Osservazioni sulle funzioni composte



Documenti analoghi
ARGOMENTI MATEMATICA PER L INGEGNERIA

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

26 - Funzioni di più Variabili Limiti e Derivate

Esercizi su Funzioni di più variabili. - Parte II. Derivate parziali, derivate direzionali, piano tangente

Calcolo differenziale per funzioni di più variabili

Forme differenziali lineari

Tema di Analisi I, 2 modulo, 07/02/2011

Funzioni di n variabili a valori vettoriali

I teoremi della funzione inversa e della funzione implicita

Alcune nozioni di calcolo differenziale

CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

Funzioni a valori vettoriali Differenziabilità e regola della catena

FUNZIONI TRA INSIEMI. Indice

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A Dott.ssa G. Bellomonte

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 3 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

1. Funzioni implicite

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

Analisi Matematica 2

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

Analisi II, a.a Soluzioni 4

Funzioni di più variabili a valori vettoriali n t m

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

1 Note ed esercizi risolti a ricevimento

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

Coordinate Cartesiane nel Piano

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

La ricerca di punti di estremo assoluto

Analisi Matematica II 14 Giugno 2019

Corso di Analisi Matematica

25 IL RAPPORTO INCREMENTALE - DERIVATE

19 Marzo Equazioni differenziali.

Calcolo differenziale per funzioni in più variabili.

Teorema delle Funzioni Implicite

Calcolo differenziale

Sistemi di equazioni differenziali

Massimi e minimi vincolati

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Curve n d. f(x, y)=l. x,yda,b

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Sviluppi e derivate delle funzioni elementari

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

Le derivate parziali

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica 2 Ingegneria Gestionale Docenti: B. Rubino e R. Sampalmieri L Aquila, 21 marzo 2005

Funzioni di n variabili a valori vettoriali

Primi esercizi sulla ricerca di punti di estremo assoluto

Funzioni implicite e teorema del Dini

1 Limiti di funzioni di più variabili

Corso di Analisi Matematica 2

21 IL RAPPORTO INCREMENTALE - DERIVATE

Cognome Nome Matricola Codice ESEMPIO 1

Corso di Laurea in Informatica. I parziale di Analisi Matematica

Funzioni di R n a R m e la matrice Jacobiana

Soluzioni del Foglio 6

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Modulo 5 Funzioni di piú variabili. A. Scanu

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Analisi Matematica 3

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

4.11 Massimi e minimi relativi per funzioni di più variabili

Lezioni sullo studio di funzione.

Operazioni elementari sui sistemi di erenziali

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Equazioni differenziali

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

Massimi e minimi vincolati

10. Calcolo Differenziale, II

2 + 2(seny) 2 per (x, y) (0, 0),

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

1 Funzioni reali di una variabile reale

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

1 Equazioni Differenziali

Massimi e minimi vincolati

1.9 Massimi e minimi vincolati

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

1 IL LINGUAGGIO MATEMATICO

Esprimendo il vettore (u, v) in coordinate polari (u = r cos θ, v = r sin θ), si ha. = u2 v 0 0 u 0 v

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Funzioni di due o più variabili reali

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

Metodi per la risoluzione di sistemi lineari

1 Rette e piani nello spazio

L indice differenziale di una DAE

Cognome Nome Matricola Codice ESEMPIO 1

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Transcript:

Osservazioni sulle funzioni composte ) 30 dicembre 2009 Scopo di questo articolo è di trattare alcuni problemi legati alla derivabilità delle funzioni composte nel caso di funzioni di R n in R m Non si pretende di fornire una trattazione sistematica ed esaustiva ma solo di evidenziare i concetti fondamentali Introduzione La composizione è una operazione di enorme importanza nel costruire nuove funzioni In questo articolo mi occupo solo di funzioni di R n in R m e in particolare di questioni connesse alla derivabilità Anche in questo tipo di problemi emerge l importanza del concetto di differenziabilità rispetto a quello semplice di derivabilità in particolare quando si passa da funzioni di una variabile a funzioni di più variabili Per completezza richiamiamo innanzitutto brevemente la definizione di funzione composta Siano f : A B e g : C D due funzioni e supponiamo che fa) C Allora è possibile costruire la funzione composta h: A D che ad ogni x di A faccia corrispondere il punto gfx)) in D Il valore gfx)) è calcolabile perché per ipotesi fa) C La funzione h si chiama composta di f e g e si scrive 1) h = g f Ricordiamo altresì che una funzione f : R n R m può essere sempre assegnata come una m-upla di funzioni di R n in R: y 1 = f 1 x 1 x 2 x n ) y 2) f : R n R m 2 = f 2 x 1 x 2 x n ) x 1 x 2 x n ) y m = f m x 1 x 2 x n ) Sono particolarmente importanti i casi di funzioni di R in R 2 o R 3 curve del piano o dello spazio) e di R 2 in R 3 superfici dello spazio) In questi casi si usano di solito le notazioni seguenti: 3a) f : I R R 2 t x = f1 t) y = f 2 t) o anche t x = xt) y = yt) x = f 1 t) ) 3b) f : I R R 3 t y = f 2 t) z = f 3 t) http://wwwbatmathit x = xt) o anche t y = yt) z = zt) 1

Osservazioni sulle funzioni composte 2 x = f 1 u v) 3c) f : A R 2 R 3 t y = f 2 u v) z = f 3 u v) o anche t x = xu v) y = yu v) z = zu v) o altre simili che risulteranno chiare dal contesto Le variabili t u v si chiamano parametri e le 3a) e 3b) si chiamano equazioni parametriche della curva mentre le 3c) si chiamano equazioni parametriche della superficie 1 Esempi 1 Date le funzioni f : R R fx) = sin x e g : R R gx) = 3 x possiamo considerare entrambe le funzioni composte h = f g : R R hx) = sin 3 x e l = g f : R R lx) = 3 sin x 2 Date le funzioni f : R 2 R fx y) = x 2 xy e g : R R gx) = cos3x 2 x) h = g f : R 2 R hx y) = cos 3x 2 xy) 2 x 2 xy) ) = cos3x 4 6x 3 y + 3x 2 y 2 x 2 + xy) mentre non ha senso la funzione composta nell ordine inverso 3 Date le funzioni f : R 2 R fx y) = x 2 xy e g : R R 2 gt) = possiamo considerare sia la funzione composta x = cos t y = t 2 h = f g : R R ht) = cos t) 2 cos t) t 2 ) = cos 2 t + t 2 cos t che la funzione composta nel ordine inverso l = g f : R 2 R 2 l1 x y) = cosx lx y) = 2 xy) l 2 x y) = x 2 xy) 2 = x 4 + 2x 3 y x 2 y 2 4 Date le funzioni f : R 2 R fx y) = x 2 y 2 e g : R 2 R 2 gx y) = g1 x y) = xy g 2 x y) = y x h = f g : R 2 R hx y) = xy) 2 y x) 2 = x 2 y 2 y 2 + 2xy x 2 mentre non ha senso la funzione composta nell ordine inverso http:// www batmath it

Osservazioni sulle funzioni composte 3 5 Date le funzioni f : R 2 R 2 fx y) = f1 x y) = x + y f 2 x y) = x 2 y e g : R 2 R 2 gx y) = g1 x y) = xy g 2 x y) = y x possiamo considerare sia la funzione composta h = f g : R 2 R 2 h1 x y) = xy) + y x) = xy + y x hx y) = h 2 x y) = xy) 2 y x) = x 2 y 3 x 3 y 2 che la funzione composta l = g f : R 2 R 2 lx y) = l1 x y) = x + y)x 2 y) = x 3 y + x 2 y 2 l 2 x y) = x 2 y) x + y) = x 2 y x y 6 Date le funzioni xt) = sin t f : R 3 R fx y z) = x + 2yz e g : R R 3 gt) = yt) = t 2 zt) = 1 t possiamo considerare sia la funzione composta h = f g : R R ht) = sint) + 2t 2 1 t) = sin t + 2t 2 2t 3 che la funzione composta l 1 x y z) = sinx + 2yz) l = g f : R 3 R 3 lx y z) = l 2 x y z) = x + 2yz) 2 = x 2 + 4xyz + 4y 2 z 2 l 3 x y z) = 1 x + 2yz) = 1 x 2yz 7 Date le funzioni xu v) = u + sin v f : R 3 R fx y z) = x + 2yz e g : R 2 R 3 gu v) = yu v) = u + v zu v) = u v h = f g : R 2 R hu v) = u + sin v) + 2u + v)u v) = u + sin v + 2u 2 2v 2 8 Date le funzioni xt) = t f : R 2 R fx y) = x + sinxy) e g : R R 3 gt) = yt) = t 2 zt) = t 3 h 1 x y) = x + sinxy) h = g f : R 2 R 3 hx y) = h 2 x y) = x + sinxy)) 2 h 3 x y) = x + sinxy)) 3 http:// www batmath it

Osservazioni sulle funzioni composte 4 2 Continuità e derivabilità La composta di due funzioni continue è ancora una funzione continua Purtroppo invece la composta di due funzioni derivabili parzialmente non è generalmente una funzione derivabile parzialmente anzi potrebbe non essere nemmeno continua Si possono a questo proposito considerare diversi esempi tra cui il seguente Siano date le funzioni f : R 2 R fx y) = e consideriamo la funzione composta x 2 y x 4 + y2 se x y) 0 0) 0 se x y) = 0 0) h = f g : R R ht) = e g : R R 2 gt) = 1/2 se t 0 0 se t = 0 xt) = t yt) = t 2 funzione palesemente non derivabile in 0 in quanto nemmeno continua La funzione f è parzialmente derivabile nell origine rispetto a ogni direzione; detto infatti u = l m) un versore di R 2 la direzione orientata r per l origine di versore u è: r : x = lt y = mt Dunque la funzione subordinata da f su questa direzione è l 2 t flt mt) = l 4 t 2 + m 2 se t 0 0 se t = 0 È immediato provare che questa funzione è derivabile per ogni u = l m) e che di conseguenza si ha f l2 0 0) = u m 2 se m 0 f 0 0) = 0 se m = 0 u D altro canto la funzione g è palesemente derivabile anzi differenziabile in quanto funzione di una sola variabile 1) e ha derivata data da g x t) = t) = 1 yt) = 2t Dunque la funzione composta tra la f che è parzialmente derivabile lungo ogni direzione orientata per l origine e la funzione g addirittura differenziabile ovunque non è derivabile anzi nemmeno continua): si usa dire che le funzioni derivabili non sono stabili per composizione È questo uno dei motivi non è l unico) che rendono il concetto di derivata parziale troppo debole per poter essere considerato la generalizzazione del concetto di derivata introdotto per funzioni di una variabile Infatti nel caso di funzioni reali di una sola variabile reale la composta di due funzioni derivabili è derivabile cosa che come abbiamo visto non succede in più dimensioni Vale invece il seguente teorema che richiede la differenziabilità anziché la semplice derivabilità 1 Ricordiamo che per una funzione di una sola variabile reale la derivabilità implica sempre la differenziabilità indipendentemente da quale sia il codominio http:// www batmath it

Osservazioni sulle funzioni composte 5 Teorema 1 Siano f : A R n R p una funzione differenziabile in x 0 A e g : B R p R m una funzione differenziabile in y 0 = f x 0 ) B; sia inoltre h = g f : A R n R m la funzione composta di f e g Allora h è differenziabile in x 0 e si ha 4) dh x0 x x 0 ) = dg y0 y y 0 ) df x0 x x 0 ) Siccome la differenziabilità implica l esistenza delle derivate eventualmente parziali se si tratta di funzioni di più variabili) ne concludiamo che per funzioni differenziabili le derivate parziali possono essere calcolate non solo direttamente scrivendo esplicitamente la funzione composta come abbiamo fatto negli esempi del paragrafo 1 ma anche applicando in maniera opportuna!) la formula 4) Per i più volenterosi proporremo più avanti vedi il paragrafo 3 una tecnica generale basata sulle matrici jacobiane per l uso efficiente della formula 4) Qui ci limitiamo a esporre le regole nei casi di uso più comune 1 Siano f una funzione reale di due variabili x y) fx y) e g una funzione di una variabile x gx) e consideriamo la funzione composta h di R 2 in R hx y) = g f)x y) = gfx y)) Allora h x y) = g fx y) ) f h x y) x y) = g fx y) ) f x y) 2 Siano f una funzione reale di due variabili x y) fx y) e g : R R 2 gt) = g 1 t) g 2 t) ) una curva del piano Consideriamo la funzione composta h di R in R ht) = f g)t) = f g 1 t) g 2 t) ) Allora h t) = f g1 t) g 2 t) ) g 1t) + f g1 t) g 2 t) ) g 2t) 3 Siano f una funzione reale di due variabili x y) fx y) e g una funzione di R 2 in R 2 gx y) = g 1 x y) g 2 x y) ) Consideriamo la funzione composta h = f g di R 2 in R hx y) = f g 1 x y) g 2 x y) ) Allora h f x y) = g1 x y) g 2 x y) ) g 1 f x y) + g1 x y) g 2 x y) ) g 2 x y) h f x y) = g1 x y) g 2 x y) ) g 1 f x y) + g1 x y) g 2 x y) ) g 2 x y) 3 Matrice jacobiana Ricordiamo che per una funzione f di R n in R m si può definire in un punto x 0 dove esistono le derivate parziali la seguente matrice detta matrice jacobiana f 1 f 1 f 1 1 2 n f 2 f 2 f 2 5) J x 0 ) = 1 2 n f m f m f m 1 2 n dove f 1 f 2 f m sono le componenti della funzione f e tutte le derivate sono calcolate in x 0 In termini di matrici jacobiane il teorema sul differenziale di una funzione composta si può scrivere come segue 6) J h x 0 ) = J g y 0 )J f x 0 ) http:// www batmath it

Osservazioni sulle funzioni composte 6 cioè la matrice jacobiana della composta è il prodotto delle matrici jacobiane delle due funzioni componenti: è questo nella sostanza il teorema di derivazione delle funzioni composte Non è difficile verificare che le formule riportate sopra per le derivate di particolari funzioni composte non sono altro che casi particolari di questo risultato generale Lo vediamo su un esempio specifico precisamente l esempio 3 Si ha e quindi Si ha poi Tenendo conto che J f g1 x y) g 2 x y) ) = J f x y) = ) f f x y) x y) f g1 x y) g 2 x y) ) f g1 x y) g 2 x y) )) g 1 J g x y) = x y) g 1 x y) g 2 x y) g 2 x y) J h x y) = J f g1 x y) g 2 x y) ) J g x y) si ottiene mediante il prodotto righe per colonne matrice 1 2 da moltiplicare per una matrice 2 2) J h x y) = f g1 x y) g 2 x y) ) g 1 f x y) + f g1 x y) g 2 x y) ) g 1 g1 x y) g 2 x y) ) g 2 x y) x y) + f g1 x y) g 2 x y) ) g 2 x y) cioè esattamente le due derivate parziali della funzione h già trovate precedentemente ) http:// www batmath it