Modelli agli elementi finiti Analisi strutturale.
|
|
|
- Lelia Valenti
- 8 anni fa
- Visualizzazioni
Transcript
1 Modelli agli elementi finiti Analisi strutturale
2 + Analisi agli elemen, fini, Il FEM è un metodo numerico (pertanto approssimato) che perme;e la risoluzione di equazioni differenziali alle derivate parziali. Il metodo degli consiste nella discre'zzazione di un assegnato dominio in elemen% fra loro connessi in un numero finito di (nodi), degli in corrispondenza dei quali sono valutate le della funzione incognita. Il valore della funzione all'interno del singolo elemento è o;enuto sulla base dei valori dei parametri nodali a;raverso l'uso di opportune funzioni di forma. La scelta di tali funzioni, come pure di mesh con cui il dominio è di importanza cruciale per una corre;a convergenza della soluzione.
3 + Matrice fondamentale Esistono diverse strade che possono portare alla formulazione della matrice fondamentale Metodi variazionali (principio dei lavori virtuali) (vedi dispensa) Formulazione dire;a (vedi dispensa) Minimizzazione di un funzionale (energia potenziale totale)
4 + Elemento asta Travature piane e spaziali solo sforzo normale 2 nodi 2 o 3 g.d.l /nodo carichi applicabili solo nei nodi Car. geometriche: A
5 + Elemento trave Equazione della linea 2 nodi 3 gdl/nodo Carichi concentra@ e distribui@ Cara;eris@che geometriche (sezione, momento d'inerzia,...)
6 + Lastra (plane stress) Sta, piani di tensione: sono dall avere una delle principali di tensione nulla si in corpi piani, di spessore piccolo rispe;o alle altre dimensioni del problema, nel loro piano medio. Possibilità di inserire lo spessore del corpo
7 + Modelli di omogenizzazione Modello di Voigt Modello di Reuss A1 F A2 F A E1 l1 E1 E2 l E2 l2 l F F E = E 1 ν 1 + E ( 2 1 ν ) 1 ν 1 = A 1 A 1 + A 2 E = f 1 = l 1 l E 1 E 2 E ( 1 1 f ) 1 + E 2 f 1
8 + Esercizio 1 Valutare il modulo elas@co complessivo dei seguen@ corpi della precedente diaposi@va con il modello anali@co e con quello ad elemen@ fini@ (u@lizzare l'analisi plane stress).
9 + Nota esercizio 1 I modelli di Reuss e Voigt non prendono in considerazione carichi trasversale. Per introdurre questo conce;o è necessario porre il modulo di Poisson pari a 0, in modo tale che deformazioni normale provochino deformazioni (e quindi carichi) trasfersali. Il carico da imporre nel modello di modello di Voigt (o di isoderformazione) è quello di uno spostamento in direzione normale in modo da avere una isodeformazione su entrambi blocchi.
10 + Esempio soluzione esercizio 1 (1/4) Modello di Voigt E1 A1 F E2 A2 l L = 0.1 m Spessore = 0.1 m A 1 = 0.03*0.1 m 2 = m 2 A 2 = 0.07*0.1 m 2 = m 2 ν 1 = 0.3 ν 2 = 0.7 Se E 1 = 10 E 2 = 100 GPa E = 37 GPa E = E 1 ν 1 + E ( 2 1 ν ) 1 ν 1 = A 1 F A 1 + A 2 Per avere una deformazione del - 10% lungo la direzione y devo applicare una forza pari a = F = (E * ε) * A = 73 GPa * (- 0.1) * 0.01 m 2 = = * 10 7 N
11 + Esempio soluzione esercizio 1 (2/4)
12 f 1 = l 1 l + Esempio soluzione esercizio 1 (3/4) Modello di Reuss E = E1 E2 F F E 1 E 2 A l1 l2 E ( 1 1 f ) 1 + E 2 f 1 l L = 0.1 m Spessore = 0.1 m l 1 = 0.03 m l 2 = 0.07 m f 1 = 0.3 f 2 = 0.7 A = 0.1 * 0.1 m 2 = 0.01 m 2 Se E 1 = 10 E 2 = 100 GPa E = 13.7GPa Applicando una forza pressione in direzione y di 1 kpa o;engo uno spostamento totale di Δy = 0.1m * (- 1 kpa / 13.7 GPa) = 7.3*10-9 m
13 + Esempio soluzione esercizio 1 (4/4) Spostamento dell intera stru;ura valutato lungo la direzione y
14 + Considerazioni di simmetria (1/5) L uso di considerazioni di simmetria consente di ridurre le dimensioni del modello. I più di simmetria sono: Simmetria speculare o di riflessione Simmetria polare o di rotazione
15 + Considerazioni di simmetria (2/5) Sfru;ando la simmetria è possibile includere nel modello solo una parte della stru;ura, la parte mancante con opportuni vincoli sul piano di divisione
16 + Considerazioni di simmetria (3/5) I carichi non devono necessariamente essere simmetrici, dato che una condizione di carico qualsiasi può essere scissa in una componente simmetrica ed in una an@simmetrica. F F/2 F/2 F/2 F/2
17 + Considerazioni di simmetria (4/5) Simmetria di riflessione La stru;ura viene tagliata in corrispondenza del piano di simmetria Y X Piano di simmetria Z VINCOLI SUI NODI Carichi simmetrici U z =0 ROT x =0 ROT y =0 Carichi antisimm. U y =0 U x =0 ROT z =0
18 + Considerazioni di simmetria (5/5) l l l Corpi assial- simmetrici Geometria assial- simmetrica (rotazione di una sezione a;orno ad un asse fisso) Carichi a simmetria cilindrica Fissato un sistema di riferimento cilindrico r, θ, z, per simmetria lo stato di tensione/deformazione risulta indipendente da θ e le componen@ di spostamento in direzione circonferenziale (θ) risultano nulle: il problema può di conseguenza essere studiato come piano.
19 + Esercizio 2 Lastra intagliata in trazione Schema@zzare la lastra di figura sfru;ando i piani di simmetria Misure in mm Spessore: 5 mm Modulo Elas@co 10 9 Pa P = 3000 Pa 5 20 P 60
20 + Link u,li h;p:// Calc_Aut_Sis_Mec/deposito/08- Formulazione- Generale_V1.pdf h;p:// bacheca/032formulazionefem.pdf
Introduzione elementare al metodo degli Elementi Finiti.
Introduzione elementare al metodo degli Elementi Finiti [email protected] Obie4vi Introduzione elementare al metodo degli elemen8 fini8 Analisi Termica Analisi Stru>urale Analisi Fluidodinamica
Introduzione elementare al metodo degli Elementi Finiti.
Introduzione elementare al metodo degli Elementi Finiti [email protected] Obiettivi Introduzione elementare al metodo degli elementi finiti Analisi Termica Analisi Strutturale Analisi
RELAZIONE ESERCITAZIONI AUTODESK INVENTOR
20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico
REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti
UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA
Modellazione e calcolo assistito di strutture meccaniche
Modellazione e calcolo assistito di strutture meccaniche Lezione 1 Introduzione al metodo FEM Il metodo degli elementi finiti FEM: Finite Element Method E un metodo numerico Inizialmente è stato sviluppato
Introduzione ai codici di calcolo agli Elementi Finiti
Introduzione ai codici di calcolo agli Elementi Finiti Introduzione agli elementi finiti Gli elementi finiti nascono negli anni 50 per risolvere problemi nell ambito dell ingegneria delle strutture. Tale
1 Schemi alle differenze finite per funzioni di una variabile
Introduzione In questa dispensa vengono forniti alcuni elementi di base per la soluzione di equazioni alle derivate parziali che governano problemi al contorno. A questo scopo si introducono, in forma
REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia
Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:
Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale
Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE
POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA
Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI
. Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente
PRINCIPI DI MODELLAZIONE
CORSO DI PROGETTAZIONE ASSISTITA DA COMPUTER CLM ING. MECCANICA PARTE III REV.: 05 del 14 ottobre 2014 PRINCIPI DI MODELLAZIONE CONTENUTI GENERALITA SULLO SVILUPPO DI MODELLI EF VALUTAZIONI DI ERRORE MESH
PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:
Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016)
Teoria delle Strutture Corso di Laurea Magistrale in Ingegneria Edile e delle Costruzioni Civili docente: Prof. Riccardo Barsotti (marzo 2016) Prerequisiti Superamento dell esame di Scienza delle Costruzioni.
Calcolo di una trave a C
Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo
Lezione 4 - I vincoli interni
Lezione 4 - I vincoli interni [Ultimarevisione: revisione:2agosto agosto2008] Proseguendo nello studio dei corpi rigidi, adotteremo d'ora in poi la seguente classificazione geometrica, necessariamente
MSC. Marc Mentat Esercitazioni ed esempi
Università degli studi di Ferrara - Facoltà di Architettura Corso Integrato di Disegno Automatico A.A. 2001-2002 Modulo di Sicurezza ed Affidabilità delle Costruzioni Titolare: Arch. Giampaolo Guerzoni
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
La modellazione delle strutture
La modellazione delle strutture Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-3-2012
Principi e Metodologie della Progettazione Meccanica
Principi e Metodologie della Progettazione Meccanica ing. F. Campana a.a. 06-07 Lezione 11: CAE e Ottimizzazione Strutturale Il ruolo dell ottimizzazione nell ambito della progettazione meccanica Durante
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE
ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne
Introduzione alla meccanica strutturale
Claudia Comi Leone Corradi Dell'Acqua Introduzione alla meccanica strutturale '.E McGraw-Hill web site IUAV - VENEZIA I 4688 BIBLIOTECA CENTRALE ~f r irg8t!! Claudia Comi Leone Corradi Dell'Acqua Introduzione
Università degli studi di Trieste Laurea magistrale in ingegneria meccanica ESERCITAZIONI DEL CORSO DI COSTRUZIONE DI MACCHINE E AFFIDABILITÀ
Università degli studi di Trieste Laurea magistrale in ingegneria meccanica ESERCITAZIONI DEL CORSO DI COSTRUZIONE DI MACCHINE E AFFIDABILITÀ DOCENTE: COSMI FRANCESCA STUDENTE: LUCA BATTAGLIA Indice: Metodo
RELAZIONE DI FINE TIROCINIO
FACOLTA DI INGEGNERIA CIVILE Corso di Laurea Magistrale in Ingegneria Civile per la protezione dai rischi naturali. Anno Accademico 2016/2017 RELAZIONE DI FINE TIROCINIO Realizzazione di un modello agli
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Giovanni Menditto. Lezioni di Scienza delle Costruzioni. Volume I : La Statica. , t. Pitagora Editrice Bologna
Giovanni Menditto Lezioni di Scienza delle Costruzioni Volume I : La Statica. t Pitagora Editrice Bologna l. '". _ IUAV - VENEZIA AREA SERV BIBLIOGRAFICI E DOCUMENTALI H 9237 BIBLIOTECA CENTRALE I J_ '..J
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
Equilibrio di un punto materiale (anelli, giunti ecc.)
Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e
Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto
Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la
ESERCIZIO 2 (punti 13) La sezione di figura è
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE
REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE Si va ad analizzare la matrice di legame costitutivo che lega le σ con le ε. Si va a considerare il materiale da isotropo a ortotropo ovvero una lamina che
Si valuti lo stato di tensione e la deformazione plastica permanente agli istanti A, B, C e D, assumendo valido il modello elasto-plastico perfetto.
Esercizio n.: 1 4-18 Una barra in (σ S = 180 MPa, E = 70 GPa, α = 24 10-6 C -1 ), bloccata alle estremità, subisce il seguente ciclo termico: T 325 175 25 A Si valuti lo stato di tensione e la deformazione
UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12
REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso
MECCANICA COMPUTAZIONALE
MECCANICA COMPUTAZIONALE Capitolo 1 Introduzione Rev. 21 aprile 2008 (rev. 21/04/2008) Capitolo 1: 1/28 Argomenti trattati nel capitolo 1 Esempi di problemi strutturali complessi Limiti degli approcci
PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO
PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO PRINCIPALI TIPI DI ELEMENTO 2D 3D ASTA TRAVE SOLIDO GUSCIO Pb. Piastra/guscio di ElasticitàTravature piana Telai reticolari Piastra/guscio Pb. di Elasticità 3D
FINALE: PROVA 1: + = PROVA 2: + =
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 29/06/2006 Tema C : allievo PROVA 1: + = PROVA 2: + = FINALE: ESERCIZIO 1 (punti 12) La struttura una volta iperstatica di figura è soggetta al carico q,
MECCANICA COMPUTAZIONALE DELLE STRUTTURE
MEANIA OMPUTAZIONALE DELLE STRUTTURE Elio Sacco DiMSAT Università di assino Tel: 0776.299659 Email: [email protected] Motivazione Fenomeno in natura Leggi della fisica Risoluzione (Meccanica computazionale)
Valutazione della curvatura media di un elemento strutturale in c.a.
16.4 Stato limite di deformazione 16.4.1 Generalità Lo stato limite di deformazione può essere definito come la perdita di funzionalità della struttura a causa di una sua eccessiva deformazione. Segnali
Elementi finiti solidi
Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine
Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.
Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,
Proprietà meccaniche dei compositi. Calcolo moduli elastici Caso inclusioni random Fibre unidirezionali Resistenze a rottura Effetto orientazione
Proprietà meccaniche dei compositi Calcolo moduli elastici Caso inclusioni random Fibre unidirezionali Resistenze a rottura Effetto orientazione Calcolo modulo elastico: inclusioni random Deformazione
Il metodo delle forze
Nel campo delle strutture MONODIMENSIONALI, cioè quelle per le quali la lunghezza lungo un asse è di gran lunga prevalente rispetto alle altre dimensioni, i metodi di risoluzione delle strutture staticamente
1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5
Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......
1. Impostazione di un semplice modello FEM
Progettazione Assistita di Strutture Meccaniche 24/06/2011, pagina 1/5 Cognome: Anno accademico in cui si è seguito il corso Nome: [2010/2011] [2009/2010] [2008/2009] [........ ] Matricola: Componenti
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
Analisi di un telaio a due livelli e maglie di forma generica secondo il Metodo degli Spostamenti (MdS)
Pagina 1 di 18 Analisi di un telaio a due livelli e maglie di forma generica secondo il Metodo degli Spostamenti (MdS) Schema Strutturale Valori numerici Si riportano nel seguito i valori numerici delle
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica. Esercitazioni guidate di ANSYS Workbench
Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica 1. Modellazione di parti singole 2. Connessioni fra più parti (Connections, Contact&Target) 3. Semplificazioni dei contatti 4. Riduzione
1 Equilibrio statico nei corpi deformabili
Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)
Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare
Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso
ESERCITAZIONI DI COSTRUZIONE DI MACCHINE
ESERCITAZIONI DI COSTRUZIONE DI MACCHINE Docente: Cosmi Francesca Studentessa: Giannelli Giovanna Anno accademico 2015-2016 Scopo di questa presentazione è fornire una breve panoramica sul lavoro svolto
PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO (PARTE A)
CORSO DI PROGETTAZIONE ASSISTITA DA COMPUTER CLM ING. dei VEICOLI PARTE II A REV01 2015 (da slides Prof.L.Bertini 2014) PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO (PARTE A) PRINCIPALI TIPI DI ELEMENTO
za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -
11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici Franco Mastroddi http://www.diaa.uniroma1.it/docenti/f.mastroddi dal Dinamica delle Strutture Aerospaziali Anno Accademico
Introduzione ai modelli Modellazione agli elementi finiti Esempi pratici di modellazione
Introduzione ai modelli Modellazione agli elementi finiti Esempi pratici di modellazione Ci sono modelli: Fisici in laboratorio (in scala) Fisici in sito (scala 1:1) Numerici Un modello numerico è una
Scienza delle Costruzioni Il
Alberto T aliercio Corso di Scienza delle Costruzioni Il +-... ---+... ' ---+ ' ' \ ---+,3cr ---+ cr I ---+ I I I ---+ / +- / _,, ---+ +- ---+ IUAV - VENEZIA H 9679 BIBLIOTECA CENTRALE - Alberto Taliercio
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo
SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo EI, ma deformabile termicamente; le variazioni termiche nei 2 tratti sono opposte di segno, nulle entrambe lungo la linea d'assi.
Descrizione del nodo FJ C X C. Dimensioni del nodo FJ in mm.
Nodo FJ - Foundation Joint Nodo FJ - Foundation Joint Descrizione del nodo FJ Il nodo FJ - Foundation Joint - trasmette lo stato di sollecitazione della struttura -funzioni delle sollecitazioni esterne-
UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento
UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ETTORE MINGUZZI Settore inquadramento MAT/07 - FISICA MATEMATICA Facoltà INGEGNERIA Insegnamento MECCANICA RAZIONALE
Premessa 1. Notazione e simbologia Notazione matriciale Notazione tensoriale Operazioni tensoriali in notazione matriciale 7
Premessa 1 Notazione e simbologia 3 0.1 Notazione matriciale 3 0.2 Notazione tensoriale 4 0.3 Operazioni tensoriali in notazione matriciale 7 Capitolo 7 La teoria delle travi 9 7.1 Le teorie strutturali
R. BARBONI COSTRUZIONI AEROSPAZIALI L elemento finito
R. BARBONI COSRUZIONI AEROSPAZIALI 17 4. L elemento finito Nella realtà, aste, travi, piastre, gusci,... non sono sollecitati solo con carichi applicati ai loro estremi ed il loro comportamento non può
Analisi di una piastra forata
forata Politecnico di Milano Dipartimento di Ingegneria Corso di Marco Morandini [email protected] Andrea Parrinello [email protected] Alessandro De Gaspari [email protected] L. Cavagna
Caratteristiche di materiali
Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche
Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4
UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.
SCIENZA DELLE COSTRUZIONI
COL1,ANA DI SCIEV/ t I~ TFCNIC4 DELLE COSTRUZIONI - 6 ANGELO DI TOMMASO Fonda1nenti di SCIENZA DELLE COSTRUZIONI P::::.a hj, ~ ~ p~bj, ") h 2 Parte Il Parte lii a cura di Christian Carloni PÀTRON Università
1.6. Momenti di forze parallele rispetto a un asse. Ricerca grafica e analitica 16
Prefazione Avvertenze 1 Elementi di teoria dei vettori...i I.1. Generalità...I 1.2. Composizione delle forze...2 Risultante di forze aventi la stessa retta d'applicazione 3 Risultante di forze concorrenti
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008)
CALCOLO AGLI S.L.U. DI CAPRIATA IN LEGNO TIPO PALLADIO (ai sensi del D.M. 14/01/2008) Editare descrizione: es. Il solaio di copertura sarà portato da capriate in legno del tipo alla Palladio con estremi
Analisi di strutture a traliccio
Politecnico di Milano Dipartimento di Ingegneria Corso di Esercitazione 2 Marco Morandini [email protected] Alessandro De Gaspari [email protected] Andrea Parrinello [email protected]
ESERCITAZIONE SUL CRITERIO
TECNOLOGIE DELLE COSTRUZIONI AEROSPAZIALI ESERCITAZIONE SUL CRITERIO DI JUVINALL Prof. Claudio Scarponi Ing. Carlo Andreotti Ing. Carlo Andreotti 1 IL CRITERIO DI JUVINALL La formulazione del criterio
PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO
CORSO DI COSTRUZIONI MECCANICHE II CLS ING. ELETTRICA PARTE II REV.: 01 DEL 02 MAGGIO 2005 PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO PRINCIPALI TIPI DI ELEMENTO 2D 3D ASTA TRAVE SOLIDO GUSCIO Pb. Piastra/guscio
La modellazione delle strutture
La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012
Capitolo 3 La torsione Sollecitazioni semplici: la torsione
Capitolo 3 La torsione Sollecitazioni semplici: la torsione Definizione Un elemento strutturale è soggetto a sollecitazione di torsione quando su di esso agiscono due momenti uguali ed opposti giacenti
INTRODUZIONE AI DUE VOLUMI... XIX CAP. 1 METODO DELLE FORZE E METODO DEGLI SPOSTAMENTI PREMESSE IL METODO DELLE FORZE...
INDICE INTRODUZIONE AI DUE VOLUMI............ XIX VOLUME II CAP. 1 METODO DELLE FORZE E METODO DEGLI SPOSTAMENTI.............. 1 1.1 PREMESSE.................. 1 1.2 IL METODO DELLE FORZE............ 2
MECCANICA COMPUTAZIONALE DELLE STRUTTURE
MECCANICA COMPUTAZIONALE DELLE STRUTTURE Elio Sacco Dipartimento di Meccanica Strutture Ambiente Territorio Università di Cassino Tel: 776.993659 Email: [email protected] Fenomeno in natura Leggi della fisica
BOZZA. Lezione n. 6. Rigidezze e coefficienti di trasmissione
ezione n. 6 Rigidezze e coefficienti di trasmissione ffinché si possa utilizzare efficacemente il metodo dell equilibrio nella soluzione di travature iperstatiche, occorre ricavare, per le varie membrature,
VINCOLI CEDEVOLI ANELASTICAMENTE
VINCOLI CEDEVOLI ANELASTICAMENTE IL cedimento anelastico detto anche cedimento impresso è indipendente dai carichi applicati ed è definito da un valore assegnato. Esso provoca sollecitazioni solo nelle
risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali
ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria
LEZIONE N 46 LA TORSIONE ALLO S.L.U.
LEZIONE N 46 LA ORSIONE ALLO S.L.U. Supponiamo di sottoporre a prova di carico una trave di cemento armato avente sezione rettangolare b x H soggetta a momento torcente uniforme. All interno di ogni sua
Calcolo delle aste composte
L acciaio. Strutture in acciaio 1 Calcolo delle aste composte Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq λ y + λ 1
Analisi di una piastra forata
forata Politecnico di Milano Dipartimento di Ingegneria Corso di Marco Morandini [email protected] Mauro Manetti [email protected] Alessandro Scotti [email protected] Luca Cavagna Risultati
Analisi teorica di nodi travicolonna esterni in c.a. rinforzati mediante FRP
Materiali ed Approcci Innovativi per il Progetto in Zona Sismica e la Mitigazione della Vulnerabilità delle Strutture Università degli Studi di Salerno Consorzio ReLUIS, 12-13 Febbraio 2007 Analisi teorica
Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2
Esercizio_1 Una barra metallica cilindrica di diametro pari a 1.5cm è sottoposta ad un carico pari a 500Kg.Calcolare lo sforzo in MPa. Soluzione: Kg m F m g 500 9.81 455 455N s d 0.015 4 A0 πr π π 1. 10
PROGETTAZIONE DI STRUTTURE MECCANICHE
PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi
Cenni di meccanica computazionale ed applicazione per strutture con elementi beam
Cenni di meccanica computazionale ed applicazione per strutture con elementi beam Tecnica delle Costruzioni II - 5 Marzo 201 1 Rigid jointed frames beam elements Resistono ad effetti combinati di azioni
