Le coordinate polari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le coordinate polari"

Transcript

1 Le coordinate polari Se nel piano fissiamo una semiretta di origine O (orientata) possiamo individuare la posizione di un qualsiasi punto P indicando la sua distanza da O e l angolo formato tra la semiretta fissata e la semiretta OP. OP P, O (angolo orientato) La semiretta si chiama asse polare, O si dice polo e si parla di sistema di riferimento polare., si dicono le coordinate polari di P. Se scriviamo 1 questa risulta, in coordinate polari, l equazione della circonferenza di centro il polo O e raggio r = 1 poiché tutti i suoi punti hanno distanza 1. Se scriviamo avremo la semiretta in figura: 4 Esercizio L equazione a quale curva corrisponde? Nota Possiamo passare da coordinate polari a coordinate cartesiane osservando: x cos y sen 108

2 L equazione delle coniche in coordinate polari Ricordiamo che le coniche possono essere definite anche in modo unitario come luogo dei punti P PF del piano per cui si abbia, fissati un punto F (fuoco) e una retta d (direttrice), e. d( P, d) Se e =1 si ottiene una parabola; se 0< e <1 si ottiene un ellisse; se e >1 si ottiene un iperbole. Proviamo a determinare l equazione di una conica in un sistema di riferimento polare: fissiamo, per esempio, il polo nel fuoco F e l asse polare perpendicolare alla direttrice. Avremo, indicando con d la distanza asse y direttrice: e quindi PF cos d e d( P, dir) cos d e( cos d) (1 ecos) ed e quindi, ponendo ed a, abbiamo l equazione della conica in coordinate polari: a 1 ecos 109

3 Trigonometria e problemi astronomici Confronto tra la distanza Terra-Sole e la distanza Terra-Luna E stato l astronomo greco Aristarco a studiare questo problema: nell unica sua opera a noi pervenuta, cioè il breve trattato Sulle dimensioni e distanze del Sole e della Luna, ha cercato di misurare il rapporto tra la distanza Terra-Luna e la distanza Terra-Sole. Quando la luna è in quadratura, ossia è illuminata per metà, essa, con la Terra e il Sole, forma il triangolo rettangolo mostrato in figura ( ). Misurando in tale condizione l'angolo β compreso tra la direzione Terra-Luna e la direzione Terra-Sole è possibile calcolare il rapporto tra il cateto e l ipotenusa di un triangolo simile. Terra, Luna e Sole durante una quadratura Aristarco stimò l angolo 87 (di conseguenza LST 3 ) e stimò il rapporto tra la distanza 1 1 Terra-Luna e Terra-Sole (il nostro sen3 ) come compreso tra e : quindi il Sole risultava 0 18 circa 0 volte più lontano della Luna rispetto alla Terra. In realtà l angolo 8950' e quindi la distanza Terra-Sole è circa 400 volte la distanza Terra- Luna, ma il metodo di Aristarco è comunque uno dei primi esempi di un metodo trigonometrico applicato per la risoluzione di un problema astronomico. 110

4 La misura del raggio terrestre Il matematico, geografo ed astronomo Eratostene (III secolo a.c.), era direttore della grande biblioteca di Alessandria d'egitto quando formulò il metodo per calcolare le dimensioni della Terra. Dai suoi studi, era venuto a conoscenza del fatto che a Syene (l'attuale Assuan), a mezzogiorno del solstizio d'estate, il Sole si trovava proprio sullo zenit, tanto che il fondo di un pozzo profondo ne veniva illuminato, perciò un bastone piantato verticalmente in un terreno perfettamente pianeggiante non avrebbe proiettato alcuna ombra in terra. Invece ad Alessandria questo non succedeva mai, gli obelischi proiettavano comunque la loro ombra sul terreno. Ciò era già una dimostrazione pratica della rotondità della Terra (come ampiamente dimostrato da Aristotele). L'idea che la Terra dovesse avere una forma sferica era comunque già accettata. Questa convinzione scaturiva dall'osservazione delle eclissi di Luna durante le quali la forma dell'ombra terrestre appariva sempre come un arco di circonferenza. Eratostene perciò, per procedere con i suoi calcoli, ipotizzò la Terra perfettamente sferica ed il Sole sufficientemente distante da considerare paralleli i raggi che la investono. Inoltre assunse che Alessandria e Syene si trovassero sullo stesso meridiano. Durante il solstizio d'estate calcolò l'angolo di elevazione del Sole ad Alessandria, misurando l'ombra proiettata proprio da un bastone piantato in terra, ricavando approssimativamente un valore di 1/50 di circonferenza (cioè 7 1'). La distanza tra le due città, basata sui trasferimenti delle carovane, era stimata in stadia (circa 800 km, tuttavia il valore preciso dello stadium, usato a quell'epoca ad Alessandria, non è attualmente conosciuto). Perciò la circonferenza della Terra doveva essere di 50 * = stadia (circa km, valore straordinariamente vicino a quello ottenuto con metodi moderni: km). Una volta stabilito un valore per essa, il raggio terrestre si ricavava dalla nota relazione che lega la circonferenza ed il suo raggio. 111

5 Indicando con: h :lunghezza del palo l :lunghezza dell'ombra proiettata dal palo sul terreno α :angolo di elevazione del Sole dalla misura di h e l Eratostene ricavò e poiché dove D : distanza tra Alessandria (punto A) e Syene (punto S), situate sullo stesso meridiano R : raggio della Terra, per ipotesi una sfera perfetta si può ottenere R. I valori ricavati da Eratostene furono: circa 169 km per il diametro terrestre ovvero un raggio pari a 6314,5 km (incredibilmente prossimo alla stima media condotta con mezzi attuali). 11

6 ESERCIZI DI RICAPITOLAZIONE I) Risolvi le seguenti disequazioni goniometriche 1. cos x 3cos x k x k 3. tg x k x 3 k, x k 3. senx 3 cos x 3 1 tg x senx cos x k x k k x k k x k k x k, x k sen x cos x senx 1 [ k x k 3 ] II) Problemi 1) Due località A e B sono separate da un ostacolo ma entrambe sono accessibili: si fissa un 1 punto C e si misura AC 50m, BC 70m, cos ACB. Determina AB. AB 6, 5m ) Due località A e B sono separate da un torrente. Se prendiamo una posizione C dalla parte di B e misuriamo BC 1Km, CBA, tg ACB, determina AB. 3 [ AB 1, 96 km] 3) Determina e disegna il triangolo (o i triangoli) aventi, usando le consuete convenzioni, a 6, b 5,. 3 46,, 73,8, c 6,65 4) Disegna il grafico corrispondente all equazione in coordinate polari. E diverso da 4 quello che corrisponde all equazione tg 1? 5) Trasforma l equazione cos in coordinate cartesiane e determina il grafico della curva corrispondente. 113

COMPLEMENTI DI TRIGONOMETRIA

COMPLEMENTI DI TRIGONOMETRIA COMPLEMENTI DI TRIGONOMETRIA Trigonometria e problemi astronomici Confronto tra la distanza Terra-Sole e la distanza Terra-Luna E stato l astronomo greco Aristarco a studiare questo problema: nell unica

Dettagli

Attività didattica Misura del raggio terrestre con il metodo di Eratostene

Attività didattica Misura del raggio terrestre con il metodo di Eratostene Attività didattica Misura del raggio terrestre con il metodo di Eratostene Obiettivi educativi: E un attività interdisciplinare (trigonometria, astronomia, uso delle nuove tecnologie...) basata sul metodo

Dettagli

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE L MISUR DI GRNDI DISTNZE ON L TRINGOLZIONE ome si può misurare l altezza di un lampione senza doversi arrampicare su di esso? Se è una giornata di sole, è possibile sfruttare l ombra del lampione. on un

Dettagli

Note di trigonometria.

Note di trigonometria. Note di trigonometria. Mauro Saita e-mail: [email protected] Versione provvisoria, novembre 2013. 1 Indice 1 Formule di addizione (sottrazione). 1 2 Eratostene. Il raggio terrestre. 3 3 Aristarco

Dettagli

1.1 Eratostene (273-192 a.c.) e le dimensioni del diametro terrestre

1.1 Eratostene (273-192 a.c.) e le dimensioni del diametro terrestre Capitolo 1 1.1 Eratostene (273-192 a.c.) e le dimensioni del diametro terrestre La misura delle dimensioni della Terra viene eseguita per la prima volta da Eratostene di Cirene intorno al 230 a.c. Il suo

Dettagli

1 EQUAZIONI GONIOMETRICHE

1 EQUAZIONI GONIOMETRICHE 1 EQUAZIONI GONIOMETRICHE Esempio 1 Risolvere senx = Soluzione. La misura dei due angoli positivi, minori di un angolo giro, che soddisfano l equazione data sono: 4 Tutte le soluzioni sono quindi date

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Forma della terra. dal disco al geoide. Appunti di Geografia il corsi C e D a cura di A. Pulvirenti

Forma della terra. dal disco al geoide. Appunti di Geografia il corsi C e D a cura di A. Pulvirenti Forma della terra dal disco al geoide Appunti di Geografia il corsi C e D a cura di A. Pulvirenti Le immagini presenti in questo file sono state reperite in rete o modificate da testi cartacei e vengono

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

LA RETE DI ERATOSTENE

LA RETE DI ERATOSTENE LA RETE DI ERATOSTENE CHE COS È LA RETE DI ERATOSTENE? La Rete di Eratostene ha come uno delle principali la misurazione della terra. Questo lavoro si svolge attraverso una collaborazione tra più scuole.

Dettagli

La Terra. Forma Dimensioni Movimenti

La Terra. Forma Dimensioni Movimenti La Terra Forma Dimensioni Movimenti La sfericità della Terra Secondo Teofrasto, fu Parmenide di Elea (510-? a.c.), seguace di Pitagora (570-597 a.c.), a ritenere che la prima volta che la Terra fosse sferica.

Dettagli

y = [Sol. y 2x = 4x Verifica n.1

y = [Sol. y 2x = 4x Verifica n.1 Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Compiti delle vacanze di matematica CLASSE 4BS a.s. 2016/2017

Compiti delle vacanze di matematica CLASSE 4BS a.s. 2016/2017 Compiti delle vacanze di matematica CLASSE 4BS a.s. 016/017 - PER GLI STUDENTI CON ESAME A SETTEMBRE ( e consigliato a chi ha avuto difficoltà durante l anno scolastico) : Studiare gli argomenti affrontati

Dettagli

LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE

LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE LABORATORIO DI MATEMATICA: COORDINATE POLARI ESTENSIONE DELLE FUNZIONI TRIGONOMETRICHE Uno strumento, che ci suggerisce come ampliare le nostre conoscenze, è il radar, strumento fondamentale nella navigazione

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3 PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: π sen x = cos x 3 sen x

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Esercizi svolti di geometria analitica

Esercizi svolti di geometria analitica Giulio Donato Broccoli Esercizi svolti di geometria analitica Circa 300 esercizi e nozioni teoriche di base Giulio D. Broccoli Editore Proprietà letteraria riservata Ogni riproduzione, con qualsiasi mezzo

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo

Dettagli

Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema

Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema Luglio 1950, primo problema Risolvere un trapezio isoscele convesso avente le diagonali perpendicolari ai lati obliqui, sapendo che la somma dei quadrati delle misure dei suoi lati è m e la lunghezza di

Dettagli

GONIOMETRIA E TRIGONOMETRIA

GONIOMETRIA E TRIGONOMETRIA Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti

Dettagli

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura). Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

x + x + 1 < Compiti vacanze classi 4D

x + x + 1 < Compiti vacanze classi 4D Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018 Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Funzioni Goniometriche

Funzioni Goniometriche Funzioni Goniometriche Nella figura sottostante è rappresentato un angolo nel primo quadrante: osserviamo che il seno dell'angolo è positivo e il coseno dello stesso angolo è ancora positivo. L' angolo

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

LE FUNZIONI SENO, COSENO E TANGENTE

LE FUNZIONI SENO, COSENO E TANGENTE LE FUNZIONI SENO, COSENO E TANGENTE 1. LE FUNZIONI LE FUNZIONI SENO, E COSENO COSENO E TANGENTE 2 /15 DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato, e sia B

Dettagli

MISURAZIONE DELLA DISTANZA TERRA - LUNA

MISURAZIONE DELLA DISTANZA TERRA - LUNA MISURAZIONE DELLA DISTANZA TERRA - LUNA eseguita da Aristarco di Samo ( III secolo a.c.) 1 - Procedimento per trovare il rapporto fra la distanza Terra-Sole e la distanza Terra-. L centro della esattamente

Dettagli

MISURE DI ERATOSTENE E PROVE DEL MOTO DI ROTAZIONE TERRESTRE. Presentazione di Emma Donisi, Elena Perego, Camilla Antonietti, Alessandro D'Archi

MISURE DI ERATOSTENE E PROVE DEL MOTO DI ROTAZIONE TERRESTRE. Presentazione di Emma Donisi, Elena Perego, Camilla Antonietti, Alessandro D'Archi MISURE DI ERATOSTENE E PROVE DEL MOTO DI ROTAZIONE TERRESTRE Presentazione di Emma Donisi, Elena Perego, Camilla Antonietti, Alessandro D'Archi Mappa Eratostene Prima di lui Teoria Pratica Dopo di lui

Dettagli

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri Esercizi riepilogativi sulle coniche: problemi geometrici con parametri n. 10 pag. 543 In un triangolo rettangolo ABC le misure dei cateti sono AC = 1, BC = 5. Sull ipotenusa AB determina un punto P in

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane

Dettagli

24/02/2010. STORIA DELLA MATEMAT ICA Prof. Carlo Minnaja. Lezioni per studenti del Corso di Laurea in Matematica 1 a settimana

24/02/2010. STORIA DELLA MATEMAT ICA Prof. Carlo Minnaja. Lezioni per studenti del Corso di Laurea in Matematica 1 a settimana STORIA DELLA MATEMAT ICA Prof. Carlo Minnaja Lezioni per studenti del Corso di Laurea in Matematica 1 a settimana Costruzione con riga e compasso Dato un insieme di punti E nel piano euclideo, consideriamo

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

Raccolta di problemi sulla similitudine

Raccolta di problemi sulla similitudine Raccolta di problemi sulla similitudine - 1 Raccolta di problemi sulla similitudine Problema 1. Un triangolo ha i lati che misurano 1 cm, 9 cm e 18 cm. Calcola il perimetro di un triangolo simile che ha

Dettagli

Quanto è lontana la Luna?

Quanto è lontana la Luna? Quanto è lona la Luna? Livello scolare: 2 biennio Abilità interessate Analizzare e rappresentare dati ottenuti da misure di grandezze. Rappresentare variazioni di grandezze in funzione di altre. Determinare

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF IV Lezione TRIGONOMETRIA Dr. E. Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Storia della matematica. Numeri primi. Parti della circonferenza. Eratostene di Cirene.

Storia della matematica. Numeri primi. Parti della circonferenza. Eratostene di Cirene. Il personaggio: Eratostene. Eratostene nasce a Cirene (città dell'attuale Libia) attorno al 280 a. C. Studia presso famosi filosofi della sua città e si reca poi ad Atene per approfondire le proprie conoscenze.

Dettagli

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola Premessa: Prepararsi al test per l ammissione all università NON significa provare e riprovare i quesiti che si trovano sui vari siti o libretti ma: fare un primo generale ripasso di ogni argomento citato

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

SUPERFICI CONICHE. Rappresentazione di coni e cilindri

SUPERFICI CONICHE. Rappresentazione di coni e cilindri SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

IIS A.Moro Dipartimento di Matematica e Fisica

IIS A.Moro Dipartimento di Matematica e Fisica IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

MISURE DI LUNGHEZZA SUPERFICIE E VOLUME

MISURE DI LUNGHEZZA SUPERFICIE E VOLUME MODULO 2 MISURE DI LUNGHEZZA SUPERFICIE E VOLUME LUNGHEZZE Nel S.I. le lunghezze si misurano in METRI. Il metro ha multipli e sottomultipli, di seguito elencati Multipli del metro 10 m DECAMETRO [dam]

Dettagli

Liceo Scientifico Statale A.Einstein

Liceo Scientifico Statale A.Einstein Liceo Scientifico Statale A.Einstein A.S. 2010/11 Classe 3^B Programma di matematica Libro di testo adottato : Dodero-Baroncini-Manfredi «Lineamenti di matematica» moduli A-B-C Insegnante : Alessandra

Dettagli

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze 1 Raccordo con il biennio

Dettagli

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018 Liceo Einstein Milano 3G 10 ottobre 2018 1) Risolvi i seguenti sistemi: 2) A) Nel trapezio rettangolo ABCD la base maggiore AB e la base minore CD misurano rispettivamente 15 e 12 e l altezza AD misura

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

MATEMATICA LA PARABOLA GSCATULLO

MATEMATICA LA PARABOLA GSCATULLO MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

ORDINAMENTO 2011 QUESITO 1

ORDINAMENTO 2011 QUESITO 1 www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Matematica Lezione 6

Matematica Lezione 6 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Capitolo VIII Polarità

Capitolo VIII Polarità Capitolo VIII Polarità 1 Polarità definita da una conica Una conica K non degenere (cioè un ellisse, una parabola oppure un iperbole) determina una corrispondenza tra punti e rette del piano, detta polarità.

Dettagli

Aristarco di Samo (310 a.c. 230 a.c.) è una figura non particolarmente famosa nella storia dell Astronomia e della Matematica.

Aristarco di Samo (310 a.c. 230 a.c.) è una figura non particolarmente famosa nella storia dell Astronomia e della Matematica. Aristarco di Samo Aristarco di Samo Aristarco di Samo (310 a.c. 230 a.c.) è una figura non particolarmente famosa nella storia dell Astronomia e della Matematica. È solitamente citato come uno dei precursori

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Geometria e carte geografiche

Geometria e carte geografiche Geometria e carte geografiche Che forma ha la terra? È una sfera. E una sfera schiacciata ai poli Fu Newton a spiegare perché Se ne erano accorti alcuni scienziati francesi, già nel 1735 Una spedizione

Dettagli