Generatore di forza elettromotrice f.e.m.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generatore di forza elettromotrice f.e.m."

Transcript

1 Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile L energia si conserva! Un dispositivo f.e.m. converte semplicemente altre forme di energia (p.es., chimica, meccanica, solare, termica, e così via) in energia elettrica.

2 F.E.M. Forza Elettromotrice All interno di un dispositivo f.e.m., i portatori di carica positiva si muovono dal terminale a potenziale più basso (cioè, il terminale negativo) a quello a potenziale più alto (cioè, il terminale positivo). Quindi del lavoro deve essere svolto nel processo. La f.e.m. del dispositivo è definita come lavoro per unità di carica: dw dq unità SI: volt (V) 1 J/C = 1 V

3 F.E.M. Due batterie ricaricabili connesse ad un motore elettrico e una resistenza Le batterie sono collegate in modo da far circolare la corrente in verso opposto. La batteria B presenta una f.e.m. maggiore di A. In questo modo, oltre ad azionare il motore, si carica la batteria A.

4 Dispositivi f.e.m. ideali e reali Dispositivo f.e.m. ideale: un dispositivo f.e.m. in cui i portatori di carica non subiscono alcun effetto di resistenza elettrica quando si muovono da un terminale all altro. In questo caso, la differenza di potenziale tra i due terminali è eguale alla f.e.m. del dispositivo. Dispositivo f.e.m. reale: un dispositivo f.e.m. in cui i portatori di carica subiscono un effetto di resistenza elettrica quando si muovono da un terminale all altro. In questo caso, la differenza di potenziale tra i due terminali è più piccola della f.e.m. del dispositivo, a causa della dissipazione di energia interna. Ci riferiamo a questo fenomeno come caduta di tensione Ohmica.

5 Circuiti elettrici stazionari Come facciamo a determinare le correnti che fluiscono negli elementi circuitali (resistenze) quando le combinazioni di tali elementi diventano più complesse (circuiti)? E quindi non possiamo ridurre ad un unico resistore equivalente le resistenze presenti nel circuito.

6 Definizioni Nodo: giunzione di ALMENO tre rami di un circuito Maglia: percorso CHIUSO lungo un circuito elettrico (punto iniziale e finale coincidenti).

7 Leggi di Kirchoff I legge: dei nodi La somma delle correnti che entrano in un nodo deve essere eguale alla somma delle correnti che escono dal nodo stesso." I in I out Questa legge deriva dal principio di conservazione della carica, valido in ogni nodo. Le correnti che entrano e escono dai nodi del circuito sono note come correnti di ramo. Ciascun ramo deve avere una distinta corrente, I i assegnata ad esso

8 Leggi di Kirchhoff II legge: delle maglie La somma algebrica delle differenze di potenziale rilevate su un circuito chiuso in un giro completo è nulla." Vn maglia 0 Muovendosi in senso orario sul circuito: R 1 I 1 R IR 1 - IR Questo è soltanto un altro modo per ribadire ciò che sapevamo: la differenza di potenziale è indipendente dal cammino!

9 Regola pratica - + R 1 I 1 R Muovendosi sul circuito: IR 1 - IR Gli incrementi di potenziale sono positivi, le diminuzioni ( caduta ) sono negative. Scegliamo una direzione ARBITRARIA per la corrente e (p. es.) percorriamo il circuito nella medesima direzione. Se una batteria viene attraversata dal terminale negativo a quello positivo, il potenziale aumenta, e quindi la d.d.p. della batteria entra nell equazione con un segno +, Se il percorso scelto è tale da attraversare la batteria da (+) a (-) V diminuisce ed entra nell equazione con il segno -. Attraversando un resistore (resistenza), nel verso della corrente, il potenziale diminuisce e quindi entra nell equazione con un segno -.

10 Regola pratica invertendo il senso della corrente (mantenendo il verso di percorrenza orario), si ha sulla maglia - + I IR 1 - IR E impossibile scegliere un verso del cammino sbagliato (circuiti a più maglie). SE INVERTIAMO UN CAMMINO, SI DEVONO CAMBIARE TUTTI I SEGNI NELL EQUAZIONE. Non vi è alcuna differenza nell algebra! COMUNQUE, è possibile che nella soluzione una o più delle correnti risultino NEGATIVE. Se questo accade, vuole semplicemente dire che la direzione del flusso di corrente è in realtà opposto a quello arbitrariamente scelto.

11 Esempio Scelto un verso per I, e percorrendo la maglia in senso antiorario Vn maglia 1 2 I 0 - R + R + R + R I b R 1 a c 1 f d R 4 R 2 R IR1 - IR2-2 - IR3 - IR Se 1 < 2, I sarebbe negativa, cioè fluirebbe in senso orario, opposto al verso ipotizzato e I Se invertiamo il verso scelto per I (ma non quello di percorrenza) Vn loop 2 1 I 0 + IR1 + IR2-2 + IR3 + IR R + R + R + R Se 2 < 1, I sarebbe negativa, cioè fluirebbe in senso orario, opposto al verso di percorrenza scelto

12 Resistori in serie Consideriamo un circuito costituito da una batteria ideale e due lampadine con resistenze R 1 e R 2. deve essere I cost per cui V V V + V IR + IR eq eq 1 2 eq ac ab bc quindi V IR IR + IR R R + R in generale R R + R + R La resistenza equivalente di un insieme di resistori collegati in serie è uguale alla somma delle singole resistenze ed è sempre maggiore di ciascuna di esse

13 Resistori in parallelo Consideriamo un circuito costituito da una batteria ideale e due lampadine collegate in parallelo con resistenze R 1 e R 2. V V 1 1 V deve essere V cost I I1+ I 2 + V + R1 R2 R1 R2 Req quindi + in generale R R R R R R R eq 1 2 eq L inverso della resistenza equivalente di due o più resistori collegati in parallelo è uguale alla somma dell inverso delle singole resistenze (sempre minore del più piccolo resistore).

14 Esempio Le lampadine collegate al generatore in questo modo, sono tutte eguali: 1) quale sarà, nell ordine, la loro luminosità? 2) cosa succede se si interrompe A ( si brucia)? 3) se si interrompe C? 4) se si interrompe D? 1.in C e in A+B passa la stessa corrente, quindi C sarà più luminosa di A o B, che hanno la stessa luminosità; D non si accenderà mai (ha i terminali in corto-circuito) 2. B si spegne, C più luminosa, D sempre spenta 3. A e B più luminose, D sempre spenta 4. ininfluente

15 Esempio a) trovare la resistenza equivalente della rete di resistori in grafico b) qual è la corrente in ciascun resistore se la d.d.p. tra a e c vale V ac =42V Applicando le relazioni per collegamento in serie e parallelo di resistenze R 14 eq Vac 42V usando V IR si ha I 3A R 14 La corrente nelle resistenze da 8 e 4 è I 3A Ai capi b e c V cost quindi eq 6 I 3 I da cui I 2 I, inoltre I + I I 3 A I 1A e I 2 A

16 Esercizio Determinare la corrente in ciascuno dei rami del circuito in figura. Definiamo i versi (arbitrari) delle correnti e semplifichiamo le resistenze in serie: legge delle correnti al nodo I3 I1 + I2 legge delle maglie sostituendo 4V + I2 6 I1 I1 8 I2 6 4V I2 6 + I1 + I2 4-8V 0 4V + I2 6 I I2 4-8V 0 8 I 6 + 2V + I 7-8V 0 I 6 13 A I A I A percorse in senso orario I18 - I26-4V 0 4V + I26 + I3 4-12V 0 I versi sono uguali a quelli disegnati.

17 Resistenza interna di un dispositivo fem Qualunque dispositivo fem ha una resistenza interna. Consideriamo una batteria reale. Applichiamo la legge di Kirchhoff alle maglie (senso orario) - ir - ir 0 i R + r V ab - ir R R+ r

18 Energia e Potenza nei circuiti elettrici V Rammentiamo: Supponiamo che la corrente nel circuito in fig. sia i, fluendo attraverso la d.d.p. V. In un intervallo di tempo dt, la quantità di carica che si muove da a a b è quindi dq = idt. La variazione nell energia potenziale associata con questa carica è Pertanto, la potenza associata con il trasferimento di carica è Per un dispositivo di resistenza R, la dissipazione di potenza è du dq V idt V Potenza = (Energia)/(intervallo di Tempo) P P du dt i R iv 2 V R 2 Tre modi per scrivere P.

19 Campi elettrici nei circuiti Analogia fluidodinamica riferita ad un circuito elettrico La batteria provvede a stabilire una f.em. nel circuito: pompa le cariche da un potenziale minore ad uno maggiore. W F d s Lavoro svolto dalla batteria La f.e.m. è il lavoro per unità di carica. f. e. m. W F q q Non si può associare F/q ad un campo elettrico perchè la forza F che agisce all interno del generatore ha, in generale, diversa origine (chimica, meccanica, ) ds

20 Campi elettrici nei circuiti Entro i fili è presente un campo elettrico (necessario per lo scorrimento delle cariche). Condizioni NON elettrostatiche! Inizialmente (pochi ns) le correnti distribuiscono le cariche sulle superfici dei fili in modo da creare all interno un campo elettrico. Le cariche superficiali guidano la corrente lungo le curve del filo metallico. La maggiore resistività di un resistore si traduce in una strozzatura : le cariche elettriche si addensano agli estremi conduttori per stabilire un campo elettrico sufficiente a garantire il flusso di corrente!

21 Conservazione dell energia Consideriamo un circuito costituito da una batteria ideale (B) con f.e.m., un resistore R, e due fili di connessione (con resistenza trascurabile). Conservazione Energia: l energia dissipata nel resistore deve eguagliare il lavoro fatto dalla batteria Durante un intervallo di tempo dt, il lavoro svolto dalla batteria è dw = dq = i dt, l energia dissipata nel resistore è de = i 2 R dt. Eguagliando le due relazioni si ha i = / R.

22 Generatore di f.e.m. reale V - I r poichè V I R I R + I r I R+ r batt 2 2 P I I R + I r la resistenza interna del generatore deve essere trascurabile rispetto a quella del carico per avere un efficiente trasferimento di energia!

23 Potenza (elettrica) e Dissipazione La potenza netta trasferita da un dispositivo fem ai portatori di carica è data da P iv i( V - V ) i( - ir) i - b a i 2 r Definizioni: potenza FEM : Pfem i Dissipazione interna di potenza: P P P 2 P r i r fem - r Conservazione dell Energia!

24 Esempio 1 Consideriamo il circuito in figura: Qual è la relazione tra V a -V d e V a -V c? a 50 b I 1 I 2 (a) (V a -V d ) < (V a -V c ) (b) (V a -V d ) = (V a -V c ) (c) (V a -V d ) > (V a -V c ) 12V 20 d c 80 Rammentare che il potenziale è indipendente dal cammino! I punti d e c sono identici, elettricamente Avendo assunto cd come un perfetto conduttore, i punti c e d sono equipotenziali. Ciò varrebbe anche se il circuito non fosse statico, come in questo esempio.

25 Esempio 2 Consideriamo il circuito in figura: a 50 Qual è la relazione tra I 1 e I 2? 12V 20 b I 1 I 2 80 d c (a) I 1 < I 2 (b) I 1 = I 2 (c) I 1 > I 2 Si noti che: V b -V d = V b -V c (assumendo fili conduttori ideali) Pertanto, I (20 ) I (80 ) I1 4I2 1 2

26 Suggerimenti per risolvere i problemi Dato un circuito, analizzarne attentamente la topologia. trovare i nodi e ciascun ramo, selezionarne i sottoinsiemi Linearmente Indipendenti. definire le correnti di ramo Usare la II legge di Kirchhoff per tutte le maglie indipendenti nel circuito. la somma delle tensioni lungo queste maglie è nulla! Usare la I legge di Kirchhoff per tutti i nodi independenti del circuito. Il numero di equazioni indipendenti necessarie deve essere eguale al numero di correnti incognite!

27 Amperometro e Voltmetro Amperometro: strumento usato per misurare correnti Deve essere connesso in serie. La resistenza interna di un amperometro deve essere la più piccola possibile. Voltmetro: uno strumento usato per misurare differenze di potenziale Deve essere connesso in parallelo. La resistenza interna di un voltmetro deve essere la più grande possibile.

28 Amperometro e Voltmetro Amperometro: misura correnti connesso in serie: bisogna interrompere un ramo di circuito ed inserire lo strumento. In pratica l Amperometro è essenzialmente una resistenza di shunt (di caduta) R s molto bassa, inserita nel ramo del circuito, con un voltmetro ad elevata impedenza connesso ai suoi capi (dello shunt ) che misura la corrente di shunt come I = V/R s Voltmetro: misura differenze di potenziale La resistenza interna di un voltmetro deve essere resa la più grande possibile rispetto alle resistenze presenti nel circuito dove effettuare la misura. Se R voltmetro = 100 x R j essa ridurrà il valore effettivo di R j di circa 1% e perturberà il flusso delle correnti nella maglia e, potenzialmente, anche in altre.

29 Circuiti non-stazionari Fin qui abbiamo trattato correnti costanti, cioè circuiti in condizioni stazionarie Consideriamo adesso dei semplici circuiti in cui la corrente varia nel tempo Calcolo Carica di un condensatore attraverso una Resistenza Calcolo Scarica di un condensatore attraverso una Resistenza

30 Circuiti RC il condensatore è inizialmente scarico per t<0 l interruttore S è aperto, non circola corrente per t>0 chiudiamo S, circola una corrente I: il campo elettrico della batteria spinge gli elettroni verso la placca superiore di C e li rimuove da quella inferiore non vi è passaggio di corrente tra le placche di C!!! il valore max di carica dipende dalla f.e.m., quando viene raggiunto non circola più corrente

31 Circuiti RC Carica di un condensatore: C inizialmente scarico; chiudiamo l interruttore su a a t=0 Calcoliamo la corrente e la a + b I R C I + carica in funzione del tempo. Q C Legge maglia - IR - 0 È importante la posizione di R nella maglia? Convertiamola in una equazione differenziale per Q: I dq dq Q R + dt dt C

32 Soluzione eq. differenziale (1 ordine) dq R + dt Q C dq Q - dt R RC Q dq / R - Q / RC 0 0 t dt Q / R-Q / RC d ( / R - Q / RC) dx t -RC -RC / R - Q / RC X 0 / R avendo posto X / R - Q / RC con dx -dq / RC t / R -Q / RC / R - Q / RC - ln X / R RC ln / R -t/ RC Q e 1- C 1 dq Q C - e, i e dt R - t / RC -t / RC

33 Q Carica del condensatore Carica su C Max = C 63% Max a t = RC Q C 1 -e I Max = /R Corrente dq dt 37% Max a t = RC -t / RC - t / RC R e f( x) C 1 Q costante di tempo RC1 f( x) I RC 2RC x t/rc t t

34 Circuiti RC Scarica del condensatore: C inizialmente carico con Q=C Chiudiamo l interruttore su b a t=0. Calcoliamo la corrente e la carica in funzione del tempo. a b I R C I Legge maglia IR + C Q 0 Convertiamola nella equazione differenziale per Q: dq dq I R 0 dt dt + C Q

35 Soluzione dq R dt Q + C dt RC t 0 Q C dq Q t Q - ln Q C RC ln Q C Q C e dq i - dt -t / RC e R -t / RC Conclusioni: il condensatore si scarica esponenzialmente con costante di tempo = RC la corrente decade dal valore max iniziale (= - /R) con la stessa costante di tempo

36 Q Scarica del condensatore Carica su C Q = C e -t/rc Max = C 37% Max a t=rc Corrente dq I - dt - t / RC R e Max = -/R 37% Max a t=rc zero f( x) f( x) C Q 0.5 I /R 0 RC 2RC x t t 4

37 Combinazioni di RC: quanto vale? R R C C RC C R 2 ) (2 RC R C 2 ) (2 R R C C

38 Riassunto Carica V R q CV (1 - e -t / RC ) + - R S C V C i V R e -t / RC V R Scarica R C V C q i - CV e V R e -t / RC -t / RC

39 Comportamento dei Condensatori Carica Inizialmente, il condensatore si comporta come un filo conduttore. Dopo lungo tempo, il condensatore si comporta come un interruttore aperto. Scarica Inizialmente, il condensatore si comporta come una batteria. Dopo lungo tempo, il condensatore si comporta come un interruttore aperto

40 Applicazione: il flash

41 Esempio 1 Quanta energia è immagazzinata in C nel momento in cui i=2.0 ma? Assumere q(t=0)=0, =50V, R=5K and C=40F V R R C V C S Si potrebbe usare la legge di carica del condensatore, ma esiste un metodo più semplice Usiamo la corrente i per trovare -3 3 V R ir 210 A510 10V

42 Esempio 1 (cont.) V R R C S Usiamo la conservazione dell energia V C VC -VR 50V -10V 40V L energia immagazzinata nel condensatore C è: U U C 4010 F (40V ) CV 2 32mJ 2

43 Esempio 2 I 1 I 2 I 3 C R 2 R 1 Consideriamo il comportamento transiente (tempi brevi e lunghi) di questo circuito. Comportamento a breve termine (t=0): Inizialmente il condensatore agisce come un filo ideale. Quindi, Comportamento a lungo termine (t ): il condensatore è un circuito aperto e

44 Qc Maglia 1: - - IR C Esempio 2 (cont.) Maglia 2 I 1 I 3 I 2 Maglia 2: - I 2 R2 - I1R1 0 Maglia 1 C R 2 dq Nodo: I1 I 2 + I3 I 2 + dt R 1 Eliminare I 1 in M 1 e M 2 usando l equazione al nodo : Qc dq Maglia 1: - - R1 + I2 0 C dt dq dt Maglia 2: - I 2R2 - R1 + I 2 0 eqn. differenziale finale : eliminare I 2 dq Q + R1 dt RR 1 2 C R1+ R2

45 Esempio 2 (cont.) eqn. differenziale finale : dq dt Q + R R1 + R 1R2 R1 2 C Maglia 2 I 1 I 2 I Maglia 1 3 C R 2 costante di tempo: combinazione del parallelo tra R 1 e R 2 Cerchiamo una soluzione del tipo: sostituiamo nella eq. per ricavare A e R 1 Q( t ) A 1 - e - t / I risultati devono obbedire alle condizioni iniziali e finali: A R 2 C R1+ R2 RR 1 2 R + R 1 2 C

46 Esempio 2 (cont.) Maglia 2 per quanto riguarda la scarica? Aprendo l interruttore... I 1 I 2 I Maglia 1 C 3 R 2 Maglia 1 e Maglia 2 non esistono! I 2 è l unica corrente R 1 una sola maglia I 2 C R 2 Q dq - I 2R2 + 0 ma I 2 - C dt R 1 Q() t C e t/ R2C - costante di tempo diversa per la scarica

47 Le leggi di Kirchoff si applicano anche ai circuiti dipendenti dal tempo: si hanno equazioni differenziali! Soluzioni di tipo esponenziale dovute alla forma dell equazione differenziale costante di tempo Riassunto = RC cosa sono R e C? bisogna analizzare il circuito! con RC in serie la soluzione per la carica è Q C - - / 1 e t RC con RC in serie la soluzione per la scarica è / Q C e -t RC

48 Soluzioni di tipo esponenziale dovute alla forma dell equazione differenziale costante di tempo Riassunto = RC Quando il sistema raggiunge l equilibrio? è una convenzione: se diciamo che il sistema è in equilibrio entro, diciamo, lo 0.1% del suo valore asintotico (max o 0) della tensione (carica) di carica o scarica diciamo quindi t = RC* ln(1/.001) = 6.9 Esempio = 10 F * 10 M = 100 s 690 s per 0.1% Se vogliamo una accuratezza di 1 parte per milione, dobbiamo attendere più a lungo.

49 Il condensatore atmosferico - 1 Alcuni processi che avvengono sulla superficie terrestre e nell'atmosfera che danno luogo a distribuzioni di cariche. In particolare, si ha una carica negativa sulla superficie della Terra e in una carica positiva distribuita attraverso l'aria (stimata 5x10 5 C, cause: raggi cosmici, radioattività, fulmini). In particolare, si ha una carica negativa sulla superficie della Terra e in una carica positiva distribuita attraverso l'aria, formando così un condensatore atmosferico. La carica positiva nell'atmosfera è diffusa nell'atmosfera ma, si può descrivere con un'altezza effettiva di circa 5 km al di sopra della superficie.

50 Il condensatore atmosferico - 2 La distribuzione di carica sulla superficie terrestre ha una simmetria sferica, per cui il potenziale in un punto sopra la superficie terrestre vale: Q è la carica sulla superficie e la d.d.p. fra le armature del nostro condensatore atmosferico è: dove R T è il raggio della Terra e h = 5 km.

51 Il condensatore atmosferico - 3 La capacità del condensatore atmosferico vale: e sostituendo i valori numerici: Questo valore è molto grande, confrontato con i picofarad e microfarad che sono i valori tipici dei condensatori nei circuiti elettrici. Specialmente per un condensatore che ha le armature a una distanza di 5 km!

52 Il condensatore atmosferico - 4 Come possiamo determinare il numero di fulmini sulla Terra in un particolare giorno? Le armature del condensatore atmosferico sono separate da uno strato d'aria contenente un grande numero di ioni liberi che possono trasportare la corrente. L'aria è un buon isolante: le misure mostrano che la resistività dell'aria è circa 3 X m. La distanza di 5 km è molto piccola rispetto al raggio della Terra (6400 km): approssimiamo il resistore come uno spessore di 5 km di materiale piatto e di area pari alla superficie della Terra.

53 Il condensatore atmosferico - 5 Possiamo usare un modello dell'atmosfera come un circuito RC C La costante di tempo per questo circuito RC è R La carica sul condensatore atmosferico cadrebbe al valore e -1 = 37% del suo valore originario dopo appena 5 min! Dopo 30 min, rimarrebbe meno dello 0.3% della carica! Perché ciò non accade? Cioè che cosa mantiene carico il condensatore atmosferico? La risposta è: i fulmini

54 Il condensatore atmosferico - 6 Le nubi si caricano e determinano la caduta dei fulmini che forniscono cariche negative al suolo, le quali sostituiscono quelle neutralizzate dal flusso di carica attraverso l'aria. All equilibrio, sul condensatore atmosferico, risulta una carica netta proveniente da questi due processi. Una tipica caduta di un fulmine spedisce al suolo circa 25 C di carica negativa (carica del condensatore). Ogni 30 min il condensatore atmosferico si scarica attraverso R (aria) con 2x10 4 fulmini, cioè 4x10 4 /h, quindi

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrica e circuiti Slide 1 Materiali: prima classificazione Conduttori : sostanze nelle quali alcune o tutte le cariche elettriche possono muoversi liberamente sotto l'azione di forze elettriche

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C

Dettagli

Corrente Elettrica. dq dt

Corrente Elettrica. dq dt Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale

Dettagli

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso CARICA E SCARICA DEL CONDENSATORE 5.1. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t = 0 quando porta una carica Q(0) = Q 0. C R V(t) SOLUZIONE. A interruttore

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Esercizi sui Circuiti RC

Esercizi sui Circuiti RC Esercizi sui Circuiti RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+rica Condensatori Condensatori Il condensatore è il sistema più semplice per immagazzinare energia elettrostatica. Consideriamo due piani metallici separati da un isolante. La relazione che

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $ Capitolo Circuiti elettrici Domande. La resistenza di un filo conduttore è L / A: due fili di resistività diversa e stessa lunghezza possono avere la stessa resistenza, purché le loro sezioni siano scelte

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZENNARO LUCIANO Classe

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze)

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) Per realizzare un circuito elettrico è necessario collegare tra loro più bipoli. Il tipo di collegamento che si effettua dipende dalle esigenze e dagli

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Esercizi di Fisica LB: Circuiti e Correnti Continue

Esercizi di Fisica LB: Circuiti e Correnti Continue Esercizi di Fisica LB: Circuiti e Correnti Continue Esercitazioni di Fisica LB per ingegneri - A.A. 2004-2005 Esercizio 1 Una lampada ad incandescenza è alimentata da un generatore di corrente a = 220V.

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Il potenziale elettrico

Il potenziale elettrico Il elettrico Ingegneria Energetica Docente: Angelo Carbone Energia del elettrico e differenza di Relazione tra il elettrico e il Il elettrico dovuto a cariche puntiformi Il elettrico dovuto a una generica

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3 Circuiti in corrente continua Scopo dell'esperienza 1. Determinazione della caratteristica I/V di un conduttore non ohmico:

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff primo principio di Kirchhoff "principio dei nodi " - la sommatoria di tutte le correnti che confluiscono in un nodo (siano

Dettagli

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1

Il condensatore. 14/10/2002 Isidoro Ferrante A.A. 2002/2003 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

Lezione 39: la legge di Ohm e i circuiti elettrici

Lezione 39: la legge di Ohm e i circuiti elettrici Lezione 39 - pag.1 Lezione 39: la legge di Ohm e i circuiti elettrici 39.1. Il circuito elementare Nella scorsa lezione abbiamo rappresentato in modo più o meno realistico alcuni circuiti elettrici particolarmente

Dettagli

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V.

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p V = V A V con V >V. Corrente elettrica ) Definizione di corrente elettrica Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p = con >. Nel filo si stabilisce un campo elettrico che esercita

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere

Dettagli

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1

Il condensatore. 25/10/2002 Isidoro Ferrante A.A. 2004/2005 1 Il condensatore Un condensatore è costituito in linea di principio da due conduttori isolati e posti a distanza finita, detti armature. aricando i due conduttori con carica opposta, si forma tra di essi

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC3. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Scopo dell'esperienza ESPERIENZA DC3 Circuiti in corrente continua 1. Determinazione della caratteristica I/V di un conduttore non ohmico:

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA Elettrostatica L elettrostatica é lo studio dei fenomeni elettrici in presenza di cariche a riposo. Fin dall antichitá sono note alcune proprietá

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Scopo dell'esperienza: Circuiti in corrente continua 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validita'

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora 1)Nel circuito rappresentato in figura la pila fornisce una differenza di potenziale di 12 V e le tre resistenze hanno

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Capacita` di un conduttore isolato

Capacita` di un conduttore isolato Capacita` di un conduttore isolato Carica sulla superficie di un conduttore isolato Q =!! (! r )da Potenziale del conduttore in un punto qualsiasi V = 1!! ( r )! da (Equipotenziale) 4!" 0 r La distribuzione

Dettagli

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso)

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso) ESERCIZI SUI CIRCUITI RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Appunti su: corrente elettrica, leggi di Ohm, circuiti 29 novembre 2010 1 Per altri materiali didattici o per contattarmi: Blog personale: http://francescomarchi.wordpress.com/

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Lez. 19 Potenziale elettrico

Lez. 19 Potenziale elettrico Lez. 19 Potenziale elettrico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Circuiti in corrente continua Scopo dell'esperienza 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validità

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

Teoremi Thevenin/Norton

Teoremi Thevenin/Norton Teoremi Thevenin/Norton IASSUNTO Il carico Teorema di Thevenin Come calcolare V Th ed Th conoscendo il circuito Come misurare V Th ed Th Esempi Generatore di tensione ideale e reale Teorema di Norton Generatore

Dettagli

Sistemi Elettrici. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Sistemi Elettrici. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Sistemi Elettrici ALTAIR http://metropolis.sci.univr.it Argomenti Osservazioni generali Argomenti Argomenti Osservazioni generali Componenti di base: resistenze, sorgenti elettriche (fem), condensatori,

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Correnti elettriche, resistenze, legge di Ohm

Correnti elettriche, resistenze, legge di Ohm Correnti elettriche, resistenze, legge di Ohm Se in un conduttore, tra due punti qualsiasi sulla sua superficie o al suo interno, si mantiene una differenza di potenziale (ddp ) V - V - > 0 il campo elettrico

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio Liceo Scientifico Istituto Tecnico Industriale ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Via Gallo Pecca n.4/6 10086 RIVAROLO CANAVESE Tel. 0124/45.45.11 - Fax 0124/45.45.45 Cod. Fisc. 85502120018 E-mail:

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

RESISTENZE IN SERIE. Applichiamo un generatore di tensione Vg ai capi di due resistenze collegate in serie. V 2 R2

RESISTENZE IN SERIE. Applichiamo un generatore di tensione Vg ai capi di due resistenze collegate in serie. V 2 R2 RESSTENZE N SERE Date due o più resistenze, si dice che queste sono collegate in serie quando, a due a due, hanno una estremità in comune Circuito con resistori in serie ista di due resistori collegati

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

Relazione dell'esperienza fatta nel laboratorio di fisica: Carica e scarica di un condensatore

Relazione dell'esperienza fatta nel laboratorio di fisica: Carica e scarica di un condensatore Bormio, 30 Gennaio 2016 Studenti: -... Relazione dell'esperienza fatta nel laboratorio di fisica: Carica e scarica di un condensatore Un condensatore è un sistema di due conduttori affacciati, detti armature,

Dettagli

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p ΔV = V A V B con V A >V B.

Corrente elettrica. Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p ΔV = V A V B con V A >V B. Corrente elettrica ) Definizione di corrente elettrica Consideriamo un filo di materiale conduttore ai cui estremi viene applicata una d.d.p Δ con >. Nel filo si stabilisce un campo elettrico che esercita

Dettagli

CIRCUITI ELETTRICI RC

CIRCUITI ELETTRICI RC TUTOTO 4: ETI E POTENZ ELETTIC CICUITI ELETTICI C 4.. Nel circuito della figura si ha 5, e 3 3 e nella resistenza passa una corrente I =.Il voltaggio V ai capi della batteria vale () 5 V () 0.5 V (C).0

Dettagli

1. Circuito RLC serie Studiamo la configurazione mostrata in figura 1.1. Figura 1.1.

1. Circuito RLC serie Studiamo la configurazione mostrata in figura 1.1. Figura 1.1. CIRCUITI RLC ED EQUAZIONI DIFFERENZIALI Sommario. In queste pagine studiamo alcune configurazioni elementari di resistori, condensatori e bobine. Vedremo come si possono dedurre le equazioni differenziali

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

LABORATORIO DI FISICA II CORSO A-L Università degli studi di Catania Facoltà di Scienze Dipartimento di Fisica e Astronomia Guglielmo Garofalo

LABORATORIO DI FISICA II CORSO A-L Università degli studi di Catania Facoltà di Scienze Dipartimento di Fisica e Astronomia Guglielmo Garofalo LABORATORIO DI FIICA II CORO A-L Università degli studi di Catania Facoltà di cienze Dipartimento di Fisica e Astronomia Guglielmo Garofalo Verifica della resistenza totale di due resistenze in serie ed

Dettagli

1.6 Circuiti resistivi

1.6 Circuiti resistivi 1.6 Circuiti resistivi Esercizio 31 Ilcircuitoinfiguraèalimentatoconunageneratorereale, confemv 0 = 100V e una resistenza interna R i = 10 Ω. Le resistenze hanno valori: R 1 = 1.0 kω, R 2 = 1.5 kω, R 3

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Circuiti Elettrici in Corrente Continua (DC) in regime stazionario

Circuiti Elettrici in Corrente Continua (DC) in regime stazionario Circuiti Elettrici in Corrente Continua (DC) in regime stazionario Per corrente o tensione continua si intende che il valore numerico scalare di tensione o corrente è costante nel tempo (vedi Fig.1) /

Dettagli

ESERCIZI PER LE VACANZE ESTIVE

ESERCIZI PER LE VACANZE ESTIVE Opera Monte Grappa ESERCIZI PER LE VACANZE ESTIVE Claudio Zanella 14 2 ESERCIZI: Calcolo della resistenza di un conduttore filiforme. 1. Calcola la resistenza di un filo di rame lungo 100m e della sezione

Dettagli

Potenza (Watt) R = ρ x L/S. V = R x I. Stabilisce il legame tra le grandezze elettriche fondamentali: tensione, corrente, resistenza elettrica

Potenza (Watt) R = ρ x L/S. V = R x I. Stabilisce il legame tra le grandezze elettriche fondamentali: tensione, corrente, resistenza elettrica PRIMA LEGGE DI OHM SECONDA LEGGE DI OHM Stabilisce il legame tra le grandezze elettriche fondamentali: tensione, corrente, resistenza elettrica V = R x I Definisce la resistenza di un conduttore in funzione

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Capacità e energia elettrica immagazzinata

Capacità e energia elettrica immagazzinata Condensatori obsoleti Capacità e energia elettrica immagazzinata Docente: Angelo Carbone Condensatori moderni in ceramica multistrato MLCC Condensatori Un condensatore è costituito da due conduttori che

Dettagli

Interruttori. - La presente trattazione è relativa solamente al componente che interrompe il circuito.

Interruttori. - La presente trattazione è relativa solamente al componente che interrompe il circuito. Interruttori - L interruttore è un dispositivo che, come dice la parola, deve interrompere un circuito e/o una corrente. - Il suo funzionamento può essere manuale (anche da remoto) o automatico: - Nel

Dettagli