PROGRAMMAZIONE LINEARE

Documenti analoghi
PROBLEMI DI SCELTA dipendenti da due variabili d azione

SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE

SCHEDA DI LAVORO N.1 LABORATORIO PREMESSA

Problemi di scelta ESEMPI

Appunti: il piano cartesiano. Distanza tra due punti

ESERCIZI SVOLTI DI PROGRAMMAZIONE LINEARE TOMO G PAG 421 E SEGUENTI

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso. Cenni sulla programmazione lineare

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Soluzione grafica di problemi PM in 2 variabili

Appendice A: un esempio di scelta del mix ottimo di produzione in presenza di vincoli 19

Introduzione a GeoGebra

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio.

Esercizio assegnato in data 28 novembre

Esercizi soluzione grafica e Branch and Bound. Daniele Vigo

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Geometria analitica di base (seconda parte)

EQUAZIONE DELLA RETTA

LA RICERCA OPERATIVA. Richiami storici

Problemi sulla circonferenza verso l esame di stato

Prerequisiti didattici

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Mutue posizioni della parabola con gli assi cartesiani

IL METODO DEL SIMPLESSO

ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Esercizi di Programmazione Lineare in Aula

Condizione di allineamento di tre punti

Test sull ellisse (vai alla soluzione) Quesiti

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

La retta nel piano cartesiano

La circonferenza nel piano cartesiano

UNITÀ DIDATTICA 2 LE FUNZIONI

Esercizi assegnati in data 7 novembre

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

Problema 6 * * * x = numero di cassonetti di tipo A y = numero di cassonetti di tipo B f(x, y) = 500x + 600y da massimizzare Vincoli:

Programma di matematica classe I sez. E a.s

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016

C I R C O N F E R E N Z A...

FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate)

1 Introduzione alle funzioni

UNITÀ DIDATTICA 5 LA RETTA

Punti nel piano cartesiano

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Problema ( ) = 0,!

Chi non risolve esercizi non impara la matematica.

Equazioni lineari con due o più incognite

Correzione secondo compitino, testo B

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Problemi di programmazione lineare

LEZIONE N. 6 - PARTE 1 - Introduzione

LA RETTA NEL PIANO CARTESIANO

PIANO CARTESIANO:EQUAZIONI

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

Ottimizzazione marginale

Circonferenze del piano

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Circonferenza. Matteo Tugnoli. February 26, 2012

1.4 Geometria analitica

Le coniche: circonferenza, parabola, ellisse e iperbole.

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Geometria BATR-BCVR Esercizi 9

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Verifiche di matematica classe 3 C 2012/2013

Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Piano cartesiano e retta

Rilevazione degli apprendimenti

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

Programmazione Lineare

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

Quadro riassuntivo di geometria analitica

Sistemi di 1 grado in due incognite

PROGRAMMA DI MATEMATICA

Ore annue: 132 MODULO 1

TEST SULLE COMPETENZE Classe Seconda

Esercitazione 14 Aprile 2016 (Viki Nellas)

Il Break Even Point (b.e.p.)

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercitazione per la prova di recupero del debito formativo

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

GEOMETRIA ANALITICA: LE CONICHE

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).

Testi verifiche 3 C 3 I a. s. 2008/2009

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Capitolo 1 Vettori applicati e geometria dello spazio

MD6 Disequazioni, sistemi di disequazioni di 1 grado a due incognite e programmazione lineare

M. Marra Appunti delle Lezioni di Ricerca Operativa Problemi e metodi di ottimizzazione PROBLEMI E METODI DI OTTIMIZZAZIONE

Esercizi Matematica 3

I NUMERI N, Z, Q INSIEMI

Test A Teoria dei numeri e Combinatoria

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA SVOLTO II LB Matematica 2015/2016

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:

Esercizi svolti sulla parabola

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Transcript:

PROGRAMMAZIONE LINEARE La programmazione lineare ha un ruolo fondamentale tra i metodi risolutivi per i problemi di ottimizzazione. Storicamente questo settore della matematica, che è strettamente connesso all economia, risale alla prima metà del XIX secolo, con alcuni studi di Fourier e di Gauss. Ma i primi lavori concreti vengono svolti intorno al 1930 da Kantorovich, in Unione Sovietica, per ottimizzare la produzione di legno di una azienda e successivamente da Dantzig, negli Stati Uniti. Dantzig viene considerato il vero fondatore della programmazione lineare perché propose il primo metodo generale per risolvere un problema di ottimizzazione, nel 1947, mentre collaborava col Pentagono per ricerche in ambito militare. Il metodo ideato, al quale è stato dato il nome di algoritmo del simplesso, permette di individuare la soluzione ottimale in un insieme di soluzioni ammissibili per un problema. Il termine algoritmo (dal nome Al-Khwaritzmi del matematico persiano autore del testo Kitāb al-djabr wa 'l-muqābala dai cui deriva la parola algebra) indica una successione di istruzioni che operano su oggetti che sono rappresentazioni simboliche di dati. Un algoritmo può essere trasformato in un programma eseguibile da un calcolatore elettronico. Grazie all implementazione al computer, è possibile risolvere problemi anche molto complessi, che coinvolgono un numero elevato di variabili. segue: Un classico problema di programmazione lineare può essere formulato come Una fabbrica produce due tipi di un certo prodotto, indicati con A e B. Ogni giorno produce al massimo n pezzi; occorre un tempo t1 per produrre un pezzo di tipo A e un tempo t2 per quelli di tipo B; una giornata prevede al massimo t3 ore lavorative. Sapendo che un pezzo di tipo A viene venduto a c1 euro e un pezzo di tipo B a c2 euro, determinare come deve essere distribuita la produzione per ottenere il massimo profitto giornaliero. Nei problemi PL si evidenziano una funzione obiettivo che deve essere massimizzata o minimizzata su una regione ammissibile, definita da un insieme di disequazioni, che rappresentano i vincoli a cui le variabili devono essere sottoposte. Nell esempio precedente la funzione obiettivo è costituita dalla funzione che rappresenta il profitto giornaliero, cioè f ( x, y) = c1 x + c2 y, in cui x e y rappresentano rispettivamente il numero di pezzi di tipo A e quello dei pezzi di tipo B da produrre in un giorno. Allora il problema PL si riduce a determinare qual è il massimo valore che può avere la funzione f quando le variabili x e y soddisfano il seguente sistema di disequazioni: x + y n t1 x + t2 y t3, x 0 y 0

in cui le ultime due disequazioni equivalgono al vincolo che le quantità prodotte non siano negative. Nel piano cartesiano questo sistema individua una regione, detta regione ammissibile, costituita da tutte le coppie di valori ( x, y) che soddisfano i vincoli imposti dal problema. La funzione obiettivo, scritta nella forma f ( x, y) = c1 x + c2 y = p, rappresenta, al variare di p, un fascio di rette parallele, tutte di coefficiente angolare c1. Soltanto alcune di queste rette, però, attraversano la regione ammissibile; tra c2 queste, si deve determinare quella che sui punti della regione assume il valore massimo. Si può dimostrare che la funzione obiettivo assume il suo valore massimo, o minimo, in corrispondenza di un vertice o su tutti i punti di un lato del poligono convesso 1 che rappresenta la regione ammissibile o campo di scelta. Nell immagine 2 sottostante, ad esempio, è evidenziata in verde la regione ammissibile; essa è ottenuta come intersezione delle parti di piano individuabili con le rette disegnate, oltre che dalle condizioni x 0, y 0. Per determinare la soluzione ottima si rappresenta la funzione obiettivo nel caso particolare in cui p=0 e poi si immaginano le rette ad essa parallele che intersecano la regione ammissibile. Il vertice o il lato, della regione in cui la funzione obiettivo raggiunge il massimo punto di tangenza nella direzione positiva, costituisce il punto di coordinate x,y, o l insieme dei punti, che rendono ottima la funzione. Nella figura che segue, ad esempio, il massimo della funzione rappresentata dalla retta verde, si raggiunge nel vertice più in alto. 1 si dice convessa una figura con la proprietà che il segmento che congiunge due qualsiasi dei suoi punti è interamente contenuto all interno della figura; un cerchio, un quadrato, un rombo sono figure convesse, mentre le figure a forma di stella o di cuore non lo sono. 2 L'immagine, insieme alla successiva, si trova all'indirizzo automatica.ing.unibs.it/.../ottim.html

ESEMPI Tra i più classici esempi di PL troviamo il problema di ottimizzare una dieta. Lo stesso Dantzig utilizzò il suo metodo applicandolo alla ricerca di una alimentazione corretta e che in più fosse di costo minimo. L esempio che segue è proposto in una delle unità didattiche di Puntoedu Apprendimenti di Base ed è stato presentato e sperimentato durante una attività di aggiornamento del piano nazionale M@tabel. Due fratelli sono bloccati per alcuni giorni in una baita di montagna da una tempesta di neve. Entrambi devono seguire una specifica dieta per motivi di salute. Il primo deve mangiare ogni giorno 50 grammi di grassi, 100 grammi di proteine e 250 grammi di carboidrati. Il secondo, invece, deve mangiare almeno 60 grammi e non più di 100 grammi di proteine; inoltre deve mantenere l apporto calorico compreso fra 2000 e 2400 calorie; infine dovrebbe ridurre al minimo l apporto di grassi. Nella baita ci sono provviste soltanto di carne in scatola, crackers e banane e il secondo fratello è allergico alle banane! A parte la monotonia dell alimentazione, potranno i fratelli seguire le loro diete? E che quantità di cibi dovranno o potranno assumere ogni giorno? Per risolvere il problema è necessario conoscere i valori riportati nella tabella che segue e il numero di calorie fornite da ciascun grammo di proteine (4), grassi (9), carboidrati (4).

Proteine grammi in un etto Grassi grammi in un etto Carboidrati grammi in un etto carne in scatola 16 8 0 Crackers 9 10 80 Banane 1 0 15 La situazione del primo fratello si può descrivere denotando: con la lettera x la quantità di carne in scatola (in etti) con la lettera y la quantità di crackers (in etti) con la lettera z la quantità di banane (in etti) e scrivendo le condizioni della dieta in termini di x, y, z: 16x + 9y + z = 100 8x + 10y= 50 80y +15z = 250 Il sistema si risolve ad esempio ricavando y in termini di x dalla seconda equazione, poi ricavando z in termini di y (e quindi ancora di x) dalla terza. Sostituendo le espressioni ricavate per y e z si ottiene un equazione in x che ha come soluzione circa 5, dopodichè si ottengono per y e z i valori approssimati 1 e 11. Si è quindi trovata come soluzione approssimata la terna (5, 1, 11) che produce le quantità 100, 50, 245 per proteine, grassi e carboidrati, vicine a quelle desiderate. Per il secondo fratello deve risultare:

16x + 9y 60 16x + 9y 100 136x + 446y 2000 136x + 446y 2400 dove 136 è il numero di calorie per cento grammi di carne in scatola e 446 è il numero di calorie per 100 grammi di crackers. Ciascuna delle 4 condizioni è verificata dalle coppie (x, y) che stanno in un opportuno semipiano. Le prime due condizioni sono quindi verificate da una striscia compresa fra due rette parallele. Analogamente, le ultime due condizioni sono verificate in un altra striscia, che non è parallela alla precedente. Complessivamente le quattro condizioni sono verificate dai punti in un parallelogramma e ci sono quindi infinite soluzioni. Quindi i due fratelli possono seguire la loro dieta anche nella baita, e il secondo ha infinite possibilità! Dal momento che ci sono molte diete ammissibili per il secondo fratello, in corrispondenza di quale dieta è minima la quantità di grassi? La funzione che esprime la quantità di grassi al variare della quantità di scatole (x) e di crackers (y) è gr (x, y) = 8x + 10y e vogliamo che sia minima all interno della regione ammissibile. La retta 8x+10y=0 ha coefficiente 4 angolare, quindi forma un angolo ottuso con il semiasse positivo delle ascisse. Disegnandola e 5 individuando la prima delle sue parallele che incontra la regione ammissibile, si ha la soluzione del problema.

Esercizi proposti sempre su Puntoedu Apprendimenti di Base: Esercizio 1 Descrivi algebricamente, attraverso un sistema di disequazioni, la regione poligonale rappresentata nella seguente figura sapendo che le coordinate dei vertici sono A(2/5; 11/5), B(-1; -2), C(1; -2), D(2; - 1). Esercizio 2 La scelta del contratto più conveniente A un giovane viene offerta un assunzione come rappresentante di commercio con la possibilità di optare fra i seguenti tre tipi di contratto: a) un fisso di 1000 euro al mese più una percentuale sul valore delle vendite del 2%; b) un fisso di 200 euro ed una percentuale del 12% sul valore delle vendite; c) un fisso di 500 euro se il volume delle vendite è compreso tra 1000 e 2000 euro, ed una percentuale del 6% sulla parte eccedente i 2000 euro. Stabilire quali devono essere i volumi delle vendite che rendono il contratto a) equivalente al contratto b), e il contratto b) equivalente al contratto c). Stabilire, in funzione del volume delle vendite, qual è il contratto più conveniente.

I problemi che seguono sono tratti invece dal testo Algebra di Re Fraschini, Grazzi, ed. Atlas. 1. Un calzaturificio dispone di due macchinari per tagliare e cucire la pelle per confezionare scarpe. La prima macchina necessita di un tempo di 15 minuti per essere predisposta e prepara la pelle per tre paia di scarpe al minuto; la seconda macchina necessita di 30 minuti per essere predisposta e prepara la pelle per 4 paia di scarpe al minuto. Determina, al variare del numero di scarpe che si devono preparare, qual è la macchina più conveniente da usare, tenendo presente che, vista la disponibilità di pelle giornaliera, non è possibile confezionare più di 250 paia di scarpe al giorno. 2. Una banca pubblicizza due forme di investimento di capitali. Nel primo caso offre un rendimento netto del 6% diminuito di 500 euro per le spese sostenute dalla banca per la gestione del capitale, nel secondo caso offre una rendita netta del 4% diminuita di 200 euro. Determina, al variare del capitale investito, qual è la forma di investimento più conveniente. 3. Un biscottificio può confezionare i suoi biscotti in due modi diversi A e B. Ogni confezione viene poi rivenduta rispettivamente a 8 euro e 6,5 euro. Sapendo che il confezionamento di tipo A comporta una spesa fissa di utilizzo dei macchinari di 200 euro, più una spesa variabile unitaria di 2 euro, mentre quello di tipo B una spesa fissa di 80 euro, più una spesa variabile unitaria di 1,5 euro, determina quale delle due confezioni è più conveniente al variare del numero x di scatole di biscotti prdotte, tenendo presente che la produzione massima giornaliera è di 300 confezioni. del simplesso