Spettroscopia. 05/06/14 SPET.doc 0

Documenti analoghi
SPETTROSCOPIA UV-VIS LEZIONE 9

ASSORBIMENTO UV-VIS. Atomo

Sottodiscipline della Chimica Fisica Storicamente

Lezione n. 20. Visibile. La spettroscopia UV/Visibile. Antonino Polimeno 1

Spettroscopia infrarossa

L ONDA ELETTROMAGNETICA UNITA DI MISURA E DEFINIZIONI. ν ν. λ =

Spettroscopia. Spettroscopia

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

LO SPETTRO ELETTROMAGNETICO

Chimica Fisica 2. Vibrazioni di molecole poliatomiche

Meccanica quantistica (5)

Lezione n. 26. Principi generali della spettroscopia IR. 02/03/2008 Antonino Polimeno 1

Metodi spettroscopici

fenomeno X nm Å UV - visibile legami chimici infrarosso

Esploriamo la chimica

REGOLE DELLA RISONANZA

Capitolo 8 La struttura dell atomo

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Identificazione di un composto organico:

Lo Spettro Elettromagnetico

Interazione luce- atomo

La radiazione infrarossa si trova nella parte dello spettro elettromagnetico tra le regioni del visibile e delle microonde. La porzione di maggiore

La Spettroscopia in Biologia

Applicazioni della Spettroscopia UV-vis all analisi delle proteine

Fenomeni quantistici

Spettroscopia Infrarossa. Lo spettro di assorbimento riflette la struttura di una determinata molecola

La teoria atomica moderna: il modello planetario L ELETTRONE SI MUOVE LUNGO UN ORBITA INTORNO AL NUCLEO

Spettroscopia: introduzione.

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

I Colori sono gli Atti della Luce. (Goethe)

Identificazione di un composto organico:

INTRODUZIONE AI METODI OTTICI

DEFINIZIONI (D.Lgs. 81/08)

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

TECNICHE SPETTROSCOPICHE

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

TRASFERIMENTO RADIATIVO IN ATMOSFERA

E N =195kJ mol 1 47kcal mol 1

Molecole. 04/09/13 3-MOL-0.doc 0

Spettroscopia IR. Spettroscopia IR

Capitolo 4 Le spettroscopie. 1. Lo spettro elettromagnetico

Bassa Energia Alta Energia

L ONDA ELETTROMAGNETICA UNITA DI MISURA E DEFINIZIONI. ν ν. λ =

L irraggiamento termico

A Cosa serve l'ottica?

Spettroscopia molecolare: interazioni luce-materia

larghezza del segnale

Spettroscopia ottica come metodo per studiare le proprietà della materia

Le Caratteristiche della Luce

Produzione dei raggi X

SPETTROFOTOMETRIA. Tutti sinonimi

Introduzione alle tecniche spettroscopiche e all interazione radiazione/materia. Francesco Nobili

Capitolo 10: Spettroscopia. Spettroscopia: interazione tra molecole e radiazione elettromagnetica

Le onde elettromagnetiche

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Processi radiativi. Assorbimento Emissione spontanea Emissione stimolata. Gli stati eccitati sono instabili (il sistema non è in equilibrio)

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

Composti di coordinazione

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

Spettroscopia in assorbimento overtone dell anidride carbonica con l uso di laser a diodo

Principi di Spettroscopia in Chimica Inorganica

La spettrofotometria è una tecnica analitica, qualitativa e quantitativa e permette il riconoscimento e la quantizzazione di una sostanza in base al

Risonanza Magnetica Nucleare

strutture geometriche sperimentali

fenomeno livelli interni atomici legami chimici vibrazioni nm Å

Atomo. Evoluzione del modello: Modello di Rutherford Modello di Bohr Modello quantomeccanico (attuale)

Termografia a infrarossi

CHIMICA Ven 15 novembre 2013 Lezioni di Chimica Fisica

Luce e Vita (Luce è Vita) LUCE: FONTE ENERGETICA E PORTATRICE DI INFORMAZIONI

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

Chimica-Fisica Biologica.

Bocchi Carlotta matr Borelli Serena matr Lezione del 5/05/2016 ora 8:30-10:30. Grandezze fotometriche ILLUMINOTECNICA

Spettro elettromagnetico

Generalità delle onde elettromagnetiche

Astronomia Strumenti di analisi

CLASSIFICAZIONE DELLE BANDE DI ASSORBIMENTO. Fig. 4

Nanoparticelle - Presentazione. Presentazione. Nanoparticelle metalliche. NanoLab - Le nanoscienze a scuola -

Teoria dell Orbitale Molecolare

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

NUCLEI NMR ATTIVI E SPIN

Come vediamo. La luce: aspetti fisici. Cos è la luce? Concetti fondamentali:

Illuminotecnica - Grandezze Fotometriche

Misura del coefficiente di assorbimento di vari materiali in funzione dell'energia del fascio dei fotoni incidenti

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

LABORATORIO DI CHIMICA INORGANICA Barbara Milani tel

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

Fisica atomica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Prof. Mariano Casu (modulo II) (Prof. Navarra) (Prof. Casu)

GLI ORBITALI ATOMICI

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

Metodi spettroscopici per le Biotecnologie

Effetto Zeeman anomalo

Onde elettromagnetiche (e dintorni)

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

p e c = ev Å

Risonanza Magnetico Nucleare

LA PRODUZIONE DEI RAGGI X

Transcript:

Spettroscopia 05/06/14 SPET.doc 0

Spettroscopia Analisi del passaggio di un sistema da uno stato all altro con scambio di fotoni Spettroscopia di assorbimento Spettroscopia di emissione: In entrambi i casi lo spettro è l intensità di radiazione emessa o assorbita in funzione della frequenza 05/06/14 4-SPET-1.doc 1

Probabilità di transizione Transizione da uno stato i a uno stato f Se la transizione avviene con assorbimento o emissione di un fotone: hν = E f E i Ma non tutte le transizioni sono possibili momento di dipolo di transizione: M if = ψ f Mˆ Mˆ è l operatore che descrive l interazione che fa passare dallo stato iniziale a quello finale (in genere si considerano le interazioni elettrostatiche perché più forti di quelle magnetiche) ψ Probabilità di transizione: 1 Pif = M 2 if ρ f h ρ è la degenerazione dello stato finale f Per avere probabilità non nulla occorre che Tipo di interazione Mˆ Forma delle funzioni ψ i e i M if 0 ψ f (nodi): Regole di selezione: regole sulla variazione di numero quantico per cui l integrale si annulla L area di un picco spettroscopico è proporzionale alla Probabilità di transizione 05/06/14 4-SPET-1.doc 2

cambiamento di stato frequenze Energie (ev) elettronico molecole atomi Visibile e UV 1-10 vibrazionale molecole Infrarosso 1-0.01 rotazionale molecole Microonde 0.001-0.0001 Le molecole possono cambiare più tipi di stato in una transizione di assorbimento o emissione Es.: per ogni stato vibrazionale si hanno più stati rotazionali e sono possibili più transizioni rotazioanali per la stessa transizione vibrazionale: Analogamente per ogni stato elettronico si hanno più stati vibrazionali e rotazionali 05/06/14 4-SPET-1.doc 3

Esempio (spettro IR CO 2 gassoso) Struttura rotazionale (linee sottili) sottostate ad un picco vibrazionale (linea spessa) I picchi sottili sono le transizioni rotazionali associate alla transizione vibrazionale a 2240 cm -1 Questa è la principale causa della larghezza delle bande nell infrarosso 05/06/14 4-SPET-1.doc 4

Il campo elettrico E periodico della radiazione elettromagnetica interagisce con la molecola facendo variare in modo periodico il suo momento di dipolo elettrico µ o in direzione o in modulo Es.: Variazione di Direzione: Una transizione da uno stato ad un altro per interazione con la radiazione non avviene se (per simmetria) non è possibile una variazione del momento di dipolo 05/06/14 4-SPET-1.doc 5

Spettroscopia rotazionale La radiazione elettromagnetica interagisce con il momento di dipolo della molecola µ r cambiandone l orientazione Mˆ è il momento di dipolo della molecola Molecole con r µ = 0 non interagiscono e quindi non hanno spettro rotazionale H 2, O 2, N 2, CO 2 non assorbono le microonde H 2 O assorbe le microonde Ci sono 3 assi di rotazione indipendenti a,b,c e quindi 3 momenti d inerzia E a = h 2 la ( la 2I a + 1) E tot = E a + E b + E c 05/06/14 4-SPET-1.doc 6

Vibrazioni molecolari Il moto vibrazionale dipende dal potenziale molecolare U Per una molecola lineare (1 solo grado di libertà vibrazionale) U dipende solo dalla distanza tra i 2 atomi Il moto è un moto armonico c'è una forza di richiamo proporzionale allo spostamento dal punto di equilibrio: F = k(x -x eq ) il moto ha frequenza ω [ω= (k/m)] e energia (quantizzata) E = hν(v+1/2) v=0,1,2,... 05/06/14 4-SPET-1.doc 7

Spettroscopia vibrazionale La radiazione elettromagnetica interagisce con il momento di dipolo della molecola r µ cambiandone il modulo Mˆ è la variazione del momento di dipolo della molecola µ x µ,,. x yx Molecole con tutte le derivate = 0 non interagiscono x e quindi non hanno spettro vibrazionale µ x H 2, O 2, N 2 non assorbono l infrarosso H 2 O, CO 2 assorbono l infrarosso Regola di selezione: v = ±1 05/06/14 4-SPET-1.doc 8

ci sono 3N-6 modi indipendenti di vibrare (N = numero di atomi) ognuno con la sua frequenza ω: in linea di principio uno spettro vibrazionale ha 3N-6 righe modi di vibrazione H 2 O: Tutti e 3 i modi sono attivi nell infrarosso CO 2 : Il modo (a) non è attivo nell infrarosso perche lascia invariato il momento di dipolo (centrosimmetrico!) 05/06/14 4-SPET-1.doc 9

Spettro IR dell aria Spettro di assorbimento I componenti principali N 2 e O 2 sono trasparenti perché essendo apolari non assorbono Ci sono 3 bande di H 2 O perché 3 modi di vibrazione IR attivi Ci sono 2 bande CO 2 perché solo due sono i modi IR attivi (modificano il momento di dipolo) 05/06/14 4-SPET-1.doc 10

Spettro IR del Cloruro di metile deuterato e non Rosso: ClCH 3 Blu: ClCD 3 Cambiano le masse dei nuclei e quindi cambiano: ω = k i posizione le frequenze i µ i dei picchi cambiano le intensità dei picchi 05/06/14 4-SPET-1.doc 11

Posizione effettiva dei nuclei Anche a 0 K i nuclei oscillano intorno alla posizione di equilibrio. Il grafico rappresenta l effetto collettivo di tutti i modi normali. Gli ellissoidi racchiudono il 50% di probabilità di trovare i nuclei a 298 K. 05/06/14 4-SPET-1.doc 12

Spettroscopia elettronica La radiazione elettromagnetica interagisce con il momento di dipolo istantaneo dovuto al moto degli elettroni (molecole o atomi) se le funzioni d'onda elettroniche Ψ sono descritte in termini di orbitali molecolari ϕ per 2N elettroni (approssimazione orbitalica) m N N+2 N+1 2 1......... hν m N N+2 N+1 2 1......... Ψ i Ψ f Il processo di assorbimento di un fotone di frequenza ν può essere descritto come il passaggio da un orbitale di energia i a uno di energia f e viceversa per l'assorbimento E = f - i = hν Ogni transizione corrisponde al passaggio di un solo elettrone da un orbitale ad un altro 05/06/14 4-SPET-1.doc 13

Cromofori In molecole con legami π, specie se coniugati, sono importanti le transizioni in cui un elettrone passa da un orbitale π di legame ad un orbitale π di antilegame (π ) molecole con un singolo legame C=C assorbono a 180 nm (UV) butadiene (CH 2 =CH-CH=CH 2 ) 217 nm (UV) Lunghe catene di -C=C-C= (doppi legami coniugati) hanno, all'aumentare della lunghezza della catena, transizioni π π a energie sempre più basse (λ lunghe) : Επ Eπ piccola L'assorbimento si sposta nel visibile Il carotene assorbe nel blu-verde quindi è giallo-rosso 05/06/14 4-SPET-1.doc 14

Lo spettro non è colore Le transizioni elettroniche sono responsabili della sensazione visiva colore di una sostanza Colore : risposta sensoriale alla frequenza della luce Luce bianca : miscela con peso uniforme di tutte le frequenze della banda visibile Se un filtro assorbe totalmente un colore dalla luce bianca si ottiene lo stimolo corrispondente al colore complementare si può vedere luce gialla perché: 1. la sorgente luminosa emette alla lunghezza d'onda corrispondente al giallo 2. la luce contiene le componenti rosso e verde in uguale quantità Triangolo cromatico (i colori opposti sono complementari) Banda visibile (colori dell'iride) rosso arancio giallo verde blu violetto λ (nm) 700 620 580 530 470 420 05/06/14 4-SPET-1.doc 15

Spettro e Colore Clorofilla Emoglobina 05/06/14 4-SPET-1.doc 16