( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )"

Transcript

1 ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( + ) ) ' sin ) tg ' ) ' + 5 5) ' + tg ( ) sin os sin ( ) 6) ' + + ( ) 7) ' + ( ) ( )

2 8) ' + ( ) 9) ' + ( ) ) ' ) ) ) ) ( ) ( + ) ' ( ) ' ' + ( ) + + ( ) ' + ( ) ( ) ( ) 5) ' 6) ( ) + + ( ) ( sin + ) ' os + ( ) ( sin + ) 7) ' os 8) ' + ( ) 9) ' ) + + ( ) ( + ) ' + ( ) ( + ) ) ' ) ' ) ' + + ( ) ( ) + + ( ) ( + ) ( ) ) ' ( + os ) ( ) sin 5) ' + ( ) ) ( ) ( + ' + + ) ( ) ( + ) + + 7) ' + ( ) +

3 8) ' tg os + ( ) + os II) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali dl sondo ordin a offiinti ostanti (fr..): ) 6 '' 5 ' + ( ) + + ( ) ) '' 6 ' 9 ) '' ' 5 + ( ) ) '' ' + os+ sin ( ) 5) '' ' + ( ) + ( ) ( + ) 6) '' ' 7) '' ' ( ) ( ) 5 8) '' + ( ) os + 9) '' ' 5 sin + ( ) ( os+ sin) ) '' ' + + ( ) ) '' ' os + sin + ( ) ( os+ sin) ) '' 9 ) + ( ) os + '' ' 6 sin ( ) ( ) ) '' ' + ( ) 5) '' + ( ) os + 6) '' ' sin ( ) 7) '' ' ( ) ( os 7 sin 7 ) + + ( ) 8) '' ' 9) '' + + os+ sin+ + ( ) + + ( ) ) 6 '' 5 '

4 ) '' sin os+ sin sin os+ sin os + sin+ os sin+ os os + sin ( ) ) '' sin + ( ) ) '' sin os ( ) ) '' 6 sin os + + ( ) 5) '' 6 ' 8 6) + ( ) '' ' + ( ) + ( ) 7) '' 8) ( ) '' ' + 5 ( ) 9) '' ( ) ) '' tg + ( ) ) '' tg ) π os+ sin+ os logtg + os+ sin+ sin log tg os+ sin os 7 os+ sin sin+ os log ( ) '' ' + ( ) ) '' 5sin + ( ) ) '' 5sin 7os 5) 6) + ( ) '' ' + ( ) '' ' log + + ( ) ( ) 7) '' ' + + 8) '' 9) ( ) + + ( + ) log( + ) + + ( ) '' ' os+ sin ( ) ( + )

5 ) '' ' os+ sin os sin 5 os+ sin + sin os+ sin os os+ sin + os+ sin os + sin + ( ) ( + ) + ) '' 5 ' 6 + ( ) ) '' ' ( + ) ( ) ( ) ( ) ( ) ) '' ) '' ' + ( ) ( ) 5) '' ' sin ( ) ( ) 6) '' os + ( ) 7) '' sin + ( ) 8) '' ' sin 9) 5) + ( ) ( ) ( ) + ( ) ( ) '' ' '' ' + ( ) ( ) 5) '' ' os ( ) ( ) 5) '' ' sin os ( ) + os 5) '' sin 5) ( ) sin os '' ' + ( ) 55) '' ' ( os+ sin ) ( ) + + sin 56) '' ' os+ sin os os+ sin+ sin sin+ os + + ( ) + ( ) ( ) 57) '' ' sin 58) 59) '' 9 sin + + ( ) sin ( ) ( ) '' 5

6 6) '' ( ) + ( + ) + + ( ) ( ) 6) '' ' os 6) '' sin + ( ) 6) '' ' 6) 65) os sin + + os sin + os sin os ( ) '' ' 8 ( ) '' ' ( ) III) Dtrminar l intgral gnral dll quazioni diffrnziali )-), dl primo ordin a variabili sparabili, dopo avr analizzato gli smpi a)-), di sguito riportati: a) ' + Riordando h modo: d ' l quazion prdnt può ssr sritta anh nl sgunt d da ui, sparando l variabili, si ha: d intgrando ambo i mmbri si ottin: d ( + ) d ( ) d d + ( ) d + d + + (intgral gnral) Si ossrvi, in primo luogo, h l urv intgrali, soluzioni dll quazion diffrnzial assgnata, sono proprio dll parabol. S si volss ora dtrminar, tra l suddtt P, (ondizion inizial) si avrbb: parabol, qulla h passa pr il punto ( ) ( ) La parabola rihista ha prtanto quazion: ( ) + + (intgral partiolar) ovvro: b) ' + ( + ) ( + ) + + ( ) 6

7 d Essndo ' l quazion si può anh srivr om sgu: d d d + da ui, sparando l variabili, si ha: d intgrando ambo i mmbri si ottin: ( + ) d ( ) d + avndo posto. ( + ) ( ) d d Dunqu pr l urv intgrali sono dll iprboli mntr pr si ottin la sgunt oppia di rtt: + + ) ' + L quazion diffrnzial divnta: Sparando ora l variabili si ha: d intgrando ambo i mmbri si ottin: d + d + d d + + d d artg artg tg( artg+ ) da ui, utilizzando la formula di addizion dlla tangnt: + tg π ( ) on + kπ, k intro (intgral gnral) tg Si ossrvi ora h l urv intgrali, pr, sono dll iprboli; pr, inv, si ha π la rtta ; pr + kπ, infin, si ottin l iprbol. d) ' sin L quazion diffrnzial divnta: d (*) d sin 7

8 Sparando ora l variabili si ha: (**) d intgrando ambo i mmbri si ottin: d d sin d d log log tg + log sin S si pon ora si riava: tg tg on > da ui: ossia: ± tg ± tg on > ioè: tg on (intgral gnral) Si ossrvi ora h nl passaggio dalla (*) alla (**) si è diviso pr ma iò, om è bn noto, è lito solo s. Con tal oprazion, quindi, si è potuto prdr l intgral. Essndo, prò, un intgral dll quazion diffrnzial assgnata, si può onludr h l intgral gnral è proprio: tg ' ) ( 5) Il sistma assgnato si risolv dtrminando, in primo luogo, l intgral gnral dll quazion diffrnzial poi l intgral partiolar ottnuto imponndo la ondizion 5. inizial ( ) Si ha, prtanto: d d d d d d avndo posto. + 8

9 Pr dtrminar ora l intgral partiolar basta imporr la ondizion inizial, ioè: ( 5) La soluzion dl sistma risulta quindi: 9 (intgral partiolar) ) + ' + ) ' [ ] ) ( + ) ' log( ) ' + ) ( ) + + 5) ( + ) ' + log( + + ) 6) tg + ' + ' arsin + 7) + ' 8) tg + 'tg arsin sin + artg( s ) 9) sinos 'os ) ' ' + ) ' ) + log + ( ) ' + ) ( ) + ' + + ) ( ) ' ( ) 5) ( ) '

10 6) ' 7) ' tg 8) 9) ) log ' sin ' ' ( ) ( + ) + 'tg ) ( ) 6 ' ) ( ) ' + ' ) π ( ) ' ) ( ) + ' 5) ( ) 'os sin 6) π ( ) ' 7) ( ) + os tg ± + log ; ± [ os+ ] sin artg arsin

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo

Si chiama equazione differenziale ordinaria di ordine n in un intervallo I qualunque espressione del tipo EQUAZIONI DIFFERENZIALI ORDINARIE Si hiama quazion diffrnzial ordinaria di ordin n in un intrvallo I qualunqu sprssion dl tipo n F,,,,, 0 pr ogni I F è dunqu una funzion di n variabili l sono l drivat

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equaioni diffrniali ordinari Equaioni diffrniali ordinari Equaioni diffrniali dl ordin a variabili sparabili, Equaioni diffrniali linari dl ordin Equaioni diffrniali dl ordin non linari: Equaion di Brnoulli

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE EQUAZIONI DIFFERENZIALI DEL SECONDO ORDINE A COEFFICIENTI COSTANTI Risoluzion di uazioni diffrnziali a ura dl prof. Massimo Latino EQUZIONI DIFFERENZILI DEL PRIMO ORDINE Dnominazion Com si prsntano Com si risolvono Euazion diffrnzial dl d primo ordin a variaili sparaili

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A

Matematica per l Economia (A-K) e Matematica Generale 10 novembre 2016 (prof. Bisceglia) traccia A Matmatica pr l Economia (A-K) Matmatica Gnral novmbr (pro. Biscglia) traccia A. Calcolar una primitiva P dlla unzion p scrivr l quazion dlla rtta tangnt a P in calcolar la distanza dlla rtta tangnt dall

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Gli integrali indefiniti. Definizione Una funzione F(x) si dice primitiva di f(x) in un intervallo I se F (x) = f(x) per ogni x appartenente ad [a,b].

Gli integrali indefiniti. Definizione Una funzione F(x) si dice primitiva di f(x) in un intervallo I se F (x) = f(x) per ogni x appartenente ad [a,b]. Prmssa : La sgunt dispnsa non vuol ssr un trattamnto saurint dll'argomnto, ma soltanto un supporto agli studnti dl quinto anno di studio di un istituto tnio industrial. Gli intgrali indfiniti Dfinizion

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI Univrsità Carlo Cattano Inggnria gstional Analisi matmatia a.a. 7/8 INTEGRALI GENERALIZZATI ESERCIZI CON SOLUZIONE ) Disutr la onvrgnza o mno di sgunti intgrali gnralizzati: a) d ; b) ln d ; ) d ; d) )

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

a ), la (34) diventa: Senza perdita di generalità si può omettere il valore assoluto e quindi la soluzione generale dell equazione omogenea è:

a ), la (34) diventa: Senza perdita di generalità si può omettere il valore assoluto e quindi la soluzione generale dell equazione omogenea è: Appunti dlla lzin dl Prf. Stfan D Marchi dl 9/0/6 a cura dl Prf. Frnand D Angl. Equazini diffrnziali linari dl prim rdin. Un quazin diffrnzial linar dl prim rdin si scriv:, () a + b, I I R cn b a, funzini

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA Si determini la soluzione del seguente problema di Cauchy: x.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA Si determini la soluzione del seguente problema di Cauchy: x. Si dtrmini la sluzin dl sgunt prblma di Cauh: 0 d Si tratta di un quazin a variabili sparabili Si risriv dp avr sparat l d variabili si intgran sparatamnt l du funzini d da ui d, lg, Cn la ndizin 0 dtrminiam

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Prova scritta di Fisica della Materia Condensata ed Elettronica dei Dispositivi a Stato Solido del Proff. P. Calvani, M.

Prova scritta di Fisica della Materia Condensata ed Elettronica dei Dispositivi a Stato Solido del Proff. P. Calvani, M. Prova sritta di Fisia dlla Matria Condnsata d Elttronia di ispositivi a Stato Solido dl 18--09 Proff. P. Calvani, M. Capizzi Esrizio 1 - Fisia atomia L nrgi di aluni livlli dll atomo di lio, rifrit a qulla

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI

PRECORSO DI MATEMATICA EQUAZIONI ESPONENZIALI CORSO DI LAUREA IN INFORMATICA APPLICATA PRECORSO DI MATEMATICA ESERCIZI SULLE EQUAZIONI ESPONENZIALI Esrcizio 1: Risolvr la sgunt quazion x+ = x+1. Svolgimnto: Dividndo il primo il scondo mmbro pr x+1

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25].

z 2 9 = 0 4z 2 12iz 10 i = 0 z = 3i + 4 2e i 9 8 π 2 Im f 1 = ] 2, 1] [4, 7] Im f 2 = [0, 25]. Politcnico di Bari L3 in Inggnria Elttronica Esam di Analisi Matmatica I A.A. 008/009-0 fbbraio 009. Dtrminar i numri complssi z ch soddisfano l quazion ( z 9) (z iz 0 i ) = 0. I numri conplssi ch soddisfano

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015

Le soluzioni della prova scritta di Matematica del 9 Giugno 2015 L soluzioni dlla prova scritta di Matmatica dl 9 Giugno. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disgnini, quali sono gli intrvalli in cui è positiva

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

EQUAZIONI E DISEQUAZIONI TRASCENDENTI EDT

EQUAZIONI E DISEQUAZIONI TRASCENDENTI EDT EDT EQUAZIONI E DISEQUAZIONI TRASCENDENTI I critri di quivalnza pr l quazioni sono stati introdotti nll'unità «EQUAZIONI» (paragrafo ). Nlla prsnt unità, con la sigla CFEE indichiamo il critrio fondamntal

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Esercizi sugli studi di funzione

Esercizi sugli studi di funzione Esrcizi sugli studi di funzion Studiar l andamnto tracciar il grafico dll sgunti funzioni di : (a) ; (b) 4 3 + ; (c) cos sin ; (d) 3 ; () log 3 ; (f) arctg + ; (g) ( + ) log ; (h) sin ; (i) tg ; (j) +

Dettagli

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C Matmatica pr l Economia (A-K) I Esonro 6 ottobr 8 (pro Biscglia) Traccia A C Sia A b dopo avrn data la dinizion riportar l Insim dll Parti A Data la unzion P riportar la rtta o la unzion g ch dscrivr con

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Campi conservativi e potenziali / Esercizi svolti

Campi conservativi e potenziali / Esercizi svolti SRolando, 01 1 Campi consrvativi potnziali / Esrcizi svolti ESERCIZIO Stabilir s il campo vttorial F (x, y) = xy xy + y +, x + xy +1 è consrvativo nl proprio dominio In caso armativo, calcolarn il potnzial

Dettagli

Esercizi 3 Geometria lineare nello spazio

Esercizi 3 Geometria lineare nello spazio Esrcizi 3 Gomtria linar nllo spazio Ngli srcizi ch sguono si suppon fissato un sistma di rifrimnto (SdR) nllo spazio. S la bas (dllo spazio vttorial di vttori libri) di tal SdR è indicata con (i, j, k),

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Lico Scintifico Paritario R Bruni Padova, loc Pont di Brnta, /9/7 II Prova - Matmatica Class V Sz Unica Soluzion Problmi Risolvi uno di du problmi: Problma L azinda pr cui lavori vuol aprir in città una

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1 " k " 3) e

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1  k  3) e Elmnti di Analisi Matmatica Ricrca Oprativa prova dl 5 gnnaio 06 ) Discutr il sgunt problma di Programmazion Linar: Trovar il massimo di p,, = 8 + + 8 con i vincoli k 0 ( " k " ) " + + 5 # + + = % 7 +

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

PROBLEMA 1 La funzione

PROBLEMA 1 La funzione www.matmaticamnt.it N. D Rosa INT p. z Esam di stato di istrzion scondaria sprior indirizzo: lib7 Scintiico opzion intrnazional tdsca a - Esabac - Scintiico intrnazional rancs tma di matmatica Il candidato

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica Approfondimnti Rinaldo Rui ultima rvision: 6 sttmbr 2019 3 Scondo Principio dlla rmodinamica 3.5 Lzion #13 3.5.2 Enrgia Intrna d Entropia di Sistmi Idrostatici Abbiamo sinora visto ch un sistma idrostatico

Dettagli

Soluzioni. Utilizziamo la separazione di variabili. Cerchiamo una soluzione del problema della forma. 2 R (incognita da determinare).

Soluzioni. Utilizziamo la separazione di variabili. Cerchiamo una soluzione del problema della forma. 2 R (incognita da determinare). Es. Es. Es. Es. 4 Total Politcnico di Milano - Inggnria Enrgtica Mtodi Analitici Numrici 4 Sttmbr 07 Cognom: Nom: Matricola: Esrcizio. Utilizzndo il mtodo di sarazion dll variabili, dtrminar una soluzion

Dettagli

Formule generali di carica e scarica dei condensatori in un circuito RC

Formule generali di carica e scarica dei condensatori in un circuito RC Formul gnrali di aria saria di ondnsaori in un iruio A ura di ugnio Amirano onnuo dll ariolo:. Inroduzion........ 2 2. aria saria di un ondnsaor..... 2 3. Formula gnral pr nsioni fiss..... 4 4. Formula

Dettagli