Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 - Integrazione numerica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 - Integrazione numerica"

Transcript

1 Complementi di Mtemtic e Clcolo Numerico A.A Lbortorio 10 - Integrzione numeric Dt un funzione f vlori reli per pprossimre b fornisce l funzione predefinit integrl Sintssi: q=integrl(f,,b) input: f funzione integrnd, b estremi di integrzione output: q pprossimzione dell integrle f(x)dx, Mtlb il vlore pprossimto q viene clcolto cercndo di portre gli errori ssoluto e reltivo commessi l di sotto di tollernze fisste che per defult sono 1e-10 per l errore ssoluto e 1e-6 per quello reltivo. Esercizio 1 Approssimre l integrle cos(10x)e sin(10x) dx (= esin(100) e sin(100) ) 10 con l funzione integrl di Mtlb. Clcolre l errore ssoluto e l errore reltivo e verificre che corrispondno ll precisione di defult.

2 Per modificre uno o entrmbi i vlori di defult delle tollernze si segue l sintssi: q=integrl(f,,b, AbsTol,vl1, RelTol,vl2) dove vl1 e vl2 sono i nuovi vlori rispettivmente dell tollernz per l errore ssoluto e per quello reltivo. Not Bene: integrl cerc di soddisfre si l tollernz per l errore ssoluto che per quello reltivo m non necessrimente le soddisf entrmbe. Più precismente integrl cerc di soddisfre q - I <= mx(abstol,reltol* q ) dove I denot il vlore estto dell integrle e q quello pprossimto quindi second dell scelt delle tollernze srà grntito che uno dei due errori reltivo o ssoluto si sotto l tollernz scelt, il che non signific che non possno esserlo entrmbi. Esercizio 2 Ripetere ltre due volte l Esercizio 1 modificndo le tollernze per l errore ssoluto e reltivo nel modo seguente: ) AbsTol= 1e-1 RelTol=1e-6 b) AbsTol= 1e-16 RelTol=1e-8 Clcolre gli errori ssoluto e reltivo e confrontre i risultti ottenuti nei vri csi incluso quello di defult. Si osserv che nel cso ) solo l errore ssoluto scende sotto l tollernz indict e gli errori risutno mggiori rispetto l cso di defult; Nel cso b) solo l errore reltivo scende sotto l tollernz richiest e gli errori risultno minori rispetto l cso di defult; 2

3 Formule di qudrtur semplici per pprossimre b f(x)dx sono d esempio: I pm (f) = (b )f( +b 2 ) Punto medio I t (f) = (b ) 2 (f()+f(b)) Trpezi I sim (f) = (b ) 6 (f()+4f( +b 2 )+f(b)) Cvlieri Simpson Def: Un formul di qudrtur I si dice che h grdo di precisione p se è estt per polinomi di grdo minore o ugule p, ovvero I(f) = b f(x)dx f P p Le formule del punto medio e dei trpezi hnno grdo di precisione 1, l formul di Simpson h grdo di precisione 3. Esercizio 3 Assegnti i seguenti integrli: 5 2 7x 5dx; 5 2 5x 2 3x+8dx; 5 2 3x 3 2x 2 +5x 1dx scegliere in mnier pproprit un tr le seguenti formule di qudrtur semplici: punto medio, trpezi e Simpson e clcolre gli integrli indicti. Confrontre il risultto con l soluzione estt clcolt utilizzndo il comndo polyint. 3

4 Formule di qudrtur composite Scegliendo un prtizione dell intervllo di integrzione in fissti sottointervlli = x 1 < x 2 < < x m+1 = b e sfruttndo l dditività dell integrle rispetto l dominio di integrzione ovvero b n xi+1 f(x)dx = f(x)dx i=1 si generno formule composite pplicndo un formul di qudrtur semplice su ogni sottointervllo dell prtizione dt. Formul dei trpezi composit f(x)dx con l formul dei trpezi composit, si considerno i punti di coordinte (x k,y k ), x 1 = x 2 x m+1 = b, y k = f(x k ) e si clcol l quntità: Per pprossimre b I c T = m k=1 x i h k 2 (y k +y k+1 ) dove h k = (x k+1 x k ), k = 1,...m Mtlb fornisce un funzione di libreri che implement tle metodo: Sintssi: q=trpz(x,y) input: x nodi di qudrtur y = f(x) funzione integrnd nei nodi di qudrtur output: q pprossimzione dell integrle 4

5 Esercizio 4 Si pprossimino i seguenti integrli (tr prentesi i vlori estti): π/2 0 sin(x) dx (= 1) cos(x)esin(x) dx (= e sin(10) e sin(10) ) A tl scopo si consideri un suddivisione dell intervllo di integrzione[, b] in m sottontervlli di ugule mpiezz H = b m e si utilizzi il metodo dei trpezi compositi per diversi vlori di m = 10, 100, 1000, Per ogni integrle si clcoli l errore ssoluto e si compili l seguente tbell Si verifichi che l errore è O(H 2 ). m H Errore ssoluto

6 Formul del punto medio composit Per pprossimre b f(x)dx con l formul del punto medio composit, possimo suddividere l intervllo di integrzione [, b] in m sottointervlli diugulempiezzh = b m individutidipuntix k = +(k 1)H, k = 1,...,m+1 e clcolre l quntità: m IPM c = H f(x k + H 2 ), k=1 (Si osservi che l funzione integrnd v vlutt nei punti medi dei sottointervlli di mpiezz H). Esercizio Si scriv un funzione Mtlb con l sintssi indict che implementi l formul del punto medio composit su m sottointervlli di ugule mpiezz.. Sintssi: q=pmedc(,b,m,f) input:, b estremi di integrzione m f numero dei sottointervlli funzione integrnd output: q pprossimzione dell integrle 6

7 Metodo di Cvlieri Simpson composit Per pprossimre b f(x)dx con l formul di Cvlieri-Simpson composit, possimo suddividere l intervllo di integrzione [, b] in m sottointervlli di ugule mpiezz H = b m individuti di punti x k = + (k 1)H, k = 1,...,m+1 e clcolre l quntità: [ ] ISIM c = H m m f(x 1 )+2 f(x k )+4 f(x k + H 6 2 )+f(x m+1) k=2 (Si osservi che l funzione integrnd v vlutt si negli estremi che nei punti medi dei sottointervlli di mpiezz H). Esercizio Si scriv un funzione Mtlb con l sintssi indict che implementi l formul di Cvlieri Simpson composit su m sottointervlli di ugule mpiezz.. Sintssi: q=simpsc(,b,m,f) input:, b estremi di integrzione k=1 m f numero dei sottointervlli funzione integrnd output: q pprossimzione dell integrle 7

8 Esercizio 5 Si considerino i seguenti integrli (tr prentesi i vlori estti): 2( 1 1 x +ex) dx (= log(2)+e 2 e) x 2 dx (= rctn(5)) e si ripet qunto richiesto nell Esercizio 4 m utilizzndo i codici sviluppti per i metodi del punto medio e di Simpson compositi. Si clcoli il vlore ssoluto dell errore commesso e si compili l seguente tbell per ciscun integrle e ciscun metodo. m H Errore ssoluto Siverifichichel erroreèo(h 2 )perilmetododelpuntomedioechel errore è O(H 4 ) per il metodo di Simpson, con H = b m. 8

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 0014-015 Lbortorio 7 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 2009-2010 Lbortorio 10 - Integrzione numeric Dt un funzione f vlori reli per clcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) f(x) dx,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

Calcolo Numerico I - A.A Laboratorio 7 - Approssimazione di integrali

Calcolo Numerico I - A.A Laboratorio 7 - Approssimazione di integrali Clcolo Numerico I - A.A. 2011-2012 Lbortorio 7 - Approssimzione di integrli 1. 2. 3. π 0 10 10 5 5 sin(x) dx(= 2) Integrli proposti cos(x)exp(sin(x)) dx(= exp(sin(10)) exp(sin( 10))) 1 dx(= tn(5) tn( 5))

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Clcolo Numerico con elementi di progrmmzione (A.A. 2014-2015) Appunti delle lezioni sull qudrtur numeric Integrzione numeric Problem: pprossimre numericmente integrli definiti I(f) = f(x) dx L intervllo

Dettagli

Integrazione numerica

Integrazione numerica Integrzione numeric An Alonso Diprtimento di Mtemtic - Università di Trento 22 Novembre 2018 Formule di qudrtur Esempi di formule di qudrtur di Newton-Cotes: Formul del punto medio: b f (x) dx (b )f (

Dettagli

2. Integrazione numerica

2. Integrazione numerica Clcolo con Lbortorio II -.. 007/008 1 31/3/008. Integrzione numeric [Riferimenti bibliogrfici: Mtemtic numeric (Qurteroni et l.), cpitolo 8 e Numericl recipes (Press et l.), cpitolo 4.] Dt un funzione

Dettagli

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale

Calcolo Integrale. Avviso. Integrazione analitica. Proprietà dell integrale M. Annunzito, DMI Università di Slerno - documento provvisorio p. 3/18 M. Annunzito, DMI Università di Slerno - documento provvisorio p. 4/18 Avviso I contenuti di queste nnotzioni non sono esustivi i

Dettagli

Integrazione Numerica

Integrazione Numerica Integrzione Numeric Si f un funzione integrbile sull intervllo [, b]. Il suo integrle I (f ) = b f (x) dx può essere difficile d clcolre (può nche non essere vlutbile in form esplicit). Un formul esplicit

Dettagli

Daniela Lera A.A

Daniela Lera A.A Dniel Ler Università degli Studi di Cgliri Diprtimento di Mtemtic e Informtic A.A. 2016-2017 Formule Gussine Formule di qudrtur Gussine In tli formule l posizione dei nodi non è prefisst, come vviene in

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha:

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha: Esercitzione 10 Istruzioni trttte: interp1. Nell prim prte di quest esercitzione discuteremo due ppliczioni dell ricostruzione con funzioni continue lineri trtti: l pprossimzione numeric di un integrle

Dettagli

Integrazione numerica 1

Integrazione numerica 1 Integrzione numeric 1 A. Sommriv Keywords: Formule lgebriche e composte, convergenz e stbilità, esempi: formul dei trpezi e dell prbol (Cvlieri-Simpson); formule pesi positivi. Revisione: 4 giugno 19 1.

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p./33 INTEGRAZIONE NUMERICA

Dettagli

Quadratura Numerica. Stefano Berrone. Dipartimento di Matematica tel

Quadratura Numerica. Stefano Berrone. Dipartimento di Matematica tel Formule interpoltorie Diprtimento di Mtemtic tel. 011 0907503 stefno.berrone@polito.it http://clvino.polito.it/~sberrone Lbortorio di modellzione e progettzione mterili Formule interpoltorie Voglimo pprossimre

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO.. 008 009 http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p.1/0 INTEGRAZIONE NUMERICA Dt

Dettagli

Integrazione numerica. Formule di quadratura interpolatorie. Esempio. Problema: approssimare numericamente integrali definiti CALCOLO NUMERICO

Integrazione numerica. Formule di quadratura interpolatorie. Esempio. Problema: approssimare numericamente integrali definiti CALCOLO NUMERICO Integrzione numeric Problem: pprossimre numericmente integrli definiti ANALISI NUMERICA CALCOLO NUMERICO A.A. 0-0 Prof. F. Pitolli Appunti delle lezioni sull qudrtur numeric If = f dx L intervllo di integrzione

Dettagli

Laboratorio di Analisi Numerica Lezione 10

Laboratorio di Analisi Numerica Lezione 10 Lbortorio di Anlisi Numeric Lezione 10 Ginn Del Corso Federico Poloni 11 Dicembre 2012 Quntità di esercizi: in quest dispens ci sono più esercizi di qunti uno studente

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Esercizio : ESERCIZI DI CALCOLO UMERICO Formule di qudrtur Costruire l ormul di qudrtur interpoltori del tipo d ( ) ( ) ( ) clssiicndol e determinndone l ordine di ccurtezz polinomile Mell Per costruzione

Dettagli

Integrazione numerica

Integrazione numerica Integrzione numeric Alvise Sommriv Università degli Studi di Pdov Diprtimento di Mtemtic Pur e Applict 28 prile 2019 Alvise Sommriv Integrzione numeric 1/ 65 Integrzione numeric In quest sezione mostrimo

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnic delle Mrche Fcoltà di Ingegneri Ing. Informtic e Automtic Ing. delle Telecomuniczioni Teledidttic ANALISI NUMERICA Secondo Przile TEMA A (Prof. A. M. Perdon) Ancon, giugno 6 PARTE

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

ARGOMENTI DEL CORSO CALCOLO NUMERICO

ARGOMENTI DEL CORSO CALCOLO NUMERICO ARGOMENTI DEL CORSO CALCOLO NUMERICO A.A. 29/1 3 25 2 15 1 5 5 1 2 3 4 5 6 7 8 9 1 Integrzione Numeric Giulio Csciol (novembre 23, rivist e corrett ottobre 29) 2 Indice 1 Integrzione Numeric 1 1.1 Formule

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione w j pesi f(x) dx = N j=1 w j f(x j ) N più piccolo possibile. Metodi spzitur fiss x b x j = + h j j N h = b N Chiusi: Aperti: x j, b x j, b / x j f 1 h h h h x x 1 x 2 x 3 x 4 x 5 Metodo del

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica Corso di lure in Mtemtic SAPIENZA Università di Rom Note del corso di Lbortorio di Progrmmzione e Clcolo: Integrzione numeric Diprtimento di Mtemtic Guido Cstelnuovo SAPIENZA Università di Rom Indice Cpitolo

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione w j pesi f(x) dx = N j=1 w j f(x j ) N più piccolo possibile. x b Metodi spzitur fiss x j = + h j j N h = b N Chiusi: Aperti: x j, b x j, b / x j Metodo del rettngolo f(x) dx = h 4 f(x j )

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Lezione 4: Introduzione al calcolo integrale

Lezione 4: Introduzione al calcolo integrale Lezione 4: Introduzione l clcolo integrle PARTE In quest prim prte si introdurrnno i concetti di integrle indenito, denito e improprio. In prticolre si cercherà di trttre in modo intuitivo l'interpretzione

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Problemi di diffusione-rezione del secondo ordine Formulzione debole Metodo di

Dettagli

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee Metodo degli elementi finiti in un dimensione Condizioni di Dirichlet omogenee Luci Gstldi Diprtimento di Mtemtic, http://www.ing.unibs.it/gstldi/ Indice 1 Problemi ellittici del secondo ordine Formulzione

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Formulzione debole Metodo di Glerkin Condizioni di Dirichlet omogenee Assemblggio

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

f(x)dx. Usando un passo h = (b a)/(n 1), la formula dei trapezi composita si scrive I(f) = I h (f) b a 12 h2 f (ξ h ) ove I h (f) = h n 2 j=1 2n 3

f(x)dx. Usando un passo h = (b a)/(n 1), la formula dei trapezi composita si scrive I(f) = I h (f) b a 12 h2 f (ξ h ) ove I h (f) = h n 2 j=1 2n 3 Cpitolo 7 Qudrtur 7.1 Formul dei trpezi composit Si f : [,b] R un funzione di clsse C di cui voglino clcolre l integrle I(f) = f(x)dx. Usndo un psso h = (b )/(n 1), l formul dei trpezi composit si scrive

Dettagli

A. Murli. Capitolo 4. La quadratura. 4.1 Generalità

A. Murli. Capitolo 4. La quadratura. 4.1 Generalità Cpitolo 4 L qudrtur 4.1 Generlità L misur delle ree è uno dei problemi scientifici più ntichi. In epoc bbilonese ed egizin, d esempio, venivno clcolte delle buone pprossimzioni dell re di un cerchio con

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Integrazione. Divido il range di integrazione in N intervalli. w j f(x j ) x j = a + h j 0 j N h = b a N

Integrazione. Divido il range di integrazione in N intervalli. w j f(x j ) x j = a + h j 0 j N h = b a N Integrzione Divido il rnge di integrzione in N intervlli w j pesi (x) dx = N j= w j (x j ) N più piccolo possibile. x b Metodi spzitur iss x j = + h j j N h = b N Chiusi: = x, b = x N Aperti:, b / x j

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 11 - Integrli Anno Accdemico 2015/2016 M. Tumminello, V. Lcgnin,

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x)

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x) Integrli impropri Voglimo definire e clcolre f (x)dx qundo I I è illimitto, I è limitto, m f non è limitt su I. y y f (x) f (x) x x c Pol Gervsio - Anlisi Mtemtic - A.A. /2 Integrli impropri cp0.pdf Integrle

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

1+x 4 4. spesso della funzione integranda è nota solo una restrizione a un insieme discreto.

1+x 4 4. spesso della funzione integranda è nota solo una restrizione a un insieme discreto. Cpitolo 7 Integrzione numeric In questo cpitolo si studino lcuni metodi per il clcolo pprossimto di integrli definiti. Alcuni motivi che consiglino l uso di metodi pprossimti in luogo di metodi nlitici

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnic delle Mrce Fcoltà di ngegneri ng. normtic e Automtic ng. delle Telecomuniczioni Teledidttic ANALS NUMERCA TEMA D Pro. A. M. Perdon Ancon, giugno PARTE - SOLUZONE Si ciede llo studente

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014 Integrli Alessndro Fllic Liceo Ginnsio Sttle G. Verg Adrno 3 prile 2014 Indice 1 Differenzile di un funzione 2 1.1 Definizione di differenzile.................... 2 1.2 Significto geometrico del differenzile

Dettagli

Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx

Foglio N.3. PRIMITIVE. Pn (x) Q m (x) dx Integrli di Funzioni Rzionli: Foglio N3 PRIMITIVE Pn (x) Q m (x) dx dove P n (x) e Q m (x) sonopolinomidigrdon ed m rispettivmente Un funzione rzionle il cui denomintore P n (x) è un polinomio di grdo

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

A. S. 2000/2001 Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE. Tema di: MATEMATICA

A. S. 2000/2001 Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE. Tema di: MATEMATICA Pg. / A. S. 000/00 Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tem di: MATEMATICA L prov richiede lo svolgimento di uno dei due problemi proposti e le risposte cinque domnde scelte ll

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

Il calcolo integrale

Il calcolo integrale CAPITOLO 4 Il clcolo integrle Il problem che ffrontimo in questo cpitolo è il clcolo di ree di lcune regioni del pino. Inizimo il cpitolo spiegndo quli regioni pine simo interessti. Questi rgomenti sono

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Integrale: Somma totale di parti infinitesimali

Integrale: Somma totale di parti infinitesimali I problemi del Clcolo Ininitesimle (Newton, Method o Fluxions, 67) o Problem. (Derivt) Dt l lunghezz dello spzio percorso in ogni istnte di tempo, determinre l velocità in ogni istnte. 2 o Problem. (Integrle)

Dettagli

Integrazione numerica

Integrazione numerica Cpitolo Integrzione numeric 1 Formul dei rettngoli Si f(x) un funzione vlori reli definit su un intervllo chiuso e limitto [, b]; si suppone di dover vlutre l integrle I = f(x)dx Nel cso in cui f(x) si

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli