Le Dimostrazioni Matematiche. Dimostrazioni Dirette. Alcune definizioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le Dimostrazioni Matematiche. Dimostrazioni Dirette. Alcune definizioni"

Transcript

1 Le Matematiche Una proposizione matematica é una qualunque frase (che, ovviamente, riguarda la matematica) di cui sia possibile dire se vera o falsa Ad esempio: Tutti i triangoli sonon rettangoli É una proposizione, ovviamente falsa I numeri interi possono essere pari o dispari É una proposizione vera Aggiungere tre ad entrambi i membri dell equazione Non é una proposizione perché non é possibile dire se sia vera o falsa Tra tutte le proposizioni, quelle che sono vere e si può verificare che sono vere sono dette teoremi Dimostrare un teorema significa provare che esso é vero mediante un ragionamento logico La maggior parte dei teoremi che dimostreremo sono nella forma P = Q Passiamo in rassegna le principali tecniche di dimostrazione a nostra disposizione Dirette La prima tecnica che analizzeremo é quella della dimostrazione diretta: Dobbiamo dimostrare la proposizione: se P allora Q Lo schema risolutivo della dimostrazione diretta é molto semplice: dobbiamo riempire le righe tra la prima e l ultima: utilizziamo la definizione di numero dispari per x e per x 2 : Proposizione: se x é dispari allora x 2 é dispari Dimostrazione: Suppongo x dispari x = 2a + 1, a Z quindi x 2 = 2b + 1, b Z quindi x 2 é dispari Nota he abbiamo usato due numeri a e b interi,perché saranno generalmente diversi Dobbiamo ora passare dalla prima all ultima proposizione: Proposizione: se x é dispari allora x 2 é dispari Dimostrazione: Suppongo x dispari x = 2a + 1, a Z x 2 = (2a + 1) 2 = 4a 2 + 4a + 1 Proposizione: se P allora Q Dimostrazione: suppongo P quindi Q Diamo un esempio di tale tipologia di dimostrazione: Proposizione: se x é dispari allora x 2 é dispari Dimostrazione: Suppongo x dispari quindi x 2 é dispari pongo 4a 2 + 4a = 2b, con b Z quindi x 2 = 2b + 1, b Z quindi x 2 é dispari Alcune definizioni Prima di proseguire con altri esercizi ecco alcune definizioni che potranno esservi utili nelle prossime dimostrazioni: Def 1: un intero x é pari se x=2a per qualche a Z Def 2: un intero x é dispari se x=2a+1 per qualche a Z Def 3: Dati due interi, a e b, a si dice divisore di b, oppure b multiplo di a, se: b = k a, per qualche k Z Il simbolo utilizzato per esprimere questa relazione tra i due numeri interi a e b si indica con a b (ad es 5 20) 1

2 Def 4: Dati due interi, a e b, a si dice congruente b modulo n (oppure congruo b modulo n), con n N e si scrive a b (mod n) se n (a b), ovvero se il resto della divisione per n di a e b é identico Ad es 5 e 9 sono congruenti modulo 2, ossia 5 9 (mod 2), infatti 2 (5 9), ed anche il resto della divisione per 2 é per entrambi 1 Esercizi Ecco alcuni esercizi da risolvere mediante la tecnica della dimostrazione diretta: per contrapposizione La dimostrazione per contrapposizione considera che l implicazione P = Q é vera anche quando é falsa la Q e da ciò si ricava falsa anche la P Notate che il simbolo che rappresenta la negazione di P é P Quindi si procederà come segue: 1 se k = 4a allora k = 1 + ( 1) n (2n 1) 2 se a b allora a 2 b 2 3 se 7 4a allora 7 a Soluzione: 7 é divisore di 4a, quindi 4a = b 7, con b intero Quindi: 2 2a = b 7 bdeve essere pari, dovendo il suo prodotto con 7 essere uguale ad un numero pari Quindi: Proposizione: se P allora Q, cioè se Q allora P Dimostrazione: suppongo Q quindi P 2 2a = 2 c 7 ossia 2a = c 7 Anche in questo caso c deve essere pari, e quindi: 2 2a = 2 d 7 con d Z semplificando ulteriormente si ha: a = d 7 e quindi 7 a 4 Il numero , con 3n 1 zeri, n intero positivo, non é primo Alcune dimostrazioni richiedono l analisi di più casi, come nell esempio sotto riportato: siano x, y R Se x 2 + 5y = y 2 + 5x, allora x = y oppure x + y = 5 Infatti, riscrivendo l ipotesi: x 2 y 2 = 5(x y), quindi (x y)(x + y) = 5(x y), osservo che, se: x = y, 0 = 0, verificato e quindi corretto x y allora posso dividere per (x y) e risulta: x + y = 5 5 Se n Z allora n 2 + 3n + 4 é pari Vediamo un applicazione della tecnica: Proposizione Supponi x Z Se x 2 6x+5 é pari, allora x é dispari Procediamo con la prova per contrapposizione, prima partendo dalla tesi negata, ossia che x sia pari, e derivando da ciò che la negazione della tesi, ossia x 2 6x + 5 é dispari: Proposizione: se x 2 6x + 5 é pari, allora x é dispari Dimostrazione: Suppondo x pari quindi x 2 6x + 5 é dispari Dobbiamo adesso completare i passaggi logici che portano dalla prima proposizione all ultima: 2

3 Dimostrazione: Suppondo x pari x = 2a, per a Z Quindi x 2 6x + 5 = 4a 2 12a + 5 = = 4a = 2(2a 2 6a + 2) + 1 Esercizi Quindi x 2 6x + 5 = 2b + 1, con b, intero, uguale a 2a 2 6a + 2 quindi x 2 6x + 5 é dispari 1 Supponi x, y R Se y 3 +yx 2 x 3 +xy 2, allora y x 2 Supponi x, y Z Se 5 xy allora 5 x e 5 y NOTA: in questo caso la tesi richiede che due affermazioni valgano contemporanemente: 5 x 5 y La negazione di tale proposizione é che: 5 x oppure 5 y, cioé può valere solo una delle due affermazioni negate Nella dimostrazione si dovrá procedere, quindi, per casi: caso 1, 5 x, caso 2, 5 y 3 Supponi n Z + Se n (mod 4) é 2 o 3, allora n non é un quadrato perfetto per assurdo La dimostrazione per assurdo può darsi in due modi: per dimostrare una semplice proposizione (as es 2 é irrazionale) parto negando la proposizione P e concludo che vale contemporaneamente una proposizione C ed il suo opposto, ossia un assurdo: Proposizione: P Dimostrazione: suppongo P quindi C C se la dimostrazione richiede una proposizione condizionale, del tipo se P = Q, allora si parte assumendo P vero e Q falso per concludere, ancora una volta, C C, cioé un assurdo Proposizione: se P = Q Dimostrazione: suppongo P e Q quindi C C diamo un esempio per entrambe le tipologie: Esempio 1: Ci sono infiniti numero primi Dimostrazione: Supponiamo che i numeri primi siano finiti Allora essi sono: p 1, p 2, p 3,, p n Adesso consideriamo il numero a = (p 1 p 2 p 3 p n )+ 1 dato dal prodotto di tutti i numeri primi piú 1 Ora, a, non essendo primo per l ipotesi da noi scelta, ha almeno un divisore tra i numeri primi, chiamiamolo p k ; si ha, quindi, a = c p k, e quindi: c p k = (p 1 p 2 p 3 p k 1 p k p k+1 n) + 1 Divido entrambi i membri per p k, ottenendo: quindi: c = (p 1 p 2 p 3 p k 1 p k+1 n) + 1 p k c (p 1 p 2 p 3 p k 1 p k+1 n) = 1 p k Il termine a sinistra dell uguale é un intero, il termine a destra é razionale, sicuramente non é un intero Siamo giunti quindi ad un assurdo, per cui il nostro punto di partenza deve essere falso: esistono finiti numeri primi Quindi abbiamo dimostrato che esistono infiniti numeri primi Esempio 2: se a, b Z e a 2, allora a b oppure a (b + 1) Dimostrazione: Supponiamo vera la tesi e neghiamo l ipotesi, cioé supponiamo che esistano a, b Z, con a 2 per i quali non é vero che a b oppure a (b + 1) Dobbiamo porre particolare attenzione alla negazione della tesi: essa riguarda due proposizioni, almeno una delle quali deve essere vera Il suo contrario é, allora che nè una nè l altra siano vere: deve essere a b e a (b+1) Adesso partiamo con la dimostrazione: a b e a (b + 1) significa che b = ac e b + 1 = ad, con c, d Z Sottraggo le due equazioni: ad ac = 1, cosí a(d c) = 1; sia a sia d c devono essere positivi, quindi: a = 1 (d c) < 2; siamo arrivati alla conclusione che a < 2, ma anche a 2 (per ipotesi) Assurdo 3

4 Dimostrazione per induzione L induzione matematica consente di dimostrare che una serie di proposizioni P 1, P 2, P 3, P n, sono tutte vere Per comprendere la tecnica si fa spesso uso dell immagine del domino: ogni proposizione rappresenta una pedina del domino Si parte dimostrando che la prima proposizione (cioè la prima pedina) é vera (cioé la pedina é fatta cadere); si passa a dimostrare che, essendo vera una qualunque proposizione P k, da ciò segue che anche la proposizione successiva P (k+1) é vera (nell esempio del domino: la pedina S k cadendo, fa cedere la pedina successiva S (k+1) La conclusione é che tutte le proposizioni risultano vere (cioé tutte le pedine cadranno) = k 2 + 2(k + 1) 1 = k 2 + 2k + 1 = (k + 1) 2 Abbiamo quindi dimostrato che S k = S (k+1) e quindi la proposizione iniziale é dimostrata Esercizi 1 Dato n N, si ha che n = n 2 + n 2 2 Dato n N, n(n+2) = x(n + 1)(2n + 7) 6 3 Dato n N, si ha che 6 (n 3 n) Ripasso (veloce) di geometria Punti notevoli di un triangolo Circocentro: punto di intersezione degli assi Centro della circonferenza circoscritta Incentro: punto di intersezione delle bisettrici Centro della circonferenza inscritta Baricentro: punto di intersezione delle mediane Il baricentro divide ogni mediana in due parti, delle quali quella che contiene il vertice, é il doppio dell altra Vediamo un esempio di dimostrazione: Esempio 1: La somma dei primi n numeri dispari: (2n 1) = n 2 Dimostrazione: Partiamo dalla verifica che la proposizione da dimostrare vale per n = 1, per il quale si deriva 1 = 1 2, che é vero Assumiamo vera la proposizione S k, cioé: (2k 1) = k 2 A questo punto dobbiamo dimostrare che la proposizione S (k+1) é vera, cioé: (2(k + 1) 1) = (k + 1) 2 Si ha che: (2(k + 1) 1) = = (2k 1) + (2(k + 1) 1) = per l ipotesi induttiva, la prima parte della somma é pari a k 2, cioé: k (2k 1) +2(k+1) 1 = punto di intersezione delle al- Ortocentro: tezze Poligoni inscrivibili e circoscrivibili in una circonferenza Un quadrilatero é inscrivibile in una circonferenza se i suoi angoli opposti sono supplementari Un quadrilatero é circoscrivibile ad una circonferenza se la somma dei due lati opposti é congruente alla somma degli altri due Poligoni regolari Un poligono é regolare se ha lati ed angoli uguali Ogni poligono regolare é inscrivibile e circoscrivibile 4

5 Circonferenza Ogni angolo alla circonferenza é congruente alla metà dell angolo al centro che insiste sullo stesso arco Angoli alla circonferenza che insistono sullo stesso arco sono congruenti Archi congruenti sottendono corde congruenti Corde congruenti hanno stessa distanza dal centro Teorema di Talete Se un fascio di rette parallele é tagliato da due trasversali 1 a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra 2 alla somma di due segmenti su una trasversale corrisponde la somma di due segmenti sull altra 3 a segmenti non congruenti su una trasversale corrispondono segmenti non congruenti sull altra I poligoni in ogni poligono ciascun lato é minore della somma degli altri Febbraio 2008 Sia AB una corda di una circonferenza e P un punto interno ad AB tale che AP = 2PB Sia DE la corda passante per P e perpendicolare ad AB Dimostrare che il punto medio Q di AP é l ortocentro di ADE Sia H il punto in cui la retta EQ interseca AD; si deve dimostrare che l angolo AĤE é retto Tracciamo il segmento BE Il triangolo BQE é isoscele perché l altezza EP é anche mediana; infatti P, piede dell altezza EP, é punto medio di BQ in quanto PQ = 1 1 AP = PB EP é pertanto anche 2 bisettrice dell angolo BÊQ, ossia i due angoli PÊQ, PÊB sono congruenti Poi, sono congruenti gli angoli DÊB, DÂB perché angoli alla circonferenza che insistono sullo stesso arco; segue che sono congruenti gli angoli PÊQ, DÂP I triangoli AHQ, EPQ hanno dunque gli angoli in A e in E congruenti; ancora, sono congruenti i rispettivi angoli con vertice in Q, perché opposti al vertice I triangoli AHQ, EPQ sono pertanto simili, ed in particolare sono congruenti gli angoli con vertici in P e H Poiché l angolo E ˆPQ é retto per costruzione, é retto anche l angolo AĤE come si voleva dimostrare E La somma degli angoli interni di un poligono convesso é congruente a tanti angoli piatti quanti sono i suoi lati meno due poligoni sono congruenti se hanno lati ed angoli ordinatamente uguali B P Q A Primo teorema di Euclide In ogni triangolo rettangolo ciascun cateto é medio proporzionale tra l ipotenusa e la sua proiezione sull ipotenusa D H Secondo teorema di Euclide In ogni triangolo rettangolo l altezza relativa all ipotenusa é media proporzionale tra i due segmenti in cui essa divide l ipotenusa Geometriche Febbraio 2007 É data una circonferenza di diametro AB e centro O Sia C un punto sulla circonferenza (diverso da A e da B), e si tracci la retta r parallela ad AC per O Sia D l intersezione di r con la circonferenza dalla parte opposta di C rispetto ad AB a Dimostrare che DO é bisettrice di C ˆDB 5

6 b Dimostrare che il triangolo CDB é simile al triangolo AOD a Abbiamo AĈD = C ˆDO, perché alterni interni rispetto alle parallele AC e DO; inoltre AĈD =A ˆBD dato che insistono sullo stesso arco di circonferenza a se EÂD = 90 allora BC é parallelo a AD b se EÂD = FÂB = 90 allora ABCD é un parallelogramma c se ABCD é un parallelogramma allora EÂD = FÂB = 90 A O C Le presenti dispense, ad uso interno degli allievi del liceo Leo-Major, rappresentano l adattamento e la traduzione di alcune pagine del libro The book of proof, di Richard Hammack, della Viriginia Commonwelath University, liberamente scaricabile in internet D B Il triangolo ODB é isoscele, quindi i due angoli O ˆBD e O ˆDB sono congruenti Quindi O ˆDB=C ˆDO e quindi DO é bisettrice b Lasciamo a voi la dimostrazione, tenendo presente il seguente grafico: C A O D B Febbraio 2006 Sia ABCD un quadrilatero; chiamiamo E l intersezione (distinta da A) tra le circonferenze di diametri AB e AC ed F l intersezione (sempre distinta da A) tra le circonferenze di diametri AC e AD Dimostrare che: 6

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

1/6. Esercizi su Circonferenza/retta e circonferenza/circonferenza. Dimostrazioni. Ipotesi. Tesi. Dimostrazione. Ipotesi. Tesi.

1/6. Esercizi su Circonferenza/retta e circonferenza/circonferenza. Dimostrazioni. Ipotesi. Tesi. Dimostrazione. Ipotesi. Tesi. Dimostrazioni Risoluzione 1) Le circonferenze Γ e Γ' (e Γ'') sono tangenti P appartiene alla retta tangente comune t PA, PB (e PB*) sono tangenti PA = PB (= PB*) Non ha importanza se le due circonferenze

Dettagli

ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria

ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria Richiami dal libro VI di Euclide: ELEMENTI DI EUCLIDE, LIBRO VI: Le figure simili e le proporzioni in geometria Definizione I del libro VI: due figure poligonali si dicono simili se hanno angoli uguali

Dettagli

TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo:

TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo: TIPI DI TRIANGOLO La classificazione dei triangoli può essere fatta o in riferimento ai lati oppure agli angoli. Sulla base dei lati abbiamo: TRIANGOLO EQUILATERO Il triangolo equilatero ha i tre lati

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO È una linea chiusa formata da tutti i punti del piano che sono equidistanti da un punto interno detto centro. La distanza punto della circonferenza-centro è detto raggio. circonferenza

Dettagli

C7. Circonferenza e cerchio - Esercizi

C7. Circonferenza e cerchio - Esercizi C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come

Dettagli

rappresenta la distanza del centro O dalla corda.

rappresenta la distanza del centro O dalla corda. PROBLEMI DI GEOMETRIA 1 Problema 1.160.86 Indica con L un punto del lato AB del quadrato ABCD e considera il segmento AL. Proseguendo nello stesso verso di rotazione prendi sugli altri lati i punti M,

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

Il cerchio e la circonferenza

Il cerchio e la circonferenza Il cerchio e la circonferenza DEFINIZIONI Circonferenza: linea curva chiusa i cui punti sono equidistanti da un punto O detto centro della circonferenza. Raggio: un qualsiasi segmento che unisce il centro

Dettagli

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 1C

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 1C Don Bosco, A.S. 01/14 Compiti per le vacanze - 1C 1. Rappresenta per elencazione ciascuno dei seguenti insiemi: A { x x è una lettera della parola cattedra } B { x N x < 7 } C { x N x è pari x 10 } D {

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

Lezione 3. Angoli al centro e angoli alla circonferenza

Lezione 3. Angoli al centro e angoli alla circonferenza Lezione 3. Angoli al centro e angoli alla circonferenza 1 Angoli in una circonferenza La proprietà illustrata dalle proposizioni 0, 1 e 3 del terzo libro degli Elementi si riferisce a una delle caratteristiche

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A Don Bosco, A.S. 0/ Compiti per le vacanze - A. Risolvi le seguenti espressioni: [( ) ( ) ] [( ) 5 ] + : ( ) ( ) ( ( ) 5 ) 9 ( 5 ) ( 5 ) ( 7 5 ). Scomponi i seguenti polinomi: a b ax+bx+ay+6by c) x +x d)

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

I.I.S. G. Brotzu Quartu S. Elena

I.I.S. G. Brotzu Quartu S. Elena I.I.S. G. Brotzu Classe : 1 C Libro di testo: Bergamini-Trifone-Barozzi Manuale di algebra Vol 1 e Manuale di geometria Gli insiemi e la loro rappresentazione. Sottoinsieme, insieme delle parti, intersezione

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica

2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica 2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

1. Il triangolo ABC ha i lati lunghi 12 cm, 17

1. Il triangolo ABC ha i lati lunghi 12 cm, 17 www.matematicamente.it Esame di stato scuola secondaria di primo grado - Esercitazione 1 1 Esame di stato scuola secondaria di primo grado Esercitazione a cura di Michela Occhioni Cognome e nome: data:

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Numeri naturali ed operazioni con essi

Numeri naturali ed operazioni con essi Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI Programmazione Didattica 1 e Disciplina: MATEMATICA Ore annue: 110 MODULO 1 TEORIA DEGLI INSIEMI E INSIEMI NUMERICI settembre

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Poligoni inscrivibili e circoscrivibili Unità 1

Poligoni inscrivibili e circoscrivibili Unità 1 OBIETTIVI INTERMEDI DI APPRENDIMENTO (I numeri e le lettere indicate a fianco contrassegnano le conoscenze, le abilità finali specifiche e quelle trasversali correlate) Una volta completata l unità, gli

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Ellisse. DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante"; CONSIDERAZIONI:

Ellisse. DEF: il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante; CONSIDERAZIONI: Ellisse DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi è costante"; CONSIDERAZIONI: Il punto P appartiene all'ellisse se, e solo se, la distanza del punto P dal fuoco

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed ppunti di geometria.s. 14-15 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo esterno

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema

Dettagli

10. Quale dei seguenti numeri

10. Quale dei seguenti numeri Test d'ingresso di matematica per la secondaria di secondo grado (liceo classico) Il test si basa su alcuni test di ingresso (opportunamente modificati) assegnati al liceo classico e trovati in Rete Nome:

Dettagli

Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..

Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per.. Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica

Dettagli

Unità Didattica N 23 Rette parallele

Unità Didattica N 23 Rette parallele 28 Unità idattica N 23 Rette parallele Unità idattica N 23 Rette parallele 01) efinizione di rette parallele 02) ngoli formati da due rette tagliate da una trasversale 03) Quinto postulato di Euclide sulle

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Lelezionifrontalisarannoassociateadelleesperienzedilaboratorioperaccompagnarelateoriae

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D

ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D ISTITUTO DI ISTRUZIONE SUPERIORE LICEO SCIENTIFICO TITO LUCREZIO CARO -CITTADELLA PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2009/2010 CLASSE 1 D DOCENTE: CALISE LIBERA TESTI ADOTTATI: ELEMENTI DI ALGEBRA

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012 Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

CONOSCENZE 1. gli elementi e le caratteristiche

CONOSCENZE 1. gli elementi e le caratteristiche GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e saper operare con esse l conoscere gli enti fondamentali della geometria

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Appunti di geometria del piano

Appunti di geometria del piano Appunti di geometria del piano Gianpaolo Prina Istituto Prof. G. Sismondi Pescia Anno scolastico 2010-2011 La geometria e gli enti primitivi La geometria è la disciplina che descrive e studia le proprietà

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Esercizi di geometria per il corso PAS A059

Esercizi di geometria per il corso PAS A059 Esercizi di geometria per il corso PAS A059 1. Dato un rombo con un angolo di 60 trovare il rapporto tra il raggio del cerchio inscritto nel rombo e il raggio del piu piccolo cerchio che contiene interamente

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013)

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) 1.- Sia K il valore comune delle somme degli elementi della prima riga, di quelli della seconda e di quelli della colonna. Sia X il numero messo nella

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura

Dettagli

In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana

In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana 66 08 09 10 11 1 13 14 In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana b) bisettrice c) asse d) ortogonale Un

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini Corsi di Studio: Amministrazione, Finanza e Marketing/IGEA- Costruzioni, Ambiente e Territorio/Geometra Liceo Linguistico/Linguistico Moderno -

Dettagli

7DQJHQWL /H]LRQH7DQJHQWL

7DQJHQWL /H]LRQH7DQJHQWL /H]LRQH7DQJHQWL &LUFRQIHUHQ]HWDQJHQWLWUDORUR Poiché due circonferenze sono reciprocamente tangenti quando hanno un solo punto in comune, vi sono essenzialmente due modi in cui ciò può avvenire: una delle

Dettagli

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA

Dettagli

Scheda 2 Percorsi didattici interni al progetto PTOF 2016/2019 (POF triennale)

Scheda 2 Percorsi didattici interni al progetto PTOF 2016/2019 (POF triennale) MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO I.C. PIAZZA FILATTIERA 84 Piazza Filattiera, 84-00139 ROMA Fax 06/88386385 Tel. 06/8102978 C.M. RMIC8EG00Q

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

PROGRAMMA DI MATEMATICA DELLA CLASSE IA

PROGRAMMA DI MATEMATICA DELLA CLASSE IA PROGRAMMA DI MATEMATICA DELLA CLASSE IA ANNO SCOLASTICO 2013/2014 ALGEBRA I numeri naturali ( l insieme dei numeri naturali e le quattro operazioni aritmetiche, le potenze, le espressioni, la divisibilità

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 14 L equivalenza di figure piane Due figure piane si dicono equivalenti (o equiestese) se hanno la stessa estensione nel piano. L area

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE TRSFORMZIONI GEOMETRIHE: OMOTETIE E SIMILITUDINI Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è L omotetia è una trasformazione geometrica che a lascia

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli