Teoria delle distribuzioni Parte prima Concetti di base

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria delle distribuzioni Parte prima Concetti di base"

Transcript

1 Lezioi di Mtemtic Le distribuzioi prte Teori delle distribuzioi Prte prim Cocetti di bse L ecessità di u uov teori L teori delle distribuzioi trov l su origie dlle scieze fisiche. Iftti, già dgli lbori delle teorie sull elettromgetismo si è vvertit, d esempio, l ecessità di trovre modelli deguti per descrivere l desità di cric elettric i fuzioe delle coordite spzili. I certi problemi risult comodo pesre le sorgeti di cric come putiforme (ossi, tutte codeste i u puto dello spzio, che duque ssume vlore di cric fiit e o ull), m queste situzioi o ero correttmete formulbili i modo litico perché o vi ero strumeti mtemtici (ossi fuzioi) i grdo di rppresetre vlori di grdezze di tur putule sez essere discotiui. Tuttvi, l fisic h ivetto e utilizzto l otzioe d per idicre u grdezz defiit putulmete e ull ltrove, dott di certe proprietà che, però, o soo vlide dl puto di vist dell mtemtic clssic. Negli i qurt è stt strutturt u teori mtemtic che potesse crtterizzre, formlmete e opertivmete, l uso dell otzioe d e di ltri oggetti, che chimeremo distribuzioi. L teori delle distribuzioi deve il suo sviluppo Schwrtz e Sobolev, ed è oggi di grde utilità prtic i svriti cmpi del spere e dell igegeri, come ell elettromgetismo, ell fisic qutistic, ell sttistic, ell teori del filtrggio e dell elborzioe dei segli, elle comuiczioi elettriche,ecc I puti deboli dell teori clssic dei segli L teori clssic dei segli/fuzioi cde i corrispodez di lcui puti crdie: isult impossibile derivre le fuzioi discotiue sez perdere iformzioe sulle fuzioi stesse No è possibile defiire l trsformt di Fourier e di Lplce per tutti i segli, cus dell richiest di sommbilità sul segle d trsformre, che o è sempre soddisftt No ci soo legmi rigorosi tr serie e trsformt di Fourier, dl puto di vist teorico Le teorie sui segli tempo cotiuo e tempo discreto soo due cose differeti se viste i seso clssico Queste motivzioi o soo le uiche che porto ll ecessità di defiire u teori degut per le distribuzioi: E ecessrio defiire soluzioi deboli per certe equzioi differezili lle derivte przili

2 Lezioi di Mtemtic Le distribuzioi prte Fuzioi test e loro spzio Co segle si itede ogi grdezz che vri i fuzioe di u vribile idipedete, che ssumeremo (per fissre le idee) essere il tempo t. Duque vremo dei segli s(t) defiiti i seso clssico : ossi, esmiimo di questi segli il vlore putule, cioè il vlore che essi ssumoo puto per puto. Iizimo co il defiire u segle s(t): Ø oppure C per semplicità, pesimo il segle fuzioe di u vribile sclre t e vlori reli (ull viet di ripetere, però, l trttzioe per segli di vlori complessi o vettorili reli o complessi). k Ci mettimo ell ipotesi che il segle s(t) pprtiee llo spzio C (), ossi bbi derivte cotiue sio ll ordie k-esimo (l derivt di ordie 0 è il segle stesso). Ioltre, defiimo supporto del segle s(t) l isieme D defiito come H := { t e : s(t) 0 } Ossi il segle è ullo l di fuori dei puti di D. Quest proprietà è importte per defiire il cocetto di distribuzioe, come si vedrà più vti. Ftte queste debite ipotesi, itroducimo lo spzio vettorile delle fuzioi test j(t) D := { j(t) :ØC, j(t) e C () e supporto itto } Dove co supporto itto itedimo che l isieme H è chiuso e itto. I reltà, per defiire le distribuzioi è ecessrio, volt per volt, ridiscutere le proprietà delle fuzioi test (per i meotivi che si vedro), m i geerle bst ipotizzre che esse bbio supporto itto e sio idefiitmete derivbili i mier cotiu per vere u bse comue di lvoro, vlid i ogi cso. L distribuzioe delt L delt di Dirc, o più semplicemete delt, è improprimete defiibile come u oggetto mtemtico che modellizz u segle/grdezz di vlore ifiito e diverso d zero solo el puto t = 0, che gode dell proprietà + δ ( t) dt = δ ( t) = Quest defiizioe, i seso clssico, è evidetemete errt, perché: ) l delt o è u fuzioe, i quto è ull qusi ovuque (ossi meo di isiemi di puti t misur ull) e h vlore ifiito i t = 0: questo ci port cocludere che l iformzioe utile che ess rec è proprio ell su discotiuità ell origie, e duqe o l possimo trttre come l fuzioe ovuque ull, defiit meo del puto t = 0, perché questo ci porterebbe perdere proprio l uico puto iteresste dell delt;

3 Lezioi di Mtemtic Le distribuzioi prte ) l itegrle o vle si che lo itedimo el seso di iem che i quello di Lebesgue. Iftti, el primo cso è ecessrio escludere lo zero dll itervllo di itegrzioe, per poter itegrre: questo port d vere itegrle ullo su -{0}. Nel secodo cso, l itegrle è fttibile, perché l discotiuità è uic e duque l isieme dei puti di discotiuità h misur ull, m è ideticmete ullo. Duque, i reltà, l scrittur itegrle vist prim o h seso. Come si giustific, duque, l delt? E ecessrio itedere l delt, come ogi ltr distribuzioe, o come u fuzioe, di cui è possibile esmire il comportmeto putule, m come u oggetto d esmire i relzioe ll effetto che iduce su u ltr fuzioe. Quest fuzioe deve vere certi requisiti perché si possibile che l itegrle coverg: questo scopo, predimo le fuzioi test j viste prim. Questo effetto è defiito come dulità tr l delt e u fuzioe, e si idic co l scrittur legger (brket) < δ, ϕ >=< δ ϕ >= δ (t) ϕ(t)dt duque l effetto dell delt sull fuzioe test j è l itegrle dell delt cotro l stess fuzioe j, ossi u specie di medi itegrle : ciò cofort l precedete ide, secodo l qule è ecessrio strrre dl cocetto di vlore putule e pssre l cocetto di vlore itegrle medito per defiire le distribuzioi. Per l delt ccde che < δ, ϕ >= ϕ(0) e ciò è dimostrbile clcoldo l itegrle dell delt cotro j, il che i geerle o è immedito. Iftti, come riuscimo portre vti il clcolo esplicito dell dulità, se ess preset sotto il sego di itegrle l delt stess? Srà llor ecessrio ricorrere d u pprossimzioe dell delt ttrverso u successioe { δ } di fuzioi, di modo d costruire l delt come < δ, ϕ >=< δ, ϕ >=< δ, ϕ > + + se ovvimete si h covergez (rest d precisre il seso dell covergez) ll delt. L prim ugugliz è ver cus delle proprietà delle distribuzioi, che vedremo oltre. isult ovvio (lo si dimostr co u semplice cmbio di vribili) che ccd che < αδ ( t t0), ϕ >= α δ (t - t 0) ϕ(t)dt = αϕ(t 0), e C Ci soo vri modi di pprossimre l delt e di clcolre l itegrle di dulità: e esmiimo lcui. 3

4 Lezioi di Mtemtic Le distribuzioi prte Il modo più iteresste è forse cosiderre il ftto che, se + < f, ϕ >=< f, ϕ >=< f, ϕ > + llor ccde che che + < f ( ), ϕ >=< f, ϕ >=< f, ϕ > I + cioè: se è oto che u successioe { f } h ite f, llor l su successioe derivt { f } (I ) h ite f. Vedimo l delt come l derivt (che se o i seso clssico) dell fuzioe sclio H(t), così defiit H(t) := 0 t < 0 t > 0 che, si oti, o è cotiu perché o è defiit ell origie. Idelmete, pesimo lo sclio come u segle che h u vrizioe di pedez ifiit ell origie, e ull ltrove. Per questo motivo, l su derivt i seso clssico o esiste per t = 0, m solo per t 0, e vle 0. Se ipotizzimo di vere u successioe di fuzioi cotiue che l ite covergoo llo sclio, llor l successioe delle derivte di queste fuzioi covergerà ll derivt dello sclio, che sppimo essere u distribuzioe: duque dovremo esmire il ite delle dulità tr quest successioe e u opportu fuzioe test, e questo dovrà essere esttmete l effetto dell delt sull fuzioe di test, ossi il suo vlore ell origie. L scelt dell successioe pprossimte lo sclio è rbitrri: per esempio, sceglimo u { H }:= 0 t 0 t 0 < t < t 4

5 Lezioi di Mtemtic Le distribuzioi prte co derivt 0 t 0 I { H ( ) }:= 0 < t < 0 t d cui si desume u picevole proprieà: l re dei rettgoli che pprossimo l delt è sempre uitri. Questo comportmeto deve permere che l ite: è per questo che l itegrle dell delt deve essere. Or clcolimo l dulità, utilizzdo le crtteristiche delle fuzioi test, di cui l solito dimo supporto [-, ] tle per cui ϕ () = ϕ ( ) = 0, e l ozioe di itegrzioe per prti. Otteimo = r H H ϕ ϕ( t) dt = ( t) dt = H 0 ϕ ϕ( t) dt = relzioe che risult ver qulsisi successioe { ( t) dt = ( ϕ( ) ϕ(0)) = ϕ(0) H H ϕ ( t) dt + } pprossimte lo sclio. [ H ϕ( t) ] Altri modi di costruire l delt di Dirc: come ite di successioi di fuzioi trigolri, rettgolri, prboliche,ecc di re uitri e cetrte ell origie; oppure come = π + t ; si( t) π t ; x e π 5

6 Lezioi di Mtemtic Le distribuzioi prte oppure i form itegrle come iαt e solo se vist come trsformt di Fourier. dα, che se quest ultim risult dimostrbile L delt è il mttoe fodmetle su cui si costruisce tutt l teori delle distribuzioe, ll qule è or ecessrio dre u iqudrmeto formle. Nei pssggi fior icotrti si soo supposte, per semplicità d esposizioe, come tcitmete verificte certe operzioi, che i reltà drebbero dettglitmete verificte: si pesi d esempio l sigificto dell covergez delle successioi { δ } ll delt, oppure llo scmbio il pssggio dell operzioe di ite sotto il sego di itegrle. E utile seglre u pio di proprietà dell delt, che verro utili i seguito. Accde, iftti che δ ( αt) = δ ( t) α e quidi che t δ ( ) = αδ ( t) α il che è vero α, e discede dll cosiderzioe che, idelmete, l itegrle dell delt deve essere uitrio (lo si verific fcilmete clcoldo le rispettive dulità co u cmbio di vribile). 6

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( )

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( ) Successioi di fuzioi { } Si SUCCESSIONI E SERIE DI FUNZIONI f u successioe di fuzioi defiite tutte i u sottoisieme D { } Defiizioe : Si dice che l successioe fuzioe f ( ) se, S, risult f f lim f coverge

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Approssimazione di funzioni mediante Interpolazione polinomiale

Approssimazione di funzioni mediante Interpolazione polinomiale Docete: Cludio Esttico esttico@uisubri.it Approssimzioe di fuzioi medite Lezioe bst su pputi del prof. Mrco Gvio Approssimzioe di fuzioi L pprossimzioe di fuzioi. Iterpolzioe e migliore pprossimzioe..

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lgebr Liere: Mtrici e Determiti 1^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. MTRICI E DETERMINNTI Si defiisce mtrice

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Defiizioe. U successioe di fuzioi f : A R, N coverge putulmete d u fuzioe f : A R se f (x) = f(x) per ogi x A. L successioe coverge uiformemete d f se ccde che per ogi > 0 esiste N

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Una dimostrazione elementare del teorema di Lebesgue sulla differenziazione di funzioni monotone

Una dimostrazione elementare del teorema di Lebesgue sulla differenziazione di funzioni monotone U dimostrzioe elemetre del teorem di Lebesgue sull differezizioe di fuzioi mootoe L. V., 208 Uo dei risultti più importti i Alisi Mtemtic è il teorem di Lebesgue sull derivbilità qusi ovuque di ogi fuzioe

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, ]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x =, ed il grfico di f è dett trpezoide reltivo d f

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

Valutazione delle frequenze di oscillazione di un sistema strutturale

Valutazione delle frequenze di oscillazione di un sistema strutturale Teciche iovtive per l idetificzioe delle crtteristiche dimiche delle strutture e del do Vlutzioe delle frequeze di oscillzioe di u sistem strutturle Prof. Ig. Felice Crlo PONZO - Ig. Rocco DITOMMAO cuol

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

13. Determinante di una matrice quadrata

13. Determinante di una matrice quadrata Determite di u mtrice qudrt Defiizioe Dti umeri reli,,,,, (-), (-), col simbolo i idiceremo l loro somm ( + + + + + (-) + (-) + ) Quidi, i i := + + + + + (-) + (-) + i Esempio y i = y + y + y + y + + y

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi MTRICI E DETERMINNTI Si

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

1 Formula di Taylor. 1.1 I Simboli e o( ) Definizione 1.1 Sia I un intorno di x 0 R {± }. Siano f, g : I R con g(x) 0, x I.

1 Formula di Taylor. 1.1 I Simboli e o( ) Definizione 1.1 Sia I un intorno di x 0 R {± }. Siano f, g : I R con g(x) 0, x I. Formul di Tylor. I Simboli e o( ) Defiizioe. Si I u itoro di x 0 R {± }. Sio f, g : I R co g(x) 0, x I. (i) Dicimo che f è sitotic g per x x 0 se f(x) x x 0 g(x) = ; scrivimo: f(x) g(x) per x x 0. (ii)

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

IL CONCETTO DI LIMITE

IL CONCETTO DI LIMITE IL CONCETTO DI LIMITE DEFINIZIONE DI LIMITE Si f u fuzioe defiit i u itoro di x 0 dicimo che f x=l se e soltto se, comuque sceglimo u itervllo I l cetrto i l, piccolo quto voglimo, è possiile trovre u

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitzioi di Sttistic 16 Dicembre 009 Riepilogo Prof. Giluc Cubdd gcubdd@luiss.it Dott.ss Emmuel Berrdii emmuel.berrdii@uirom.it Esercizio 1 I dti segueti costituiscoo le ore di studio d u cmpioe di

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Metodo Monte Carlo per l integrazione

Metodo Monte Carlo per l integrazione Metodo Mote Crlo per l itegrzioe Richimo dei metodi di itegrzioe umeric b F d Appro. rettgolre b Δ b F k 0 k Δ Lezioi: prte quit Modelli umerici i Fisic Lezioi: prte quit Modelli umerici i Fisic Regole

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

LE IDEE FONDAMENTALI DEL CALCOLO INFINITESIMALE

LE IDEE FONDAMENTALI DEL CALCOLO INFINITESIMALE Muro Sit LE IDEE FONDAMENTALI DEL CALCOLO INFINITESIMALE Versioe provvisori. Ottobre 2017 Quest itroduzioe l clcolo iiitesimle è stt propost i u clsse quit di liceo scietiico e riciesto tutto il mese di

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3 Esercizio 11 SEFA Spiez, Uiversità di Rom Esercizi di Mtemtic 3 (CMsci) Alcue soluzioi di 1-2-3 11 ovembre 215 1 Foglio 1 i Descrivere i segueti isiemi di R 2 : {1} {2}, {} [1, 2], [, 1] {2}, [, 1] [,

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

ANALISI MATEMATICA 1

ANALISI MATEMATICA 1 ANALISI MATEMATICA [Apputi per u Igegere] A CURA DI ALESSANDRO PAGHI Riepilogo su: - Vlore Assoluto, Poteze, Logritmi; - Rziolizzzioe; - Grdezze Trigoometriche; - Limiti Notevoli e Forme Idetermite; -

Dettagli

Stime per intervalli. Corso di Misure Meccaniche e Termiche. David Vetturi

Stime per intervalli. Corso di Misure Meccaniche e Termiche. David Vetturi Corso di Dvid Vetturi Iferez ttistic Il cmpo dell iferez sttistic è costituito d metodi utilizzti per ssumere decisioi o per trrre coclusioi su u popolzioe e per tle scopo si bso sull iformzioe coteut

Dettagli

Corso di Laurea in Matematica Analisi Numerica Lezione 5

Corso di Laurea in Matematica Analisi Numerica Lezione 5 Docete: Diel Ler Corso di Lure i Mtemtic Alisi Numeric Lezioe 5 Risoluzioe di sistemi lieri Problem. Dto il sistem di m equzioi i icogite (,,, ) co i,j e b i umeri reli, voglimo determire i vlori di (,,,

Dettagli

Unità Didattica N 22B : Serie

Unità Didattica N 22B : Serie 0) L defiizioe di serie umeric 02) I primi teoremi sulle serie umeriche 03) Serie umeric combizioe liere di ltre serie umeriche 04) Serie umeriche termii positivi 05) Criteri di covergez e di divergez

Dettagli

( x) ( x) = - particelle puntiformi - nessuna interazione fra le particelle du dv. - soltanto energia cinetica

( x) ( x) = - particelle puntiformi - nessuna interazione fra le particelle du dv. - soltanto energia cinetica PRTICLL NLL SCTOL Iiimo d ffrotre i sistemi modello ce soo utili i Cimic (e per i quli si riesce risolvere l equioe di Scroediger) co u modello dtto i GS IDLI - prticelle putiformi - essu iterioe fr le

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MTRICI: defiizioi Cosiderimo delle tbelle di umeri, i cui ci si imbtte spesso i molti problemi di mtemtic o di scieze pplicte. Tle tbelle ho u doppio ordimeto, per righe e per coloe, utilizzeremo i segueti

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0 Ricerc di zeri Equzioi o lieri Il prolem è ricvre le rdici (gli zeri di u fuzioe f(, cioè i vlori z: f(z0 qudo o si poss otteere l soluzioe i form chius (u formul Seprzioe delle rdici Per semplificre il

Dettagli

test [ A ] - soluzioni

test [ A ] - soluzioni test [ A ] - soluzioi 1. k - 1 / e Posto f ( ) log, si h f ( ) ( log + 1 ) 0 per e - 1 /. Ioltre f ( e ½ ) - 1 / e.. y ( ) rctg ½ log ( 1 + ) + 1 Itegrdo per prti : rctg d rctg - d 1+ rctg ½ log ( 1 +

Dettagli

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4 Gli itegrli Gli itegrli. Itroduzioe Gli itegrli Le ppliczioi del clcolo itegrle soo svrite: esistoo, iftti, molti cmpi, dll fisic ll igegeri, dll iologi ll ecoomi, i cui tli ozioi trovo o poche ppliczioi.

Dettagli

Integrali Unità Proprietà dell integrale definito.

Integrali Unità Proprietà dell integrale definito. Prerequisiti: - Clcolre limiti e derivte di fuzioi - Studire u fuzioe Quest uità è idirizzt tutte le scuole superiori. Gli Istituti Tecici e gli Istituti Professioli se e occupero el ieio, i Licei ell

Dettagli

8. Funzioni reali di una variabile reale: integrabilità

8. Funzioni reali di una variabile reale: integrabilità 8. Fuzioi reli di u vriile rele: itegrilità 8.1 Defiizioi Si f :[, ] R u fuzioe limitt. Si f positiv, cioè x [, ], f x 0, si dice sottogrfico di f l'isieme: A={ x, y :0 y f x, 0 x }. L defiizioe di sottogrfico

Dettagli

Docente Maria Polo Dipartimento di Matematica e Informatica, Via Ospedale 72 - Cagliari. tel

Docente Maria Polo Dipartimento di Matematica e Informatica, Via Ospedale 72 - Cagliari.   tel LAUREA IN SCIENZE NATURALI (CLASSE L-3) LAUREA IN SCIENZE GEOLOGICHE (CLASSE L-34) Lezioi del II semestre A.A. 0/0 Mtemtic co elemeti di sttistic (II prte) - 4 crediti 3 ore di lezioe rotle I lezioe 06.03.0

Dettagli

ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10

ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10 ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10 Cmpi umerici. Il cmpo rziole come mplimeto dell isieme dei umeri iteri reltivi: proprietà e problemi. Il cmpo

Dettagli

Analisi Matematica I - modulo B

Analisi Matematica I - modulo B Alisi Mtemtic I - modulo B Apputi delle lezioi teute dl Prof. A. Fod Uiversità di Trieste, CdL Mtemtic,.. 2009/200 Il cmpo dei umeri complessi. Defiizioi e prime proprietà Cosiderimo l isieme R R = {(,

Dettagli

Integrali indefiniti

Integrali indefiniti Primitiv di u fuzioe Itegrli idefiiti U fuzioe F() si die primitiv di u fuzioe i u itervllo I se, per ogi I: F = U fuzioe mmette ifiite primitive, he differisoo u dll ltr per u ostte dditiv. L fmigli delle

Dettagli

Fluidodinamica delle Macchine

Fluidodinamica delle Macchine Lucidi del corso di Fluidodimic delle Mcchie Cpitolo II2d: Volumi Fiiti esti e Progrmm Hoffm, K.A., e Chig, S.., 993, Computtiol Fluid Dmics for Egieers, Vol. e Vol. 2, Egieerig Eductio Sstem Hirsch, C.,

Dettagli

INTEGRALI DI FUNZIONI CONTINUE

INTEGRALI DI FUNZIONI CONTINUE C Boccccio Apputi di Alisi Mtemtic CAP VIII CAP VIII INTEGRALI DI FUNZIONI CONTINUE Si [,] u itervllo chiuso e limitto di R e si Posto, per ogi k,,,, * N risult k k < < < < e per ogi k,,, ) k k L isieme

Dettagli

Gli integrali definiti

Gli integrali definiti Gli itegrli defiiti Si f : [, b] u fuzioe cotiu defiit i u itervllo chiuso e limitto e suppoimo che. Cosiderimo l regioe T delimitt dl grfico di f(x), dlle rette x=, x=b e dll sse delle scisse (regioe

Dettagli

E. Paolini. 26 ottobre 2014

E. Paolini. 26 ottobre 2014 Forme differezili. Polii 26 ottobre 214 spzio dule Se V è uo spzio vettorile rele di dimesioe, chimimo spzio dule di V che idichimo co V L(V, R) lo spzio vettorile delle ppliczioi lieri cotiue defiite

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

( x) ( ) ( )( ( ) ( ) ( ) ( ) )

( x) ( ) ( )( ( ) ( ) ( ) ( ) ) C Boccccio Apputi di Alisi Mtemtic CAP IV CAP IV FUNZIONI REALI Per due fuzioi reli f : X R e g : X R si defiiscoo le uove fuzioi f g : X R, f g : X R ed f g : X R l modo seguete: X : f g = f g X : ( )(

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tema di: MATEMATICA E INFORMATICA

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tema di: MATEMATICA E INFORMATICA ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tem di: MATEMATICA E INFORMATICA Il cdidto dopo ver dto u iustificzioe dell formul d iterzioe per prti: f d f f d dic cos c è di slito el riometo

Dettagli

Professionisti, tecnici e imprese Gruppo Editoriale Esselibri - Simone

Professionisti, tecnici e imprese Gruppo Editoriale Esselibri - Simone Copyright 005 Esselibri S.p.A. Vi F. Russo, 33/D 803 Npoli Azied co sistem qulità certificto ISO 400: 003 Tutti i diritti riservti. È viett l riproduzioe che przile e co qulsisi mezzo sez l utorizzzioe

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

10. La nozione di limite

10. La nozione di limite . L ozioe di limite L distz itrodott sull rett rele d(,b) = -b,, b R, permette di defiire u ozioe di viciz, trmite l ozioe di itoro. Si defiisce itoro di u puto u qulsisi itervllo perto (,b) coteete (quest

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

Omotopia, numero d avvolgimento, Logaritmi

Omotopia, numero d avvolgimento, Logaritmi CAPITOLO 5 Omotopi, umero d vvolgimeto, Logritmi 5.. L versioe omotopic dell formul di Cuchy, il umero d vvolgimeto. Comicimo ricorddo l ozioe di omotopi di cmmii. Si A C u perto e sio 0, : [, b] A due

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

. t P= r( t) ( t) r t rappresentano le coordinate del generico punto. b ] è detto sostegno della curva (è il grafico della curva).

. t P= r( t) ( t) r t rappresentano le coordinate del generico punto. b ] è detto sostegno della curva (è il grafico della curva). INTERALI CURVILINEI U curv γ ello spzio itervllo I R cioè R è u ppliczioe vettorile r r( t) r : I R R L stesur di queste dispese vt il cotriuto dei miei crissimi mici iuli 5 Mtteo e rcesco che rigrzio

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

Analisi Matematica I

Analisi Matematica I Alisi Mtemtic I Apputi delle lezioi teute dl Prof. A. Fod Uiversità di Trieste, CdL Fisic e Mtemtic,.. 208/209 I umeri turli e il pricipio di iduzioe Nel 898 il mtemtico toriese Giuseppe Peo (858 932),

Dettagli

Breve Corso di Istituzioni di Matematica (per studenti del Primo Anno delle Facoltà Scientifiche) - Stefano Ranfone

Breve Corso di Istituzioni di Matematica (per studenti del Primo Anno delle Facoltà Scientifiche) - Stefano Ranfone Breve Corso di Istituzioi di Mtemtic (per studeti del Primo Ao delle Fcoltà Scietifiche - Stefo Rfoe INTRODUZIONE Il presete mule h come obiettivo l ppredimeto di lcui tr i pricipli strumeti dell lisi

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche ) Proprietà geerli U isieme ordito di umeri,,,...,,...dicesi progressioe geometric se N si h : co q qutità costte divers d dett rgioe o quoziete. U progressioe geometric di rgioe

Dettagli

IL PROBLEMA DELLE AREE

IL PROBLEMA DELLE AREE IL PROBLEMA DELLE AREE Il prolem delle ree è uo dei più tichi prolemi dell mtemtic e certmete che uo dei più importti, se si tiee coto che esso è ll se del clcolo itegrle. Nei tempi più remoti dell stori

Dettagli

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è LEZIONE 14 14.1. Numeri complessi. Sppimo già come sommre le coppie di umeri reli. Se, b,, b R 2 llor l coppi somm è, b +, b = +, b + b R 2. Voglimo or defiire che u operzioe di prodotto i R 2. Defiizioe

Dettagli

SUL PROBLEMA DEL CERCHIO DI GAUSS

SUL PROBLEMA DEL CERCHIO DI GAUSS SUL PROBLEMA DEL CERCHIO DI GAUSS A Bris e Prof Fio Bred Astrct Lo scopo di questo rticolo è l ricerc del uero di soluzioi itere delle disequzioi del tipo x 2 + y 2, oto coe il prole del cerchio di Guss,

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli