Insiemi Numerici. 1 I Numeri Naturali: definizione assiomatica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Insiemi Numerici. 1 I Numeri Naturali: definizione assiomatica"

Transcript

1 Insiemi Numerici Docente: Francesca Benanti 19 gennaio I Numeri Naturali: definizione assiomatica Sin dall antichità è stata data una sistemazione rigorosa alla geometria. Euclide (300 a.c.), nella sua opera gli Elementi, enuncia alcuni assiomi e da essi ricava le proprietà del piano e dello spazio come teoremi. Non altrettanto è avvenuto per l algebra e l aritmetica. Si deve attendere fino al XIX secolo per avere una sistemazione assiomatica della teoria dei numeri. Poichè gli insiemi numerici più ampi, via via storicamente introdotti per esigenze operative, possono essere costruiti a partire dall insieme più elementare dei naturali, è proprio quest ultimo ad essere definito assiomaticamente....dio creò i numeri naturali; tutto il resto è opera dell uomo... Con queste parole L. Kronecker ( ) indicava il terreno sicuro per la costruzione dell intero edificio della matematica. Si dà, dunque, una struttura assiomatica all aritmetica, la teoria matematica dei numeri naturali, e a partire da questa si ricavano le caratteristiche degli altri ambienti numerici. 1

2 La definizione dei numeri naturali e gli assiomi che caratterizzano le operazioni definite in N rappresentano, quindi, il fondamento deduttivo per tutte le strutture numeriche via via costruite con successivi ampliamenti. La riconduzione degli insiemi numerici all aritmetica fu avviata dal matematico tedesco F.L.G.Frege ( ) nei suoi testi I fondamenti dell aritmetica e I principi dell aritmetica, apparsi negli ultimi anni del XIX secolo. La caratterizzazione assiomatica di N si deve, invece, al matematico italiano G. Peano ( ) che ne diede una prima formulazione nella sua opera Arithmetices principia, nova methodo expositia (1889). Un analoga formulazione fu data negli stessi anni da J.W.R. Dedekind ( ). È possibile definire i numeri naturali attraverso tre enti primitivi e cinque assiomi, noti come Assiomi di Peano. Enti Primitivi: N = l insieme dei numeri naturali; 0; n+1=successivo di n.

3 Assiomi di Peano: 0 è un numero naturale: 0 N Se n è un numero naturale allora lo è anche il successivo n+1: n N n + 1 N Due numeri naturali diversi hanno successivi diversi: n + 1 = m + 1 n = m Ogni numero naturale, eccetto lo zero, è il successivo di un numero naturale: n N n Assioma del buon ordinamento. Ogni sottoinsieme non vuoto T di N ha un elemento minimo: t T t x, x T 2 Proprietà dei numeri naturali N è un insieme infinito. Definizione: Un insieme è infinito se può essere messo in corrispondenza biunivoca con un suo sottoinsieme proprio. Sia K l insieme dei quadrati perfetti Consideriamo l applicazione definita da K = {0, 1, 4, 9, 16,...} = {n 2 n N} f : N K

4 f(n) = n 2, n N f è un applicazione biunivoca (esercizio). Dunque N è infinito. N è un insieme numerabile. Si definisce cardinalità del numerabile proprio la cardinalità caratteristica di N e si denota con ℵ (si legge alef-zero). N è un insieme totalmente ordinato. Consideriamo in N la seguente relazione: nrm n m, n, m N R soddisfa le proprietà riflessiva, antisimmetrica e transitiva (esercizio). Dunque R è una relazione d ordine. Inoltre n, m N si ha che o n m oppure m n. Allora R è una relazione d ordine totale e N è un insieme totalmente ordinato. N è un insieme discreto. È sempre possibile stabilire qual è il successivo di un qualsiasi elemento. 3 I Numeri Interi È ben noto che, mentre l equazione x 5 = 0 è risolubile in N, l equazione x + 3 = 0 non lo è. Allora si cerca di ampliare l insieme numerico in modo da includere tutte le soluzioni di equazioni del tipo x + n = 0, n N. Si giunge, quindi, all insieme dei numeri interi relativi. A partire dall insieme dei numeri naturali N definiamo l insieme degli interi relativi. Consideriamo il prodotto cartesiano N N = {(n, m) n, m N} e definiamo in esso la seguente relazione

5 (n, m)ρ(n, m ) n + m = m + n, (n, m)(n, m ) N N. ρ è una relazione di equivalenza: Riflessiva: (n, m) N N, n + m = m + n. Dunque (n, m)ρ(n, m). Simmetrica: (n, m), (n, m ) N N, se (n, m)ρ(n, m ) n + m = m + n n + m = m + n (n, m )ρ(n, m). Transitiva: (n, m), (n, m ), (n, m ) N N, se (n, m)ρ(n, m ) (n, m )ρ(n, m ) n + m = m + n n + m = m + n n + m + n + m = m + n + m + n n + m = m + n (n, m)ρ(n, m ).

6 Consideriamo l insieme quoziente N N/ρ = {[(n, m)] n, m N} Osservazione 1: [(n, m)] =? Esempi: (n, m)ρ(n, m ) n + m = m + n n m = n m, n m m n = m n, n < m (3, 0) = (7, 4) = (12, 9) [(3, 0)] (4, 8) = (0, 4) = (8, 12) [(0, 4)] (0, 0) = (1, 1) = (8, 8) [(0, 0)] Osservazione 2: [(n, m)] = [(n m, 0)], [(n, m)] = [(0, m n)], n m m > n Osservazione 3: [(n, 0)] = [(n, 0)] n = n [(0, m)] = [(0, m )] m = m Allora, si ha N N/ρ = {[(n, 0)] n N } {[(0, 0)]} {[(0, m)] m N }

7 Poniamo per definizione Z = N N/ρ Z risulta, pertanto, decomposto nei seguenti sottoinsiemi dove Z = Z + {0} Z Z + = {[(n, 0)] n N } {0} = {[(0, 0)]} Z = {[(0, m)] m N } Gli elementi di Z + prendono il nome di interi positivi. Gli elementi di Z prendono il nome di interi negativi. Graficamente:

8 Osservazione: Z è una estensione di N nel senso che nel suo interno contiene un sottoinsieme Z + {0} identificabile con N. Consideriamo l applicazione definita ϕ : N Z = Z + {0} Z dove n N. ϕ è iniettiva e ϕ(n) = Z + {0}. ϕ(n) = [(n, 0)] Poniamo, n N, Allora [(n, 0)] n, [(0, n)] n, [(0, 0)] 0. Z = {n n N } {0} { n n N } 4 Proprietà dei numeri interi Z è un insieme infinito. e l insieme N è infinito. Z N

9 Z è un insieme numerabile. Consideriamo la seguente applicazione: f : N Z { n f(n) =, n = 2k 2 n+1, n = 2k f è un applicazione biunivoca (esercizio). Dunque Z è numerabile. Z è un insieme discreto. È sempre possibile stabilire qual è il successivo di un qualsiasi elemento. Z è un insieme totalmente ordinato. Secondo la sua rappresentazione sulla retta. 5 I Numeri Razionali Per creare uno strumento adeguato ai bisogni della pratica e della teoria, è necessario estendere il concetto di numero, a partire da quello originario di numero naturale. In una lunga e lenta evoluzione vennero gradualmente accettati sullo stesso piano dei numeri naturali positivi, lo zero, i numeri interi negativi e le frazioni. I numeri interi sono un astrazione del processo di contare insiemi finiti di oggetti. Ma nella vita giornaliera si presenta la necessità non soltanto di contare singoli oggetti, ma anche di misurare delle quantità, come lunghezze, aree, pesi e tempo. Se si vuole operare liberamente con le misure di queste quantità, è necessario estendere l insieme numerico degli interi. L esigenza di ampliare l insieme dei numeri interi sorge, oltre che per esigenze pratiche legate alla misurazione, anche per esigenze di carattere algebrico legate alla risoluzione di equazioni del tipo ax = b, a, b Z, a 0. L insieme Q dei numeri razionali si introduce a partire da Z in modo analogo a come è stato introdotto Z a partire da N. Consideriamo il prodotto cartesiano Z Z = {(a, b) a, b Z, b 0}

10 e definiamo in esso la seguente relazione (a, b) (c, d) ad = bc, (a, b), (c, d) Z Z. è una relazione di equivalenza: Riflessiva: (a, b) Z Z, ab = ba. Dunque (a, b) (a, b). Simmetrica: (a, b), (c, d) Z Z, se (a, b) (c, d) ad = bc cb = da (c, d) (a, b). Transitiva: (a, b), (c, d), (e, f) Z Z, se (a, b) (c, d) (c, d) (e, f) ad = bc cf = de adf = bcf bcf = bde adf = bde af = be (a, b) (e, f) Poniamo per definizione Q = Z Z / = {[(a, b)] a, b Z, b 0}

11 Osservazione 1: [(a, b)] =? (a, b) (c, d) ad = bc Esempi: (1, 2), (2, 4), ( 1, 2) [(1, 2)] (4, 1), ( 8, 2), (48, 12) [(4, 1)] (6, 9), ( 20, 30), (2, 3) [( 2, 3)] Graficamente [(1, 2)]: Osservazione 2: Non vi è alcuna difficoltà nel riconoscere che ogni coppia può essere rappresentata con una frazione (a, b) a b Dunque in [(a, b)] vi sono tutte le frazioni equivalenti alla frazione a b. Esempi:

12 1 2, 2 4, , 8 2, , 20 30, 2 3 [ ] 1 2 [ ] 4 1 [ ] 2 3 Dunque Q = {[ a] a, b Z, b 0} = { a a, b Z, b 0, a, b coprimi} b b Graficamente: Osservazione: Q è una estensione di Z nel senso che nel suo interno contiene un sottoinsieme identificabile con Z. È sufficiente considerare l applicazione iniettiva ϕ : Z Q

13 definita da ϕ(a) = a 1 dove a Z. 6 Proprietà dei numeri razionali Q è un insieme infinito. e l insieme Z è infinito. Q Z Q è un insieme numerabile. La scoperta che l insieme Q è numerabile e, quindi ha tanti elementi quanti ne ha N, è dovuta al matematico G. Cantor ( ). La dimostrazione è nota come metodo diagonale di Cantor. Consideriamo i razionali non negativi disposti come nella seguente tabella

14 Sulla tabella è possibile stabilire un percorso che consente i elencare tutti i suoi elementi. Si evidenzia così la corrispondenza biunivoca con N: 0 1 0, 0 2 1, 1 1 2, 2 3, 1 Anche le frazioni negative ridotte ai minimi termini sono, come si può dedurre con un analogo ragionamento, un insieme numerabile. L unione di due (in generale di un numero finito) insiemi numerabili è numerabile. Dunque l insieme dei numeri razionali è numerabile. Q è un insieme denso. Gli insiemi N, Z, Q, nonostante siano via via più ampi e l uno immerso nell altro, sono tutti e tre insiemi numerabili. Diverse sono invece le proprietà di ordinamento dei loro elementi. Infatti, mentre N e Z sono discreti, l insieme Q non è discreto nel suo ordinamento naturale sulla retta, bensì denso perchè dati due numeri razionali esiste sempre un numero razionale compreso tra i due: Esempio: a, b Q, a < b, c Q tale che a < c < b a = 5 7, b = 3 4 allora basta considerare la loro media: c = = 41 56

15 Q è un insieme totalmente ordinato. Secondo la sua rappresentazione sulla retta. Formalmente la relazione può essere introdotta in questo modo: (a, b) < (c, d) ad < bc Esempio: infatti 5 4 = 20 < 21 = < Poichè l insieme dei numeri razionali è denso sulla retta, si potrebbe credere che tutti i punti della retta siano punti razionali. Una delle più sorprendenti scoperte, dovuta ai primi matematici greci e precisamente alla scuola pitagorica, è l esistenza dei numeri irrazionali, cioè di numeri che non sono razionali. La necessità di definire numeri non razionali nasce da alcuni problemi particolari come la ricerca del rapporto tra diagonale e lato di un quadrato, tra circonferenza e diametro,... Teorema: 2 è un numero irrazionale.

16 dimostrazione: Ragioniamo per assurdo. Supponiamo, dunque, che 2 sia razionale. Allora esiste a Q, con a e b coprimi, tale che b a 2 = b Dunque 2 = a2 b 2 a2 = 2b 2 a 2 pari a pari a = 2c 4c 2 = 2b 2 2c 2 = b 2 Possiamo concludere che 2 Q. b 2 pari b pari a, b pari ASSURDO L argomento appena descritto suggerisce una semplicissima costruzione geometrica del numero irrazionale 2. 2 è la misura della diagonale del quadrato di lato unitario. Infatti, se x denota la misura della diagonale del quadrato di lato unitario, per il teorema di Pitagora si ha Pertanto x = = 2

17 Dunque dire che Q è un insieme denso significa dire che sulla retta attorno ad ogni numero, ad esempio a 2, vanno ad addensarsi infiniti numeri, cosicché non è possibile stabilire qual è il numero razionale immediatamente successivo a 2, ma non significa dire che tutti i numeri razionali riempiono la retta. 2 è sulla retta reale ma non è un numero razionale. È necessario pertanto costruire un insieme numerico più ampio dell insieme dei numeri razionali che comprenda anche i numeri irrazionali e che riempia tutta la retta. 8 I Numeri Reali La definizione formale dei numeri reali ha rappresentato uno degli sviluppi più significativi del diciannovesimo secolo. I numeri reali vengono costruiti, come una estensione dell insieme dei numeri razionali, in vari modi equivalenti. Tra questi, i più noti usano le sezioni di Dedekind e le successioni di Cauchy. Quella che noi riportiamo è la definizione dovuta a Dedekind. Ora, in ogni caso in cui c è una sezione (A1, A2) che non è prodotta da un numero razionale, allora noi creiamo un nuovo numero irrazionale a che riteniamo completamente definito da questa sezione; diremo che questo numero a corrisponde a questa sezione oppure che produce questa sezione. J. W. Richard Dedekind ( ) Assioma di Dedekind della continuità della retta: Data una qualsiasi partizione della retta in due classi A e B, in cui ogni elemento di A e minore di un elemento di B, si ha una delle due seguenti situazioni: A ha un massimo e B non ha un minimo

18 oppure A non ha un massimo e B ha un minimo Questo elemento è detto elemento separatore delle due classi. E l insieme dei numeri reali? Definizione: Dato un insieme K totalmente ordinato, un suo elemento x è detto estremo superiore per un sottoinsieme S se e solo se: non esistono elementi di S maggiori di x; x è il minore tra gli elementi di K che soddisfano la precedente condizione. Si scrive x =sup(s). Se x appartiene all insieme S allora è detto massimo dell insieme S e si scrive x =max(s). Esempi: 1. sup(q ) = 0 2. Sia S il sottoinsieme dei numeri naturali costituito da tutti i naturali con due cifre. Allora sup(s) = 99 = max(s) Definizione: Dato un insieme K totalmente ordinato, un suo elemento x è detto estremo inferiore per un sottoinsieme S se e solo se: non esistono elementi di S minori di x; x è il maggiore tra gli elementi di K che soddisfano la precedente condizione. Si scrive x =inf (S). Se x appartiene all insieme S allora è detto minimo dell insieme S e si scrive x =min(s). Esempi:

19 1. Sia allora S = { 1 n N, n 0} Q n inf(s) = 0 Definizione: Una partizione di un insieme X è una famiglia di sottoinsiemi di X non vuoti, disgiunti e tali che la loro unione è l insieme X stesso. Definizione: Un insieme X totalmente ordinato è detto continuo se ha infiniti elementi; è denso; per ogni partizione di X in due sottinsiemi A e B ordinata (ogni elemento del primo sottoinsieme è minore di ogni elemento del secondo) si ha che A ha un massimo e B non ha un minimo oppure A non ha un massimo e B ha un minimo ossia esiste, ed è unico, un elemento separatore Esempi: 1. La retta è un insieme continuo. 2. L insieme dei numeri razionali pur essendo un insieme ordinato, infinito e denso non è un insieme continuo, infatti consideriamo la seguente partizione in due sottoinsiemi A = Q {0} {x Q + x 2 2} B = {x Q + x 2 > 2}

20 Il sottoinsieme B non ha minimo: dato un numero razionale positivo il cui quadrato sia maggiore di 2, se ne può sempre trovare un altro, che sia minore e che abbia la stessa caratteristica e quindi sta in B. Ad esempio 1.42 e Il sottoinsieme A non ha massimo: dato un numero razionale positivo il cui quadrato sia minore di 2, se ne può sempre trovare un altro, che sia maggiore e che abbia la stessa caratteristica e quindi sta in A. Ad esempio 1.41 e In tale situazione è evidente che 2 = sup(a) = inf(b), ma 2 non è un numero razionale dunque non è né il massimo di A, né il minimo di B. Definizione: Un numero reale è una partizione dell insieme Q in due sottoinsiemi (A, B) in cui ogni elemento del primo insieme è minore di ogni elemento del secondo. L insieme dei numeri reali R è l insieme delle partizioni di Q in sottoinsiemi di questo tipo. Si hanno due casi La partizione (A, B) individua un elemento di Q (elemento separatore) ed allora è un numero razionale; La partizione (A, B) individua un buco dell insieme Q (non si ha elemento separatore in Q) ed allora è un numero irrazionale; Osservazione: R è una estensione di Q nel senso che nel suo interno contiene un sottoinsieme identificabile con Q. 9 Proprietà dei numeri reali R è un insieme infinito. e l insieme Q è infinito. R Q R ha la cardinalità del continuo. Teorema: L insieme dei numeri reali compresi tra 0 e 1 non è numerabile. dimostrazione: La dimostrazione viene condotta per assurdo. Supponiamo che i numeri reali dell intervallo formino un insieme numerabile. In questo caso sarà possibile scriverli in un elenco numerabile

21 in cui ciascun numero reale tra 0 e 1 sarà contrassegnato da un numero naturale n. Costruiamo ora, seguendo il procedimento di Cantor, un nuovo numero reale compreso tra 0 ed 1, che non è nell elenco considerato. Il numero ha come prima cifra 0. Al primo posto dopo la virgola si sceglie una cifra diversa da a1, al secondo posto si sceglie una cifra diversa da b2, al terzo posto si sceglie una cifra diversa da c3, e così via... Con questo procedimento, detto diagonale, viene costruito un numero reale compreso tra 0 e 1, che però è diverso da tutti quelli dell elenco precedente, contro l ipotesi che l elenco indicasse tutti i numeri compresi tra 0 e 1. Si è arrivati dunque ad un assurdo. Pertanto l insieme dei numeri reali dell intervallo ]0, 1[ non è numerabile. Osservazione: l insieme dei numeri reali non può essere posto in corrispondenza biunivoca con i numeri naturali. La cardinalità (o potenza ) dei numeri reali è quindi maggiore della cardinalità del numerabile. La cardinalità dei numeri reali si chiama cardinalità del continuo e si indica con la lettera gotica C. R è un insieme denso. R è un insieme totalmente ordinato. R è un insieme continuo. 10 Forma decimale Vedi il seguente File tratto da: E-school di Arrigo Amadori formadecimale

22 11 Reali Algebrici e Trascendenti Vedi il seguente File tratto da: Progetto Polymath - I numeri reali algebricitrascendenti

I NUMERI REALI SONO ASTRATTI

I NUMERI REALI SONO ASTRATTI I NUMERI REALI SONO ASTRATTI L idea di numero, che ci sembra così evidente, è il punto d arrivo di un lunghissimo lavoro di astrazione D. Guedj Ogni misura di grandezza implica una nozione approssimativa

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

La cardinalità di Q e R

La cardinalità di Q e R La cardinalità di Q e R Ha senso chiedersi se ci sono più elementi in N o in Q? Sono entrambi due insiemi infiniti. I numeri naturali sono numerosi quanto i quadrati perfetti, infatti ad ogni numero naturale

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Numeri Reali. Itinerario storico concettuale verso la definizione di nuovi numeri. per la 2 K del Liceo Classico Alexis Carrel

Numeri Reali. Itinerario storico concettuale verso la definizione di nuovi numeri. per la 2 K del Liceo Classico Alexis Carrel Numeri Reali Itinerario storico concettuale verso la definizione di nuovi numeri per la 2 K del Liceo Classico Alexis Carrel Premessa Due problemi spinosi 1 Problema A Delo (Δῆλος), isola Greca nel Mar

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Analisi e Modelli Matematici

Analisi e Modelli Matematici Analisi e Modelli Matematici Marzo - Aprile 2014 Lezione 4 Numeri reali L utilizzo dei numeri negativi e dei numeri complessi è problematico fino all inizio del XIX secolo. 1737: Euler dimostra che e è

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

Cantor e l infinito Riccardo Cristoferi

Cantor e l infinito Riccardo Cristoferi Cantor e l infinito Riccardo Cristoferi Georg Cantor è il fondatore della teoria degli insiemi. Studia l infinito e gli insiemi ordinati, dimostrando che i numeri reali sono più numerosi dei numeri naturali.

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi

INSIEMI E RELAZIONI. 1. Insiemi e operazioni su di essi INSIEMI E RELAZIONI 1. Insiemi e operazioni su di essi Il concetto di insieme è primitivo ed è sinonimo di classe, totalità. Sia A un insieme di elementi qualunque. Per indicare che a è un elemento di

Dettagli

Corso base di Matematica. - I numeri -

Corso base di Matematica. - I numeri - Corso base di Matematica - I numeri - Fin dall antichità è stata avvertita dall uomo l esigenza di contare le cose. Ad es. gli animali al pascolo, i cacciatori e le prede, ecc. Da questa istintività nasce

Dettagli

Le rappresentazioni e le proprietà dei numeri reali

Le rappresentazioni e le proprietà dei numeri reali Le rappresentazioni e le proprietà dei numeri reali In generale un numero qualsiasi, con sviluppo decimale finito o infinito, positivo, negativo o nullo, è un numero relativo e appartiene all insieme dei

Dettagli

Indice. 1 Analisi matematica dell infinito Concetti base La numerabilità di Q e la non numerabilità di R... 5

Indice. 1 Analisi matematica dell infinito Concetti base La numerabilità di Q e la non numerabilità di R... 5 Indice 1 Analisi matematica dell infinito 2 1.1 Concetti base................................... 2 1.2 La numerabilità di Q e la non numerabilità di R................ 5 1 1 Analisi matematica dell infinito

Dettagli

Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23

Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23 Sommario 1. Che cos è la matematica? 1 1.1. Un sapere onnipresente e temuto 1 1.2. La domanda più difficile 6 1.3. Che cosa ci insegna la storia 10 1.4. Ai primordi delle rappresentazioni simboliche 11

Dettagli

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica.

Richiami di Matematica. 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Richiami di Matematica 1. Insiemi, relazioni, funzioni. 2. Cardinalitá degli insiemi infiniti e numerabilitá. 3. Notazione asintotica. Insiemi Definizioni di base Dato un insieme A: x A: elemento x appartenente

Dettagli

18 gennaio marzo Primo Incontro. I numeri. Incontri con allievi del Liceo Classico. Luisa Rossi Costa

18 gennaio marzo Primo Incontro. I numeri. Incontri con allievi del Liceo Classico. Luisa Rossi Costa 18 gennaio 2011 15 marzo 2011 Primo Incontro I numeri Incontri con allievi del Liceo Classico Un poco di storia 2 Caldei: ciclo lunare di 30 giorni; 12 lune in un anno, sole che sorge e tramonta in punti

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti

Dettagli

INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica

INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica erasmo@galois.it SIMBOLI MATEMATICI Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. SIMBOLO

Dettagli

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 65 index Matematica

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

Corso di Analisi Matematica. L insieme dei numeri reali

Corso di Analisi Matematica. L insieme dei numeri reali a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005

GLI INSIEMI. Laboratorio per apprendimenti logico - matematici. Dispensa a cura del prof. Domenico Perrone Maggio 2005 GLI INSIEMI Laboratorio per apprendimenti logico - matematici Dispensa a cura del prof. Domenico Perrone Maggio 2005 1 I problemi Perché gli Insiemi? Cos è un insieme? Cantor, Frege, Russell Quale ruolo

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

Gli insiemi numerici

Gli insiemi numerici Gli insiemi numerici L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato,

Dettagli

Numeri reali. 1.1 Dai numeri naturali ai numeri irrazionali

Numeri reali. 1.1 Dai numeri naturali ai numeri irrazionali Numeri reali 1 1.1 Dai numeri naturali ai numeri irrazionali Nel volume Algebra 1 abbiamo presentato i diversi insiemi numerici. Li riprendiamo brevemente per poi approfondire i numeri reali e le loro

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Numeri Aritmetica e Numerazione

Numeri Aritmetica e Numerazione Numeri Aritmetica e Numerazione Insiemi Numerici Gli Insiemi Numerici nel diagramma di di Eulero - Venn Enumerazione Numeri Naturali Numeri Composti Numeri Primi I primi 1000 Numeri Primi Numeri Interi

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Insiemi infiniti e loro gerarchia Sergio Zoccante CDRM,

Insiemi infiniti e loro gerarchia Sergio Zoccante CDRM, Insiemi infiniti e loro gerarchia Sergio Zoccante CDRM, sergiozoccante@tin.it Premessa Il materiale di questo laboratorio è stato usato per anni con le classi PNI, terze o quarte. L argomento non è mai

Dettagli

LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H

LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H Modulo 1 Calcolo numerico e primo approccio col calcolo letterale Numeri naturali:

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

L aritmetica degli insiemi infiniti Parte I

L aritmetica degli insiemi infiniti Parte I L aritmetica degli insiemi infiniti Parte I Stefano Baratella Versione L A TEX realizzata in collaborazione con Tullio Garbari 1 Prerequisiti La relazione di equipotenza tra insiemi. Definizione 1. Si

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare

Dettagli

Didattica speciale delle discipline: MATEMATICA. Linguaggio matematico e linguaggio quotidiano

Didattica speciale delle discipline: MATEMATICA. Linguaggio matematico e linguaggio quotidiano Didattica speciale delle discipline: MATEMATICA Linguaggio matematico e linguaggio quotidiano Maurizio Berni m.berni@adm.unipi.it Tutti i materiali sono disponibili su http://www.dm.unipi.it/fim/didattica_speciale/

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Giulio Del Corso. Attenzione:

Giulio Del Corso. Attenzione: Dispense di Elementi di Teoria degli insiemi (ETI) Giulio Del Corso Attenzione: Questi appunti sono la trascrizione delle lezioni del corso di ETI tenuto nel 2014 dal Prof. Di Nasso, questo file non contiene

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi)

Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi) Elementi di logica. Introduzione La logica elementare si interessa della verità di affermazioni complesse a partire dalla verità di quelle più semplici che le compongono. Si può parlare di verità/falsità

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Lelezionifrontalisarannoassociateadelleesperienzedilaboratorioperaccompagnarelateoriae

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini

ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini Corsi di Studio: Amministrazione, Finanza e Marketing/IGEA- Costruzioni, Ambiente e Territorio/Geometra Liceo Linguistico/Linguistico Moderno -

Dettagli

1 Soluzione degli esercizi del capitolo 4

1 Soluzione degli esercizi del capitolo 4 "Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme.

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme. Insiemi Definizione: Definizione: Un Un insieme insieme è è una una collezione collezione di di oggetti oggetti individuati individuati da da una una Determinata Determinata specificazione. specificazione.

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca.

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca. Numeri cardinali 1 Insiemi equipotenti e cardinalità Partiamo da un semplice esempio. Sia A = {a, b, c, d, e, f} l insieme delle prime sei lettere dell alfabeto. Che tipo di operazione facciamo per concludere

Dettagli

1 MISURA DEI SEGMENTI

1 MISURA DEI SEGMENTI 1 MISUR DEI SEGMENTI 1 MISUR DEI SEGMENTI 1.1 La classe dei segmenti Nell insieme S formato da tutti i segmenti contenuti in un piano introduciamo le seguenti operazioni: Confronto di segmenti: dati due

Dettagli

PROGRAMMA DI MATEMATICA CONTENUTI.

PROGRAMMA DI MATEMATICA CONTENUTI. PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti

Dettagli

Precorso di Matematica. Parte I : Fondamenti di Matematica

Precorso di Matematica. Parte I : Fondamenti di Matematica Facoltà di Ingegneria Precorso di Matematica Parte I : Fondamenti di Matematica 1. Teoria degli insiemi e cenni di logica Il concetto di insieme costituisce l elemento fondante di gran parte delle esposizioni

Dettagli

L insieme dei numeri Naturali (N)

L insieme dei numeri Naturali (N) L insieme dei numeri Naturali (N) Definizione di Numero Naturale Definizione Una corrispondenza fra due insiemi X e Y che sia del tipo asole-bottoni, cioè: tale che ad ogni elemento di X corrisponde uno

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

La teoria degli insiemi di CANTOR e l ARITMETICA TRANSFINITA

La teoria degli insiemi di CANTOR e l ARITMETICA TRANSFINITA La teoria degli insiemi di CANTOR e l ARITMETICA TRANSFINITA «Dal paradiso che Cantor ci ha procurato, nessuno deve poterci mai scacciare» David Hilbert Galileo, nei Discorsi e dimostrazioni matematiche

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

A.S. 2015/2016 Programma svolto classe III Q

A.S. 2015/2016 Programma svolto classe III Q A.S. 2015/2016 Programma svolto classe III Q Circonferenza e cerchio Lunghezza della circonferenza e area del cerchio. Lunghezza di un arco. Area di un settore circolare e di un segmento circolare. Raggio

Dettagli