La trasformata di Fourier multidimensionale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La trasformata di Fourier multidimensionale"

Transcript

1 1 La trasformata di Fourier multidimensionale La trasformata di Fourier bidimensionale F(ω x,ω y ) = F 2 {f(x,y)} di una funzione bidimensionale reale f(x,y) è una funzione complessa che esprime l ampiezza e la fase delle componenti sinusoidali spaziali (ω x,ω y ). x y x y 2.1) F( ω, ω ) = f( x, y) exp[ j ( ω x+ ω y)] dx dy Si consideri dapprima una f(x,y)=f(x) invariante lungo la nuova dimensione y. E ovvio da quanto visto per la trasformata monodimensionale che una scomposizione possibile è costituita da funzioni cos(ω x x) e sin(ω x x) più una componente costante. Si tratta di funzioni a tettoia come quella mostrata in figura

2 2 La stessa funzione a tettoia è mostrata vista dall alto: Si noti che la integrazione lungo la direzione y nel calcolo della trasformata bidimensionale non ha in questo caso nessun effetto integrando valori costanti al variare di y e che coincidono con il profilo sinusoidale della tettoia incontrato spostandosi in direzione x. Lo studio della trasformata di Fourier monodimensionale ci assicura che combinando cos(ω x x) e sin(ω x x) con varie pulsazioni possiamo ottenere qualsiasi profilo in direzione x. E anche già stato detto che una scomposizione in esponenziali immaginarie exp(jω x x) è del tutto equivalente e rappresenta nei suoi coefficienti le sinusoidi in modulo e fase.

3 3 Passando ad una f(x,y) generale appare evidente che in questo modo si riescono a rappresentare le ondulazioni che si incontrano muovendosi lungo la direzione x non quelle lungo le altre direzioni. Consideriamo allora una tettoia cos(ω θ x θ ) che abbia un asse x inclinato di un angolo θ rispetto all asse x. Nella figura θ = 30. x θ θ=30 x Le formule di rotazione degli assi cartesiani forniscono 2.2) x θ = cos(θ) x + sin(θ) y nel sistema di coordinate (x,y) sostituendo la (2.2) si ha cos(ω θ x θ ) = cos(ω θ [cos(θ) x + sin(θ) y]) = cos(ω x x + ω y y) ω x = cos(θ) ω θ ω y = sin(θ) ω θ Tettoie di inclinazione θ diversa sono fra loro ortogonali infatti sfasandosi nel piano (x,y) interferiscono ora positivamente ora negativamente con media nulla, come mostrato in figura:

4 4 Vale così il principio di scomposizione in somma di componenenti ortogonali visto per la trasformata mono-dimensionale. Il passaggio ad esponenziali immaginarie si ottiene applicando banalmente le formule di Eulero su cos(ω θ x θ ) e sin(ω θ x θ ) e quindi le formule di rotazione degli assi; si ottengono così sempre le coordinate del piano (ω x, ω y ). La posizione angolare di (ω x, ω y ) è pari a θ mentre quella radiale rappresenta ω θ. F(ω x,ω y ) esprime in modulo e fase rispettivamente la ampiezza e la fase di ogni sinusoide spaziale. L antitrasformata è: ) f( xy, ) = F( ωx, ωy) exp[ j( ωxx+ ωyy)] dωx dω y π

5 θ = 0 ; f θ = 2π ω θ =

6 θ = 90 ; f θ = 2π ω θ =

7 7 θ = 30 ; f θ = 2π ω θ = 0.3. ω y ω θ ω x Esempi di Trasformata bidimensionale: Gonzales ewoods Fig.3.6 Young et al Tab.51.4

8 8 Data la sua struttura la trasformata di Fourier bidimensionale gode di tutte le proprietà della trasformata mono-dimensionale più alcune altre legate alla spazialità bidimensionale. Linearità La linearità fa corrispondere a combinazioni lineari nel dominio (x,y) combinazioni lineari nel dominio (ω x, ω y ). Ad esempio questa è la trasformata della cosinusoide con frequenza 0.2 lungo l asse x e di quella con frequenza 0.3 ed inclinazione 30 : ω y ω θ ω x Si noti la sovrapposizione delle componenti armoniche.

9 9 Trasformazione separabile rispetto agli assi ortogonali. Considerando la (2.1) si vede che si può integrare dapprima in dx portando fuori dal segno di integrale il contributo moltiplicativo exp(-jω x x) che è costante ad x fissato. L integrale interno è così espresso: 2.4) F( x, ω ) = fxy (, ) exp( jω y) dy e quindi y y x y y x 2.5) F( ω, ω ) = F( x, ω ) exp( jω x) dx La (2.4) esprime la trasformazione eseguita sulle sezioni ad x fissato parallele cioè ad y. La (2.5) considera ad ω y fissato le oscillazioni in queste trasformate che si osservano spostandosi in direzione x. Questa proprietà è molto comoda per calcolare la trasformata bidimensionale attraverso due serie di trasformate mono-dimensionali. E di fatto utilizzata nel campo discreto per sfruttare l algoritmo di Fast Fourier Transform (FFT) in campo multi-dimensionale. L ordine di trasformazione può essere invertito ottenendo come passaggio intermedio una F(ω x,y). Questo risultato verrà utilizzato per considerare una importante proprietà della proiezione integrata di f(x,y) su un asse x θ o profilo, g θ (x θ ), considerato in una ricostruzione tomografica. La trasformata di questo fornisce infatti la F(ω x, ω y ) valutata lungo un asse di pari inclinazione.

10 10 Simmetria complessa coniugata 2.6) F 2 {f * (x, y)} = F * (-ω x, -ω y ) Questa proprietà si riferisce al fatto che la f(x,y) può in generale avere valori complessi: la trasformata della sua coniugata f * (x,y) è la funzione simmetrica e coniugata rispetto all origine della trasformata di f(x,y). Per f(x,y) reale, come nel caso di una immagine, la (2.6) esprime la simmetria coniugata della trasformata 2.7) F(-ω x, -ω y ) = F * (ω x, ω y ) (per f(x,y) reale) come già mostrato nel caso mono-dimensionale partendo da somme di coseni e seni. Variazioni di scala 2.8) F 2 {f(a x, b y)} = (1/ab) F(ω x /a, ω y /b) Dilatare le scale significa avere frequenze più basse. Traslazione 2.9) F 2 {f(x-a, y-b)} = F(ω x, ω y ) exp[j(aω x + bω y )] Una traslazione non cambia le ampiezze ma aggiunge un contributo in fase proporzionale alla traslazione ed alla pulsazione. Infatti, una data traslazione va rapportata al periodo e quindi lo sfasamento è proporzionale alla frequenza.

11 11 Convoluzione 2.10) F 2 {f(x, y)*h(x, y)} = F(ω x, ω y ) H(ω x, ω y ) L operazione di convoluzione nel campo (x,y) equivale ad una moltiplicazione frequenza per frequenza nel campo delle trasformate. Questa operazione è complessa in quanto coinvolge l integrazione mostrata qui sotto: 2.11) f( xy, )* hxy (, ) = fxy (, ) h( ξ x, η y) d ξ d η Questa può essere interpretata in queste tre fasi per ogni (x,y): 1) trasla una maschera m simmetrica rispetto ad h, m(ξ,η)=h(-ξ,-η) intorno ad (x,y); 2) moltiplica punto a punto f ed m traslata; 3) somma. Viceversa: 2.12) F 2 {f(x, y) h(x, y)} = (1/4π 2 ) [F(ω x, ω y )*H(ω x, ω y )] Teorema di Parseval 2.13) (,) fxy 2 1 dxdy = 2 F( ωx, ωy) 2 dωx dω 4π L energia di f(x,y) può essere ottenuta integrando il suo valore quadratico oppure sommando l energia di tutte le componenti armoniche. Per questo motivo F(ω x,ω y ) 2 è detto spettro di energia, mostrando infatti la densità spettrale con cui l energia si distribuisce. y

12 12 Spettro di potenza La definizione di trasformata richiede l integrabilità assoluta della f(x,y); cosa non vera per funzioni stocastiche, r(x,y), quali il rumore sovrapposto ad una immagine. Per questi si considera la funzione di auto-correlazione che valuta il valore atteso del prodotto fra r(x,y) e un punto traslato di una distanza (a,b): 2.14) c(a,b) = E[r(x, y),r(x+a, y+b) Questa è trasformabile fornendo così lo spettro di potenza: 2.15) S(ω x,ω y ) = F 2 {c(a,b)} Vediamo come lo spettro di potenza si lega al contenuto armonico di quanto osservato del processo su un campo limitato. Per ergodicità si può calcolare c(a,b) come media spaziale su un campo limitato A al tendere di questo all infinito: 1 cab (,) = lim ra(,) x y ra( a+ x, b+ x) dx dy= A A lim A 1 [ A r A( x, y )* r A( x, y )] dove r A (x,y) è la r(x,y) limitata al campo A e l integrale (effetti di bordo a parte) si limita a considerare questa regione. Per ottenere una stima di c(a,b) l operazione di limite viene troncata ad un valore di A finito (l immagine a disposizione). Considerando la trasformata di Fourier ed della convoluzione, il teorema di convoluzione nel campo spaziale e la proprietà di simmetria coniugata otteniamo (approssimando per A finito): 2.16) S(ω x,ω y ) = (1/A) R(ω x,ω y ) R*(ω x,ω y ) =(1/A) R(ω x,ω y ) 2

13 13 dove R(ω x,ω y ) è la trasformata di Fourier di r(x,y) sul campo considerato. Quindi a meno di una costante e della necessaria approssimazione la trasformata di Fourier della funzione di auto-correlazione, vale a dire lo spettro di potenza del processo stocastico bi-dimensionale, è dato dallo spettro di energia calcolato su di un campo limitato. Componenti armoniche ed impulsi E importante ricordare che ad una componente armonica in (x,y) corrisponde una coppia di impulsi simmetrici e coniugati in (ω x,ω y ). Viceversa ad una componente periodica in (ω x,ω y ) corrispondono due impulsi opportunamente traslati in (x,y). Moltiplicare una funzione per una componente armonica (modulandola in ampiezza) significa convolvere lo spettro per i relativi impulsi nel dominio (ω x,ω y ). Quindi lo spettro viene replicato e traslato intorno a detti impulsi. Analogo il discorso invertendo i due domini. Da questo trucco seguono numerose proprietà applicate in varie occasioni: 1) modulazione 2) separabilità moltiplicativa: F 2 {f x (x) f y (y)}= F x (ω x ) F y (ω y ) 3) campionamento come vedremo trattando di immagini digitali.

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1 Elaborazione nel dominio delle frequenze Elaborazione delle immagini digitali 1 Serie di Fourier Elaborazione delle immagini digitali 2 Introduzione alla trasformata di Fourier Una funzione periodica può

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

7.Trasformata discreta di Fourier

7.Trasformata discreta di Fourier 7.Trasformata discreta di Fourier 7. Introduzione Nel capitolo 6 sono state prese in esame la definizione e le proprietà della trasformata discreta nel tempo di Fourier : X(e jω ), essendo ω una variabile

Dettagli

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione p. 1 Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte II Metodi di Calcolo per la Chimica A.A. 2016-2017 Marco Ruzzi La Trasformata di Fourier: basi matematiche ed applicazioni Parte II Showing a Fourier transform to a physics student generally produces the

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ]

CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ] CALCOLO DEI COEFFICIENTI DI FOURIER CON SOLI SENI O COSENI nell intervallo [-π ; π ] La costruzione di una qualunque oscillazione complessa a partire dalla sovrapposizione di oscillazioni armoniche semplici

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Giovanni Colletti (GiovanniColletti)

Giovanni Colletti (GiovanniColletti) Giovanni Colletti (GiovanniColletti) ANALISI DI FOURIER CON EXCEL 14 July 2010 Premessa La costruzione di una qualunque oscillazione complessa a partire dalla sovrapposizione di oscillazioni armoniche

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione Segnali e trasformate DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Controlli Automatici LA Segnali e trasformate

Controlli Automatici LA Segnali e trasformate - 1 Corso di Laurea in Ingegneria dell Automazione DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Controlli Automatici L - 2 Segnali tempo continui

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Filtri lineari Filtri lineari Gli operatori locali che operano su una immagine mediante la convoluzione con maschere di pesi possono essere descritti mediante la teoria dei segnali

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

1 Finestratura di una trasformata di Hilbert

1 Finestratura di una trasformata di Hilbert 1 Finestratura di una trasformata di Hilbert Considerando la sequenza a n = 1 ( 1)n ;

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione

SEGNALI E SISTEMI (a.a ) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 2003 Testo e Soluzione Esercizio 1 [punti 4] SEGNALI E SISTEMI (a.a. 003-004) Proff. L. Finesso, M. Pavon e S. Pinzoni Prova scritta 15 dicembre 003 Testo e Soluzione Per ciascuno dei seguenti segnali dire se è periodico e,

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

IMAGE PROCESSING & DOMINIO DELLE. Pagano Luca 18/12/2013

IMAGE PROCESSING & DOMINIO DELLE. Pagano Luca 18/12/2013 IMAGE PROCESSING & DOMINIO DELLE FREQUENZE Pagano Luca 18/12/2013 IN GENERALE Trasformata: Antitrasformata: In cui le funzioni r ed s vengono chiamate funzioni o immaginibase. Invece i termini T(u,v) vengono

Dettagli

Applicazioni. Lezione 13 1

Applicazioni. Lezione 13 1 Applicazioni Lezione 13 1 Generalità 1/2 Reti considerate: Reti passive con ingressi costanti o sinusoidali I contributi associati alle condizioni iniziali sono dei transitori I contributi associati agli

Dettagli

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta

SEGNALI A TEMPO DISCRETO. Impulso e altri segnali canonici discreti. Trasformata Zeta. Sviluppo di Fourier discreto. Trasformata di Fourier discreta SEGNALI A TEMPO DISCRETO Impulso e altri segnali canonici discreti Trasformata Zeta Sviluppo di Fourier discreto Trasformata di Fourier discreta Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

SEGNALI E SISTEMI Ripasso per Io Compitino

SEGNALI E SISTEMI Ripasso per Io Compitino SEGNALI E SISTEMI Ripasso per Io Compitino Esercizio 1 Si consideri il segnale a tempo continuo x(t) = 2 ( 1) k 1 1 sin(kt), t R. k=1 k a. Trovare il periodo fondamentale T p di x(t) e dire se il segnale

Dettagli

L ANALISI ARMONICA DI UN SEGNALE PERIODICO

L ANALISI ARMONICA DI UN SEGNALE PERIODICO L ANALISI ARMONICA DI UN SEGNALE PERIODICO Il segnale elettrico è una grandezza fisica (in genere una tensione) che varia in funzione del tempo e che trasmette un'informazione. Quasi tutti i segnali che

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

CAMPIONAMENTO DI SEGNALI

CAMPIONAMENTO DI SEGNALI CAMPIONAMENTO DI SEGNALI Alla base della discretizzazione di un segnale sorgente continuo sono i due procedimenti distinti di discretizzazione rispetto al tempo, detto campionamento, e rispetto all'ampiezza,

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Corso di Visione Artificiale. Filtri parte II. Samuel Rota Bulò

Corso di Visione Artificiale. Filtri parte II. Samuel Rota Bulò Corso di Visione Artificiale Filtri parte II Samuel Rota Bulò Numeri complessi parte reale parte immaginaria in coordinate polari complesso coniugato formula di Eulero Trasformata di Fourier discreta (DFT)

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46

2.2.5 Approssimazione di un segnale in una base biortogonale (segnali rettangolari) Esercizi proposti... 46 Indice 1 Operazioni elementari, convoluzione, correlazione 1 1.1 Operazioni elementari........................ 1 1.1.1 Ribaltamento, traslazione, scalatura............ 1 1.2 Convoluzione.............................

Dettagli

Premesse matematiche

Premesse matematiche Premesse matematiche 2.8 Trasformata di Fourier Sia f(t) una funzione reale, o complessa, di variabile reale t, che soddisfi la condizione di Dirichlet 1, e sia a modulo integrabile, cioe : f(t) dt

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line)

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Milano 30/11/07 Corso di Laurea in Ingegneria Informatica (Laurea on Line) Corso di Fondamenti di Segnali e Trasmissione Prima prova Intermedia Carissimi studenti, scopo di questa prima prova intermedia

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Sviluppo in Serie di Fourier

Sviluppo in Serie di Fourier Capitolo Sviluppo in Serie di Fourier. Proprietà della Serie di Fourier Un segnale reale tempo continuo e periodico di periodo, per il quale sono valide le condizioni di Dirichlet vedi pag. 4 [], può essere

Dettagli

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico

Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Gianfranco Cariolaro, Gianfranco Pierobon, Giancarlo Calvagno Segnali e sistemi Indice analitico Copyright The McGraw-Hill Companies srl A aliasing, 443 fenomeno dell, 424f AMI, codificatore, 315 analiticità

Dettagli

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO

ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO ANALISI IN FREQUENZA DEI SISTEMI A TEMPO DISCRETO Funzione di trasferimento Risposta allo scalino Schemi a blocchi Risposta in frequenza Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 051 2093034 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi

Dettagli

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme

Vettori applicati. Capitolo Richiami teorici. Definizione 1.1 Un sistema di vettori applicati Σ è un insieme Capitolo 1 Vettori applicati 1.1 Richiami teorici Definizione 1.1 Un sistema di vettori applicati Σ è un insieme {(P i,v i ), P i E, v i V, i = 1,...,N}, (1.1) dove P i è detto punto di applicazione del

Dettagli

ANALISI DI FOURIER. Segnali tempo continui:

ANALISI DI FOURIER. Segnali tempo continui: ANALISI DI FOURIER Segnali tempo continui: Segnali aperiodici Introduzione alla Trasformata Continua di - Derivazione intuitiva della TCF a partire dallo Sviluppo in Serie di - Spettro di ampiezza e fase

Dettagli

ANALISI DI FOURIER. Segnali a Tempo Discreto:

ANALISI DI FOURIER. Segnali a Tempo Discreto: ANALISI DI FOURIER Segnali a Tempo Discreto: - - Sequenza periodica - Taratura degli assi frequenziali - TDF di una sequenza finita - Campionamento in Frequenza Serie discreta di Fourier Consideriamo una

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE IV Sommario LEZIONE IV Importanza dello studio di segnali sinusoidali nell ingegneria Sistemi lineari con ingressi sinusoidali

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Lezione 5: strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza Rappresentazione spettrale di un segnale Il grafico

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier ... Sviluppo in serie di Fourier Consideriamo una funzione periodica f di periodo T: f(t) = f(t+t) t Qualunque funzione periodica di periodo T può essere rappresentata mediante lo sviluppo in serie di

Dettagli

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson.

che coinciderà con la (2) se g[n] = g (n ), condizione verificata dal teorema di Poisson. La simulazione di sistemi analogici LTI per via digitale si è resa necessaria in quanto permette non solo la perfetta riproducibilità del fenomeno da studiare in situazioni ambientali anche molto diverse,

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 18/02/2002 Soluzione Modellistica dei Manipolatori Industriali BTT Esame del 8/2/22 Soluzione Sistemi di riferimento e cinematica di posizione In Figura a) il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 *

SEGNALI A TEMPO CONTINUO. Segnali a energia finita. t un segnale a energia finita e a tempo continuo. L energia specifica 2 * Capitolo IV CARAERIZZAZIOE EERGEICA DEI SEGALI SEGALI A EMO COIUO Segnali a energia finita IV. Densità spettrale di energia. Sia s() t un segnale a energia finita e a tempo continuo. L energia specifica

Dettagli

I.T.I.S. "Antonio Meucci" di Roma L'analisi armonica Anno Scolastico

I.T.I.S. Antonio Meucci di Roma L'analisi armonica Anno Scolastico I.T.I.S. "Antonio Meucci" di Roma L'analisi armonica a cura del Prof. Mauro Perotti Anno Scolastico 2012-2013 Sommario Introduzione...3 1. La serie di Fourier per segnali periodici...3 1.1 Serie polare

Dettagli

Capitolo 4. Campionamento e ricostruzione

Capitolo 4. Campionamento e ricostruzione Capitolo 4 Campionamento e ricostruzione Sommario. In questo capitolo vengono richiamati brevemente i risultati fondamentali (teorema di Shannon e sue conseguenze) sul campionamento e la ricostruzione

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

1) i) Determinare il valore massimo e il valore minimo assunti dalla funzione. f (x, y) = x e x2 y 2

1) i) Determinare il valore massimo e il valore minimo assunti dalla funzione. f (x, y) = x e x2 y 2 1 X Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Sciene statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informaioni

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata di Fourier Ø Risposta impulsiva e integrale di convoluzione Ø Rappresentazione di segnali nel tempo e in frequenza Ø Filtri idealmente e fisicamente realizzabili, stabilità Ø Trasformazioni

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

Complementi di Analisi per Informatica *** Capitolo 3. Serie di Fourier. e Analisi Armonica

Complementi di Analisi per Informatica *** Capitolo 3. Serie di Fourier. e Analisi Armonica Complementi di Analisi per Informatica *** Capitolo 3 Serie di Fourier e Analisi Armonica Sergio Benenti Prima versione settembre 013. Revisione settembre 017. Jean Baptiste Joseph Fourier (Auxerre, 1768

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html TRASFORMATE DI LAPLACE Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica Funzione di risposta armonica - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L La funzione di risposta armonica DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Indice. A Richiami 1 A.1 Richiami di semplici espressioni matematiche... 1 A.2 Richiami di onde piane... 2 A.3 Sovrapposizione di onde piane...

Indice. A Richiami 1 A.1 Richiami di semplici espressioni matematiche... 1 A.2 Richiami di onde piane... 2 A.3 Sovrapposizione di onde piane... Indice Indice i A Richiami 1 A.1 Richiami di semplici espressioni matematiche........... 1 A.2 Richiami di onde piane........................ 2 A.3 Sovrapposizione di onde piane.................... 3 i

Dettagli

INDICE Esempi di segnali determinati: periodici e di energia Esempio di segnale aleatorio...4

INDICE Esempi di segnali determinati: periodici e di energia Esempio di segnale aleatorio...4 INDICE 1 Introduzione: definizione e classificazione dei segnali... 1 1.1 Introduzione all elaborazione numerica dei segnali... 1 1.2 Classificazione dei segnali... 2 1.2.1 Esempi di segnali determinati:

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1

Analisi Matematica 3, a.a Scritto del quinto appello, 11 settembre 2019 Testi 1 Scritto del quinto appello, 11 settembre 019 Testi 1 1. a) Dato u L 1 R), sia vx) := u x); esprimere ˆv in termini di û. b) Caratterizzare le funzioni u L 1 R) tali che û è una funzione dispari a valori

Dettagli

Isometrie e cambiamenti di riferimento

Isometrie e cambiamenti di riferimento Isometrie e cambiamenti di riferimento Isometrie Le isometrie sono trasformazioni del piano o dello spazio che conservano angoli e distanze. Esempi sono le rotazioni del piano, le riflessioni in una retta

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza)

Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza) Lezione n. 4 (caratterizzazione dei segnali e analisi in frequenza) 1 I ruoli del medico e del bioingegnere nell analisi di segnali biomedici MEDICO Quali segnali misurare Quale informazione possono contenere

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier

Analisi di Fourier e alcune equazioni della fisica matematica 1. SESTA e SETTIMA Lezione Serie di Fourier Analisi di Fourier e alcune equazioni della fisica matematica 1 SESTA e SETTIMA Lezione Serie di Fourier 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Per nostra grande fortuna, f si può recuperare da F mediante

Per nostra grande fortuna, f si può recuperare da F mediante Sotto opportune condizioni di continuità ed integrabilità, data una funzione f: R C, esiste la funzione (detta trasformata di Fourier di f) F: R C Per nostra grande fortuna, f si può recuperare da F mediante

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Luigi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1 Analisi Matematica II Corso di Ingegneria Gestionale Compito del --5 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Lezione XXI Sistemi vibranti a 1gdl-Moto forzato non smorzato MOTI FORZATI PER SPOSTAMENTO DI VINCOLO

Lezione XXI Sistemi vibranti a 1gdl-Moto forzato non smorzato MOTI FORZATI PER SPOSTAMENTO DI VINCOLO Sistemi vibranti a gdl-moto forzato non smorzato MOTI FORZATI PER SPOSTAMETO DI VICOLO Consideriamo il solito sistema che si muova rispetto a un osservatore assoluto con una legge \W nota. \W Scrivendo

Dettagli

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace -

Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Seconda esperienza - Verifica di alcune proprietà delle trasformate di Laplace - Alpigiani Cristiano 17 novembre 2005 Introduzione Scopo di questa esperienza è quello di familiarizzare con alcune proprietà

Dettagli

Sviluppi matematici per il calcolo delle funzioni di correlazione tra segnali elettrici

Sviluppi matematici per il calcolo delle funzioni di correlazione tra segnali elettrici Sviluppi matematici per il calcolo delle funzioni di correlazione tra segnali elettrici 1) La funzione di correlazione di segnali sinusoidali. L algoritmo di calcolo della funzione di correlazione tra

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM10 - Fisica Matematica I Seconda Prova di Esonero [13-01-01] Soluzioni Problema 1 1. Il moto si svolge in un campo di forze centrale in assenza di attrito. Pertanto si avranno due integrali primi del

Dettagli

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 1/10/2013, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2013/2014 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 18 dicembre 2013 1. Martedì 1/10/2013, 12 14. ore:

Dettagli

Sistemi continui oscillanti unidimensionali (corde vibranti)

Sistemi continui oscillanti unidimensionali (corde vibranti) Edoardo Milotti 4/10/2005 Sistemi continui oscillanti unidimensionali (corde vibranti Consideriamo due oscillatori armonici accoppiati linearmente. Fisicamente ciò si può realizzare, ad esempio, con due

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Un modello computazionale per la detezione dei bordi

Un modello computazionale per la detezione dei bordi Modelli e Principi della Percezione Data: AA 2010-11 Un modello computazionale per la detezione dei bordi Docente: Prof. Giuseppe Boccignone Scriba: 1 Il problema Il problema della modellazione di un processo

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Serie di Fourier di segnali PWM

Serie di Fourier di segnali PWM Serie di Fourier di segnali PWM Ivan Furlan 1 14 settembre 2013 1 I. Furlan riceve il BSc in elettronica nel 2000 presso la SUPSI, ed il MSc in meccatronica nel 2009 presso il Politecnico di orino. Attualmente

Dettagli