2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx ="

Transcript

1 CAPITOLO 1 Integrali 1.1 Integrali indefiniti Esercizi svolti 1 Calcolare: ( ) d Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: [αf() + βg()] d = α f() d + β g() d Possiamo quindi scrivere ( ) 4 = 3 3 d + 5 d d = 3 3 d + 5 d = 1 d 1 d d + 4 d = 3 d d (1) (1) Si ricordi che n m = m n, 1 n = n e 1 n m = m n.

2 1 Capitolo 1. Integrali Ora possiamo calcolare la primitiva di ciascuna delle funzioni assegnate, applicando la regola di integrazione delle funzioni potenza () : n d = n+1 + c per n 1 n d = ln + c ( ) d = ln c Calcolare il seguente integrale indefinito: sen 3 cos d L integrale è riconducibile alla tipologia (3) : f () f n () d = 1 n + 1 [f()]n+1 + c (n 1) sen }{{ 3 } cos }{{ } d = 1 4 sen4 + c f n () f () 3 Calcolare il seguente integrale indefinito: e e + 1 d () La tabella delle primitive di alcune funzioni elementari è contenuta nella tabella 1 dell appendice A. (3) Nella tabella sono contenute alcune formule di sostituzione immediata (casi più frequenti).

3 1.1. Integrali indefiniti 13 L integrale è riconducibile alla tipologia: f () d = ln f() + c f() Se calcoliamo però la derivata del denominatore, abbiamo: f () = e Occorre quindi moltiplicare e dividere per l integrale: 1 e e + 1 d = 1 ln(e + 1) + c 4 Calcolare il seguente integrale indefinito: 3 e 4 d L integrale è riconducibile alla tipologia: f ()e f() d = e f() + c Come nel caso precedente, se calcoliamo la derivata dell esponente otteniamo: f () = 4 3 Occorre quindi moltiplicare e dividere per 4 l integrale, ottenendo: e 4 d = 1 4 e4 + c 5 Calcolare il seguente integrale indefinito: + d

4 14 Capitolo 1. Integrali Questo integrale risulta complicato dalla presenza di + al denominatore della funzione integranda. Possiamo utilizzare il metodo d integrazione per sostituzione per semplificare tale funzione. Poniamo quindi: + = t Ricaviamo: = t Ricordiamo inoltre che, se abbiamo = g(t) allora che nel nostro caso equivale a: d = g (t) dt d = t dt Pertanto: t d = t dt + t = t dt ( = t dt ( ) t 3 = 3 t + c ) dt Torniamo ora alla variabile : d = ( + ) c = ( + ) c 6 Calcolare il seguente integrale indefinito: n ln d (per n 1)

5 1.1. Integrali indefiniti 15 Applichiamo il metodo di integrazione per parti: u() v () d = u() v() u () v() d n ln v () u() d = n+1 n+1 n + 1 ln n d = n+1 n + 1 ln 1 n + 1 n d = n+1 n + 1 ln 1 n + 1 n+1 n c = n+1 n + 1 ln n+1 (n + 1) + c 7 Calcolare il seguente integrale indefinito: sen d Applichiamo nuovamente il metodo di integrazione per parti (per due volte): u() v () d = u() v() u () v() d u() sen }{{ } d = sen cos }{{ } d v () v () u() [ = sen + sen ] sen d = sen + sen + cos + c

6 16 Capitolo 1. Integrali In alternativa, è possibile usare il metodo detto tabular integration che consente di calcolare integrali di questo tipo in modo più rapido (4). Il primo passo della procedura, dopo aver scelto come prima u() e v (), consiste nel costruire una tabella nella quale si inseriscono, rispettivamente, u() nella prima colonna (D) e v () nella seconda (I). Si deriva poi la u() fino ad ottenere 0 come valore della derivata e si integra v () per altrettante volte: D I sen cos sen 0 cos Il secondo passo consiste nell inserire, davanti alla prima colonna, una colonna contenente alternativamente i segni + e, partendo dal segno +: Segno D I + sen cos + sen 0 cos Infine, si moltiplica ogni elemento della prima colonna (fino alla penultima riga) per l elemento della seconda colonna (appartenente alla riga successiva), seguendo le frecce, e si ottiene il risultato finale: (4) Il metodo proposto semplifica notevolmente la risoluzione dell integrale se la funzione integranda è espressa sotto forma di prodotto di un polinomio di grado n per una funzione esponenziale o trigonometrica.

7 1.1. Integrali indefiniti 17 Segno D I + sen cos + sen 0 cos Quindi sen d = cos + sen + cos + c 8 Calcolare il seguente integrale indefinito: 3 e d Anche in questo caso, possiamo applicare nuovamente il metodo di integrazione per parti (per tre volte): 3 e u() v () d = ( ) e + c In alternativa, applicando il metodo di tabular integration, otteniamo: Segno D I + 3 e 3 e + 6 e 6 e + 0 e

8 18 Capitolo 1. Integrali Quindi 3 e d = ( ) e + c 9 Calcolare: d La funzione integranda è razionale fratta. Inoltre, il polinomio al numeratore è di grado superiore a quello del denominatore, quindi possiamo utilizzare il metodo della divisione tra polinomi: D() {}}{ //+ 3 // Q() //+8 7 Sappiamo che: //+5 6 R() N() R() = Q() + D() D() quindi possiamo riscrivere l integrale come: ( 1 d = = ) 5 6 d d } {{ } I Calcoliamo ora l integrale I, usando il metodo della decomposizione in frazioni parziali. Scomponiamo innanzitutto il denominatore in fattori primi: = 5 6 ( 1)( 3)

9 1.1. Integrali indefiniti 19 Il denominatore ha radici reali e distinte, quindi la frazione può essere scomposta come segue: 5 6 ( 1)( 3) = A 1 + = B A( 3) + B( 1) = 3 ( 1)( 3) A 3A + B B ( 1)( 3) In base al principio di identità dei polinomi, abbiamo: { { A + B = 5 A = 1 3A B = 6 B = 49 I = = d = 1 ln Abbiamo pertanto: ln 3 10 Calcolare il seguente integrale indefinito: d = 1 49 d + 1 (A + B) 3A B ( 1)( 3) 1 3 d d = ln 1 + ln 3 + c Il denominatore della frazione proposta è il quadrato del binomio ( 1). Il denominatore ha in questo caso radici reali e coincidenti. Procediamo come nel caso precedente alla scomposizione in frazioni parziali: ( 1) = A 1 + B ( 1) = A A + B ( 1) Applichiamo come prima il principio di identità dei polinomi, ottenendo: { { A = 4 A = A + B = 1 B = d = ( 1) d

10 0 Capitolo 1. Integrali = ln ( 1) d 3 = ln 1 ( 1) + c In alternativa, è possibile usare il metodo di sostituzione, ponendo: L integrale diventa quindi: 1 = t = 1 t + 1 d = 1 dt ( ( 1) d = t + ) = 1 t dt + 3 = ln 1 11 Calcolare il seguente integrale indefinito: t dt = 1 t + 3 t dt d t dt = ln t 3 t + c 3 ( 1) + c Occorre innanzitutto scomporre in fattori primi il denominatore. Possiamo utilizzare anche in questo caso la regola di Ruffini. Il denominatore ammette sicuramente come divisore il binomio (+1), quindi si ha: Pertanto risulta: d = 3 ( + 1)( 4 + 4) d = 3 ( + 1)( ) d

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Integrazione delle funzioni razionali fratte

Integrazione delle funzioni razionali fratte Integrazione delle funzioni razionali fratte Avvertenza: è opportuno che lo studente provi a rifare tutti i calcoli presentati nel seguito. Caso generale Consideriamo l integrale (indefinito o definito)

Dettagli

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in

Calcolo di limiti. = e il limite. La funzione non è definita in La funzione è definita in. La funzione è continua a destra in LIMITI Calcolo di limiti FUNZIONE CONTINUA Definizione Una funzione si dice continua in un punto quando il limite = La funzione non è definita in La funzione è definita in La funzione è definita in ma

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Integrazione delle funzioni razionali

Integrazione delle funzioni razionali Integrazione delle funzioni razionali Riccardo Bardin Per funzione razionale si intende una funzione del tipo A() ove A() e sono polinomi nella variabile. Siano m e n rispettivamente il grado di A() e.

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx.

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx. Calcolo Integrale 8 Soluzioni. Calcolare l integrale indefinito + d. R. Procediamo effettuando il cambio di variabile t = ossia = t e d = t dt. d = + t dt = t + t dt = log + t + c + t Se torniamo alla

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Teoria dell integrazione Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Teoria

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x)

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x) Integrazione di Funzioni Razionali Un polinomio di grado n N è una funzione della forma P () = a 0 + a +... + a n n dove a 0, a,..., a n sono costanti reali e a n 0. Una funzione della forma R() = P ()

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4 oluzioni delle Esercitazioni II 4 8/09/08 A Equazioni intere i ha: + = 3 4 Portando a sinistra le e a destra le costanti diventa 6 =, = 3 + = 0 Raccogliendo si può riscrivere come ( + ) = 0, che ha per

Dettagli

Calcolo degli integrali indefiniti

Calcolo degli integrali indefiniti Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti

INTEGRALI IMPROPRI. Esercizi svolti INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a c d e f / + 5 d arctan + d 8 + 4 5/ + e + d 9 + 8 + + d 4 d. d. Usando la definizione di integrale

Dettagli

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3(

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3( FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio 0 Cognome e Nome: ) Calcolare il dominio e il segno delle funzioni: f( ) ( ) ln( ) Data la funzione:

Dettagli

Soluzioni delle Esercitazioni I 19-23/09/2016

Soluzioni delle Esercitazioni I 19-23/09/2016 Esercitazioni di Matematica Esercitazioni I 9-3/09/06 Soluzioni delle Esercitazioni I 9-3/09/06 A. Polinomi Si ha:. (x+y)(3xy xy) = 6x y x y +3xy 3 xy.. (x y) = 4x 4xy +y. 3. Se non ci si ricorda lo sviluppo

Dettagli

Soluzioni delle Esercitazioni I 17-21/09/2018

Soluzioni delle Esercitazioni I 17-21/09/2018 Esercitazioni di Matematica Esercitazioni I 7-/09/08 Soluzioni delle Esercitazioni I 7-/09/08 A. Polinomi Si ha:. (x+y)(3xy xy) = 6x y x y +3xy 3 xy.. (x y) = 4x 4xy +y. 3. Se non ci si ricorda lo sviluppo

Dettagli

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1 Capitolo Integrali b Funzione (b \{ }) e Primitiva b+ b+ log e sin cos cos sin tan log cos cot log sin cos tan sin cot arcsin + arctan sinh cosh cosh sinh tanh log(cosh ) coth log(sinh ) cosh tanh sinh

Dettagli

Integrali delle funzioni razionali fratte

Integrali delle funzioni razionali fratte Integrali delle funzioni razionali fratte Riccarda Rossi Università di Brescia Analisi B Riccarda Rossi (Università di Brescia) Integrale di Riemann Analisi B 1 / 30 Caso generale Consideriamo l integrale

Dettagli

Unità Didattica N 29 : L integrale Indefinito

Unità Didattica N 29 : L integrale Indefinito Unità Didattica N 9 L integrale indefinito ) La definizione di integrale indefinito ) Proprietà dell ' integrale indefinito ) Integrali indefiniti immediati ) Integrazione per decomposizione ) Integrazione

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Teorema sul limite di una somma. ( x) l2. allora

Teorema sul limite di una somma. ( x) l2. allora Teorema sul ite di una somma Se f ( ) l e g( ) l allora [ f ( ) g( ) ] l l Il teorema vale anche per i casi in cui tende a più infinito oppure a infinito. La dimostrazione è analoga a quella vista qui

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

12 - Tecniche di integrazione

12 - Tecniche di integrazione Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica - Tecniche di integrazione Anno Accademico 05/06 M. Tumminello,

Dettagli

Definizione algebrica di integrale: l'integrale indefinito

Definizione algebrica di integrale: l'integrale indefinito Definizione algebrica di integrale: l'integrale indefinito L'integrale indefinito E' possibile definire semplicemente l'integrale dal punto di vista algebrico come operazione inversa della operazione di

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

Integrazione delle funzioni razionali e applicazioni

Integrazione delle funzioni razionali e applicazioni Integrazione delle funzioni razionali e applicazioni Tutte le funzioni razionali sono integrabili elementarmente. Inparticolare: l integrale di un polinomio si calcola per linearità ed è sempre un polinomio

Dettagli

II-7 Integrale indefinito

II-7 Integrale indefinito PRIMITIVE II-7 Integrale indefinito Indice Primitive Tecniche di integrazione I. Linearità dell integrale............................................. 3. Integrali quasi immediati...........................................

Dettagli

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi)

10. Integrazione delle funzioni RAZIONALI FRATTE ( = rapporti di polinomi) 0. Integrazione delle funzioni RAZIONALI FRATTE ( rapporti di polinomi) Studieremo ora tecniche specifiche per gli integrali della forma A ( ), B ( ) essendo A( ) e B ( ) due polinomi. E lecito supporre

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

LEZIONE 8. Esercizio 8.1. Calcolare le primitive delle seguenti funzioni. 2x +6dx = x 2 +6x + c. x 3 2 x dx = 1 4 x4 2ln x + c.

LEZIONE 8. Esercizio 8.1. Calcolare le primitive delle seguenti funzioni. 2x +6dx = x 2 +6x + c. x 3 2 x dx = 1 4 x4 2ln x + c. 8 LEZIONE 8 Esercizio 8.. Calcolare le primitive delle seguenti funzioni. x +6dx = x +6x + c. x 3 x dx = 4 x4 ln x + c. cos x sin x dx =sinx +cosx + c. e x + x dx = ex x + c. x / + x /3 dx = 3 x3/ + 3

Dettagli

(File scaricato da dx x + 3 x *** x = t 6. dx = 6t 5 dt

(File scaricato da   dx x + 3 x *** x = t 6. dx = 6t 5 dt Esercizio 818 (File scaricato da http://www.extrabyte.info) : x + 3 x Poniamo: Ciò implica: Quindi l integrale in funzione di t: x = t 6 = 6t 5 Ripristinando la variabile x: 6t 5 F (t) = t 3 + t t 3 =

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado.1 Risoluzione delle disequazioni di secondo grado Una disequazione di secondo grado si presenta in una delle seguenti forme: a + b + c > 0; a + b + c 0; a + b + c < 0; a +

Dettagli

francesca fattori speranza - versione febbraio 2018 EQUAZIONI DI SECONDO GRADO E SUPERIORE INTERE E FRATTE a) Intere

francesca fattori speranza - versione febbraio 2018 EQUAZIONI DI SECONDO GRADO E SUPERIORE INTERE E FRATTE a) Intere francesca fattori speranza - versione febbraio 018 EQUAZIONI DI SECONDO GRADO E SUPERIORE INTERE E FRATTE a) Intere a x + bx + c = 0, a, b, c sono numeri reali a 0 a n x n + a n 1 x n 1 +... + a 1 x +

Dettagli

Università degli Studi di Udine Anno Accademico 2003/2004. Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica

Università degli Studi di Udine Anno Accademico 2003/2004. Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Università degli Studi di Udine Anno Accademico 200/2004 Cognome e Nome: Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica Prova Scritta del 2 luglio

Dettagli

1 + x2 Metodi di calcolo di un integrale Indefinito

1 + x2 Metodi di calcolo di un integrale Indefinito Integrali Integrali Indefiniti L operazione di integrale indefinito è l operazione inversa rispetto alla derivata, infatti consiste, partendo da una funzione f(x), di trovare l insieme delle funzioni F(x)

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

ESERCITAZIONE 19 : INTEGRALI

ESERCITAZIONE 19 : INTEGRALI ESERCITAZIONE 9 : INTEGRALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 4 23 Aprile 203 Esercizio Calcola i seguenti

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

Scomposizione in fattori

Scomposizione in fattori Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA 1 Introduzione Scomposizione in fattori La scomposizione in fattori dei polinomi assume un importanza speciale quando si

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

( ) ( ) ( ) individua un nuovo tipo di oggetto algebrico che prende il nome di frazione algebrica. Per esempio, A= 3x+ 1,

( ) ( ) ( ) individua un nuovo tipo di oggetto algebrico che prende il nome di frazione algebrica. Per esempio, A= 3x+ 1, .5 Divisione tra due polinomi. Divisione esatta di due polinomi Allo stesso modo in cui la divisione tra due numeri interi non sempre dà un numero intero, anche la divisione tra due polinomi non sempre

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016 ANNO ACCADEMICO 05/0 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, //0 Esercizio. Le carte di un mazzo da 0, composto solo delle carte da a 5, vengono distribuite (5 a testa) ai quattro giocatori

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016 Limiti di funzioni Parte calcolo prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, /6 L insieme R Il calcolo dei iti delle funzioni reali di variabile reale avviene nell insieme esteso dei numeri

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1 Capitolo Integrali b Funzione (b \{ }) e Primitiva b+ b+ log e sin cos cos sin tan log cos cot log sin cos tan sin cot arcsin + arctan sinh cosh cosh sinh tanh log(cosh ) coth log sinh cosh tanh sinh coth

Dettagli

1 Primitive 1. 2 Tecniche di integrazione I Linearità dell integrale Integrali quasi immediati... 4

1 Primitive 1. 2 Tecniche di integrazione I Linearità dell integrale Integrali quasi immediati... 4 INTEGRALE INDEFINITO PRIMITIVE Integrale indefinito Indice Primitive Tecniche di integrazione I 3. Linearità dell integrale............................................. 3. Integrali quasi immediati...........................................

Dettagli

Svolgimento degli esercizi N. 3

Svolgimento degli esercizi N. 3 Svolgimento degli esercizi N. 3 Prova scritta parziale n. del // Fila. Calcolare il valore del seguente integrale definito: ( x + e x ) dx. ( x + e x ) dx ( x + e 4x + x e x) dx x dx + e 4x dx + x e x

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

INTEGRAZIONE DELLE FUNZIONI RAZIONALI. Figura 0.1. Portafortuna

INTEGRAZIONE DELLE FUNZIONI RAZIONALI. Figura 0.1. Portafortuna INTEGRAZIONE DELLE FUNZIONI RAZIONALI GIOVANNI TORRERO Figura 0.. Portafortuna Consideriamo l equazione. Radici di un polinomio (.) Q(x) 0 Dove Q(x) è un polinomio in x di grado n, vi è un teorema, che

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~ 8,9(6,7 '(*/,678',',$7( )DFROWjGL,QJJQULD&RUVRGL/DXUDLQ,QJJQULD,QIRUPDWLFD (6(&,,',&$/&/,, SULPDSDUW,7(*$/, Calcolare i seguenti integrali definiti e indefiniti: ~~~~~~~~~~~~~~~~~~~~ 7 8 8 6 )( ) 9)( )

Dettagli

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere

Dettagli

INTEGRALE INDEFINITO DI UNA FUNZIONE y=f(x): integrali

INTEGRALE INDEFINITO DI UNA FUNZIONE y=f(x): integrali INTEGRALE INDEFINITO DI UNA FUNZIONE y=f(x): integrali immedia@ f(x)dx= F (x) + c è l insieme delle PRIMITIVE F(x) della funzione f(x) tale che F (x)=f(x) Operazione inversa della Derivata prima. Se derivo

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

G6. Integrali indefiniti

G6. Integrali indefiniti G6 Integrali indefiniti G6 Introduzione Nel capitolo G4 si è visto come calcolare la derivata di una funzione data Quando si calcola la derivata di una funzione y=f() il risultato è un altra funzione indicata

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Esercizi svolti sui iti Esercizio. Calcolare sin(). Soluzione. Moltiplichiamo e dividiamo per : sin() sin() sin() a questo punto, ponendo y, dato che otteniamo y sin y y sin() y sin y y. Esercizi svolti

Dettagli

Risoluzione del compito n. 7 (Settembre 2014/2)

Risoluzione del compito n. 7 (Settembre 2014/2) Risoluzione del compito n. 7 (Settembre 204/2) PROBLEMA Determinate tutte le soluzioni (z, w), con z, w C,del sistema { 2z 2 3iz = w 2 w 4 = z 4. Dalla seconda equazione si ricava subito che w 4 = z 4,

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli