ()+ 4 f () f () = +9, f () = i +9 f () = i +9. Procdiamo quindi al calcolo dll trasformat di f, f f. Pr quanto riguarda f, abbiamo F[f ](y) = y (trasformata notvol). Prndndo oi in considrazion la formula di traslazion ossiamo calcolar anch F[ ia ()](y) =F[ ](y a), (a costant ral) F[f ](y) =F[ i f ()](y) =F[f ](y ) = y, analogamnt F[f ](y) =F[ i f ()](y) =F[f ](y + ) = y+. Infin, r linarità, si ha F[f](y) = F[f ](y)+ 4 F[f ](y)+ 4 F[f ](y) = 6 y + y + y+, y R.

5 Esrcizio 4. Utilizzando la trasformata di Lalac, dtrminar la soluzion dl sgunt roblma di Cauchy y 00 (t)+y 0 (t) >< y(t) = t, t (0, +), y(0) =, >: y 0 (0) =. Dfiniamo rliminarmnt la notazion standard L[y](s) =y(s), s (0, +) (Trasformata di Lalac). Alichiamo quindi la trasformata di Lalac al trmin di sinistra dll quazion imoniamo l condizioni iniziali. Si ha s y(s) sy(0) y 0 (0) + sy(s) y(0) y(s) = s + s y(s) s =(s )(s + )y(s) s. Ricordando inoltr ch concludiamo In virtù dlla dcomosizion L[ t ](s) = y(s) = s s (s )(s + ) s (, +), (s ) (s + ). s (s )(s + ) (s ) (s + ) = s + s + (s ) dduciamo infin ch y(t) =L [y](t) =L al s (t)+l = t + t t t. al al s + (t) L (s ) (t)

Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici (A) 26 Giugno Cognome: Nome: Matricola: Soluzioni

Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici (A) 26 Giugno Cognome: Nome: Matricola: Soluzioni Es. Es. Es. 3 Es. 4 Total Politcnico di Milano - Inggnria Enrgtica Mtodi Analitici Numrici (A) 6 Giugno 7 Cognom Nom Matricola Esrcizio. a. Si considri la funzion v(x, t) t x t + x. Calcolar @ t v(x, t)

Dettagli

u(x, 0) = 0 in R. Soluzioni

u(x, 0) = 0 in R. Soluzioni Es. Es. Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici A 6 Giugno 7 Cognome: Nome: Matricola: Esercizio. a. Si consideri la funzione vx, t = e t x e t + e

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili.

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili. Es. Es. 2 Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici (A) 4 Luglio 27 Cognome Nome Matricola Esercizio. Sia u = u(x, t) la soluzione continua del problema

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

TRACCIA A. e z 2 = 1 i + 2e i y = 2

TRACCIA A. e z 2 = 1 i + 2e i y = 2 Politcnico di Bari L in Inggnria Elttronica Primo sonro di Analisi Matmatica I AA 008/009-1 novmbr 008 TRACCIA A 1 Dtrminar i numri complssi ch soddisfano l quazion ( z + (i + 1) z + i ) (z z z + i) 0

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2018 A.A. 2018/2019. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Prima prova in itinere. Novembre 2018 A.A. 2018/2019. Prof. M. Bramanti Tema A Esam di Mtodi Matmatici pr l Inggnria Prima prova in itinr. Novmbr 2018 A.A. 2018/2019. Prof. M. Bramanti Tma A Cognom: Nom N matr. o cod. prsona: Dom 1 Dom 2 Dom 3 Es 1 Es 2 Es 3 Tot. Punti Domand di

Dettagli

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y.

Laboratorio di Matematica. 9 novembre Determinare i punti critici voncolati per la funzione il problema. f(x, y) = x x 2 + y y. Laboratorio di Matmatica. 9 novmbr 2011 ẏ t ty = 0 con y(0) = 1 ÿ + 4ẏ = 0 con y(0) = 1 ẏ(0) = 0. 2. Dtrminar i punti critici voncolati pr la funzion il problma max(x + 2y + z) xyz = 2. 3. È data la funzion

Dettagli

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esam di Mtodi Matmatici pr l Inggnria Scondo appllo. 8 Fbbraio 17 A.A. 16/17. Prof. M. Bramanti Tma A Cognom: Nom N matr. o cod. prsona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domand di toria rispondr

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili.

Soluzioni. Notiamo preliminarmente che tale soluzione continua esiste, in quanto le condizioni iniziali ed al bordo sono tra di loro compatibili. Es. 1 Es. 2 Es. 3 Es. 4 Totale Politecnico di Milano - Ingegneria Energetica Metodi Analitici e Numerici (A) 14 Luglio 217 Cognome: Nome: Matricola: Esercizio 1. Sia u = u(x, t) la soluzione continua del

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI

ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI ANALISI MATEMATICA I CALCOLO DIFFERENZIALE / ESERCIZI PROPOSTI L astrisco contrassgna gli srcizi più difficili.. Calcolar la drivata dll sgunti funzioni (drivabili in tutti i punti dl loro dominio): a)

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof.

Università degli Studi di Roma La Sapienza Corso di laurea in Ingegneria Energetica Geometria A.A Foglio di esercizi n.5 (prof. Univrsità dgli Studi di Roma La Sapinza Corso di laura in Inggnria Enrgtica Gomtria A.A. 2014-2015 Foglio di srcizi n.5 (prof. Cigliola) Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0), v 2 = (2, 1, 1)

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.:

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.: Prima part, Tma A ) L quazion diffrnzial y y = sin(x), con condizion inizial y(0) =, A: ha infinit soluzioni; B: non ha soluzion; C: ha un unica soluzion; D: ha sattamnt du soluzioni; E: N.A. 2) La funzion

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-04/07/12. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-04/07/12. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzion dlla Prova Scritta di Analisi Matmatica -/7/2 C.L. in Matmatica Matmatica pr l Applicazioni Proff. K. R. Payn E. Trrano Esrcizio. L funzioni f n (x) sono continu quindi misurabili su (, + ). La

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Analisi Matematica 1 per IM - 23/01/2019. Tema 1

Analisi Matematica 1 per IM - 23/01/2019. Tema 1 Analisi Matmatica 1 pr IM - 23/01/2019 Cognom Nom:....................................... Matricola:.................. Docnt:.................. Tmpo a disposizion: du or. Il candidato, a mno ch non si

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Campi conservativi e potenziali / Esercizi svolti

Campi conservativi e potenziali / Esercizi svolti SRolando, 01 1 Campi consrvativi potnziali / Esrcizi svolti ESERCIZIO Stabilir s il campo vttorial F (x, y) = xy xy + y +, x + xy +1 è consrvativo nl proprio dominio In caso armativo, calcolarn il potnzial

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 : A R R A ' Funzioni Continu La unzion si dic continua in ( ( s ( solo s A N sguono tr proprità ainché ( sia continua in :. Dvono sistr initi il it dstro sinistro di ( in. Tali iti dvono ssr uguali tra

Dettagli

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo EQUAZIONI DIFFERENZIALI ORDINARIE Si hiama quazion diffrnzial ordinaria di ordin n in un intrvallo I qualunqu sprssion dl tipo n F,,,,, 0 pr ogni I F è dunqu una funzion di n variabili l sono l drivat

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A Matmatica pr l Economia (A-K) Matmatica Gnral novmbr (pro. Biscglia) traccia A. Calcolar una primitiva P dlla unzion p scrivr l quazion dlla rtta tangnt a P in calcolar la distanza dlla rtta tangnt dall

Dettagli

Calore specifico del gas perfetto di Bose

Calore specifico del gas perfetto di Bose Calor spcifico dl gas prftto di Bos L. P. 7 April Il calcolo dl calor spcifico di un gas prftto di Bos prsnta dgli asptti tcnici intrssanti. Dfiniamo la funion polilog g α (), pr α > < mdiant la sri g

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

Corsi di Laurea in Fisica, Fisica ed Astrofisica

Corsi di Laurea in Fisica, Fisica ed Astrofisica Corsi di Laura in Fisica, Fisica d Asrofisica Analisi A.A. 007-008 - Foglio 1 1.1. Esrcizio. Sudiar la coninuià in R dlla funzion sn(x y) x + y s y > 0, y ln(1 + x ) s y 0. La funzion è chiaramn coninua

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

a ), la (34) diventa: Senza perdita di generalità si può omettere il valore assoluto e quindi la soluzione generale dell equazione omogenea è:

a ), la (34) diventa: Senza perdita di generalità si può omettere il valore assoluto e quindi la soluzione generale dell equazione omogenea è: Appunti dlla lzin dl Prf. Stfan D Marchi dl 9/0/6 a cura dl Prf. Frnand D Angl. Equazini diffrnziali linari dl prim rdin. Un quazin diffrnzial linar dl prim rdin si scriv:, () a + b, I I R cn b a, funzini

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO OA - DA

ESERCIZI AGGIUNTIVI - MODELLO OA - DA ESERCIZIO n. 1 ESERCIZI AGGIUNTIVI - MODELLO OA - DA Considrat un conomia carattrizzata dall sgunti quazioni: DA: OA: 15 M 2 ˆ.5( ) Suppont ch l conomia si trovi, al tmpo, in una situazion di quilibrio

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli