Contenuti Attività Metodo Strumenti Durata (in ore)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Contenuti Attività Metodo Strumenti Durata (in ore)"

Transcript

1 SCUOLA SECONDARIA DI PRIMO GRADO Obiettivi di apprendimento Utilizzare frazioni e numeri decimali per denotare uno stesso numero razionale in diversi modi, essendo consapevoli di vantaggi e svantaggi delle diverse rappresentazioni. Eseguire le operazioni con frazioni e numeri decimali essendo consapevoli di vantaggi e svantaggi nei vari casi. Imparare ad utilizzare in modo più consapevole la calcolatrice. Confrontare le varie modalità di scrittura dei numeri decimali (modello anglosassone e modello europeo) Comprendere il valore di un numero espresso in notazione esponenziale. Utilizzare il concetto di rapporto tra numeri o misure ed esprimerlo sia nella forma decimale sia mediante frazione. Comprendere l uso della percentuale e saperla calcolare utilizzando strategie diverse Avere una visione unitaria di numeri decimali, frazioni rapporti e percentuali Contenuti Attività Metodo Strumenti Durata (in ore) Le quattro operazioni con frazioni e con numeri decimali. Riflessione su vantaggi e svantaggi dell uso dell uno o dell altro tipo di numeri. Il problema dell approssima-zione. Uso delle frazioni nella vita di tutti i giorni Approssimazione. Diverse modalità di scrittura dei numeri razionali Storia dei numeri razionali. Il rapporto come: unità di misura, nuova grandezza, indice di comprensione. Ripartizione secondo un rapporto. La percentuale: un rapporto particolare Esecuzione delle quattro operazioni con: frazioni, numeri decimali approssimati ai decimi e numeri decimali approssimati ai centesimi. Confronto dei risultati e riflessione. Exchange: gli effetti dell approssimazione Numero di scarpa Giochiamo con la calcolatrice Rapporto tra lunghezza della mano e altezza della persona. I due chef. Il cambio della bicicletta. Schermi televisivi. Ripartire secondo un rapporto: il metodo del falegname. Quanto vale lo sconto 3x2? Diluizioni. La matematica dell alcool. I cocktail di matematica Lavoro in piccoli gruppi Lavoro di gruppo Lavoro individuale e/o in piccoli gruppi Lavoro individuale e discussione guidata Lavoro in piccoli gruppi Fogli, righelli, squadre, matita e calcolatrice Schede da compilare Valutazione degli obiettivi di apprendimento 3 Schede da consegnare, discussione collettiva e confronto sui risultati del lavoro Valutazione della competenza Discussione sui risultati del lavoro Richiesta di spiegare le proprietà scoperte durante il lavoro. Scheda e calcolatrici 1 Scheda da consegnare Richiesta di spiegare le scoperte fatte durante l esperienza Schede, carta, penna, righello, metro, biciclette piccole stecche di legno, seghetto per legno, colla a caldo 6 Schede da consegnare Richiesta di spiegare ciò che si è appreso durante l esperienza. Utilizzare quanto appreso per la realizzazione di parallelepipedi Schede di lavoro 2 Risoluzione di problemi Richiesta di spiegare ciò che si è appreso durante l esperienza. Schede di lavoro Succhi di frutta, cilindri graduati, caraffe 2 Schede da consegnare Realizzazione di cocktail analcolici

2 Sintesi dell attività NUMERI E FRAZIONI CONTIAMO, DIVIDIAMO, NUMERIAMO! Scuola secondaria di primo grado La sperimentazione relativa alla secondaria di primo grado è stata effettuata nelle classi seconde dell Istituto Comprensivo Petrarca di Montevarchi. Nelle varie classi si è lavorato con tempistiche diverse: in una classe gli argomenti sono stati affrontati in un laboratorio concentrato nei mesi di Aprile- Maggio 2014, mentre nelle altre, i vari argomenti sono stati diluiti nel corso di tutto il secondo quadrimestre. Il percorso ha preso l avvio con una sessione di brain storming, in cui agli alunni è stato richiesto di collegare a quattro contenitori ideali esempi di utilizzo di numeri decimali, rapporti, frazioni e percentuali, tratti dalla loro esperienza quotidiana. Già dall analisi dei dati raccolti è emerso che alcune delle proposte potevano essere classificate in più contenitori e gli alunni hanno iniziato a chiedersi se si trattasse veramente di cose diverse tra loro o se ci fosse qualcosa che le accomunava. Le attività successive, nella maggior parte dei casi, hanno preso spunto dalle proposte fatte dagli alunni. Durante tutto il percorso si sono alternate attività pratiche, guidate o meno, e attività di approfondimento e riflessione, svolte con l aiuto di schede preparate dalle insegnanti. In alcuni casi al termine delle attività, oltre alla discussione sui risultati ottenuti, sono state fornite agli alunni informazioni di carattere storico-culturale, che li hanno aiutati a comprendere l evoluzione della matematica nel corso dei secoli. La decisione di svolgere gran parte dei lavori in gruppo si è rivelata particolarmente vantaggiosa perché ha permesso a ciascun alunno di portare il proprio contributo. Sono state apprezzate soprattutto le attività pratiche, che hanno coinvolto tutti gli alunni. Anche coloro che presentano un rapporto conflittuale con la matematica, in questa occasione, sono riusciti ad ottenere con poco sforzo risultati gratificanti. Addirittura, nella parte finale della sperimentazione, sono stati gli alunni stessi ad organizzare attività matematiche su alcuni degli argomenti che avevano proposto durante il brain-storming. A conclusione della sperimentazione possiamo affermare che gli obiettivi di apprendimento previsti sono stati raggiunti per la maggior parte degli studenti e che l aspetto sicuramente più rilevante di tutta l esperienza è stato l entusiasmo con cui i ragazzi hanno partecipato e la facilità con cui sono riusciti a ricavare proprietà e regole generali che in seguito hanno imparato ad applicare anche in contesti diversi.

3 ATTIVITA PROPOSTE U N U S O I NS O S P E T T A T O D E L L E F R A Z I O NI P R O P O S T O S O T T O F O R M A D I G I A L L O S C H E R Z O S O IL GIALLO DEL PALLONE SCOMPARSO Nella spiaggia di SOLOVIP-DAQUESTEPARTI, la splendida giornata estiva viene interrotta da un orribile grido: AAAHHHHH! Dalla zona delle cabine ecco arrivare di corsa, con aria disperata, la Marchesa Ugolina De Soprani. Subito il personale dello stabilimento balneare le si fa incontro per chiedere informazioni sull accaduto. La Marchesa, piangendo, tra un singhiozzo e l altro, racconta che dalla sua cabina è stato sottratto un preziosissimo pallone fatto di un tessuto innovativo, appena inventato dal centro di ricerca spaziale di cui lei è una sostenitrice. Il pallone le era stato appena consegnato dal suo amico, il famosissimo ricercatore giapponese dott. Yoko Poco, in partenza per motivi personali, con la raccomandazione di custodirlo con cura fino al suo ritorno. Questo pallone è di valore inestimabile, perché è l unico prototipo esistente al mondo ed è destinato alla prima partita di football sul suolo lunare (evento assolutamente eccezionale, che tutto il mondo dei tifosi sportivi aspetta da tempo con grande trepidazione!). La Marchesa afferma di aver lasciato incustodita la propria cabina solo per 5 minuti, giusto il tempo di richiamare i figli che erano intenti a fare il bagno in mare. Al suo ritorno ha incrociato un uomo che stava andando in spiaggia e che proveniva dalla direzione delle cabine: purtroppo non lo ha visto in faccia e non si ricorda quale costume indossasse. La spiaggia è recintata e non ci sono possibilità di uscire, se non passando attraverso l ingresso dello stabilimento balneare, sotto gli occhi attenti e vigili del capo bagnino. Costui afferma subito che, nell ultima ora, nessuno è entrato o uscito dallo stabilimento. Quindi chi ha rubato il pallone è sicuramente ancora in spiaggia! Da un primo sopralluogo, dentro la cabina della Marchesa, viene trovato un paio di scarpe numero 42, sicuramente dimenticate dal ladro. Come fare per individuare il colpevole? Sherlokkino Holmes, curiosone di professione, nota una serie di impronte sulla sabbia che conducono a quattro signori seduti sotto i rispettivi ombrelloni. Subito misura la lunghezza delle orme e in un batter d occhio capisce chi è il colpevole. Osservando la tabella sottostante, sapresti dire a chi appartengono le scarpe? Sig.A Sig. B Sig. C Sig.D Lunghezza dell impronta 30 cm 28,5 cm 26,5 cm 24, 5 cm Se vuoi un aiuto capovolgi la pagina Il numero di scarpa nel sistema francese (quello che utilizziamo in Italia) si ottiene utilizzando la seguente espressione (lunghezza del piede in cm + 1,5) x 3 2 Ed ora prova a calcolare la lunghezza del tuo piede partendo al numero di scarpa! Rifletti su come puoi fare e confronta il risultato che hai trovato con la misura esatta del tuo piede Cosa noti? Confrontati con i tuoi compagni e prova a dare una spiegazione. (Per la misura delle scarpe da ginnastica spesso si usa il sistema americano, fai una ricerca per capire come funziona) *convertworld.com sito in cui si può far convertire le misure di scarpa dal sistema europeo a quello americano, inglese.. ecc.

4 Durante la discussione che ha seguito il lavoro alcuni alunni hanno fanno presente che non c era bisogno di misurare la lunghezza del piede, bastava misurare la lunghezza dell interno dell avambraccio, che dovrebbe corrispondere a quella del piede. Questo ci ha portato a parlare dei rapporti tra le varie parti del corpo e a introdurre il lavoro seguente R A P P O R T O T R A L U N G H E Z Z A D E L L A M A N O E D A L T E Z Z A D E L L A P E R S O NA Ricalca la tua mano su un foglio, facendo attenzione che anche il polso sia ben appoggiato sulla carta: misura la distanza tra l estremità del dito medio e l attaccatura del polso e poi la tua altezza. Calcola il rapporto tra le due misure. Confronta il tuo risultato con quello dei tuoi compagni. Come si può vedere tale rapporto risulta uguale circa a 1/10. Questo ci ha portato a parlare delle unità di misura antropomorfiche. Molte unità di misura del passato, prendevano come riferimento alcune lunghezze caratteristiche della mano, come la lunghezza di una spanna, del palmo o la distanza tra la punta del pollice e quella dell indice a mano aperta (in Calabria era detta miro ). Addirittura l unità di misura più utilizzata nell antichità era il cubito (l ulna, una delle due ossa dell avambraccio è chiamata anche cubito). La misura del cubito era di circa mezzo metro e corrispondeva alla lunghezza dell'avambraccio, a partire dal gomito fino alla punta del dito medio. Ancora oggi le unità di misura della lunghezza, nei paesi anglosassoni, fanno riferimento a parti del corpo umano: il pollice (inc, 1 in = 2,54 cm) e il piede (foot = 12 pollici, 1ft= 30,48 cm). MISURARE È QUINDI FARE UN RAPPORTO TRA UNA GRANDEZZA E L UNITÀ DI MISURA (nel caso del nostro esperimento l ALTEZZA di ciascuno e la lunghezza della sua MANO). Quando si parla di misure si ricorre all uso di numeri decimali, ma è sempre stato così? A questo punto abbiamo arricchito il percorso con qualche pillola di storia della matematica. I numeri decimali (in Europa) nascono alla fine del 1500 grazie all introduzione nel calcolo delle frazioni decimali e prima cosa si usava? Come è avvenuta l introduzione di questi nuovi numeri? [Le informazioni fornite agli alunni sono state ricavate da libri e siti riportati nella sito-bibliografia che si trova a fine documento]

5 G I O C H I A M O C O N L A C A L C O L A T R I C E Sapete già che i numeri decimali fanno parte dell insieme dei numeri razionali, cioè tutti quei numeri che si possono ottenere grazie ad una divisione. O RA LAVORE RE MO CO N LA C ALCO LATRICE Proviamo a fare alcune divisioni di numeri interi per vedere cosa ci dice questo magnifico strumento 4560: 24=.. tutti sappiamo che, se il dividendo è multiplo del divisore, si ottengono dei numeri Interi Ma i numeri interi si possono considerare dei numeri decimali? 190 si può scrivere anche come 190, Quindi i numeri interi sono dei numeri decimali con la parte decimale uguale a : 750=. Osserva il risultato scritto sulla calcolatrice, che tipo di numero è? Noti niente di strano? La calcolatrice usa il punto al posto della virgola!!! Perché? Come usiamo noi il punto nella scrittura dei numeri? C è qualcuno che scrive i numeri decimali in modo diverso dal nostro? Conosci altri modi strani per scrivere i numeri decimali? Per esempio se nella calcolatrice scrivi 12x0.56 o se scrivi 12x.56 ottieni lo stesso risultato o cambia qualcosa? Se osservi le vetrine dei negozi come sono scritti i prezzi? Sempre nel solito modo o in alcuni negozi i decimi ed i centesimi sono scritti in modo diverso? Come? (LA MATEMATICA CAMBIA CON LA SOCIETA. SI ADEGUA AI TEMPI?) 966:5697=. Osserva il risultato scritto sulla calcolatrice, che tipo di numero è? Noti niente di strano? Questo è solo un altro modo di scrivere i numeri decimali, si chiama notazione esponenziale. Questa scrittura significa = x 10-1 = x 1/10 = x0.1= :49= Osserva il risultato scritto sulla calcolatrice, che tipo di numero è? Noti niente di strano? Quello ottenuto è il risultato esatto della divisione? In base alle tue conoscenze che numero ti aspetteresti? 966:45=. Osserva il risultato scritto sulla calcolatrice, che tipo di numero è? Noti niente di strano? LA CALCOLATRICE APPROSSIMA! Tutte le calcolatrici hanno scritto lo stesso risultato? OK per lavorare con i numeri decimali spesso bisogna approssimare!

6 A D D I Z I O N E R I S O L V I L E S E G U E N T I O P E R A Z I O NI N E L M O D O I NDI C A T O, C O NFR O N T A E R I F L E T T I tra frazioni tra frazioni Dopo aver trasformato le frazioni in numeri decimali Dopo aver trasformato le frazioni in numeri decimali FRAZIONE 2 3 =.. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO FRAZIONE =. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO.. SOMMA SOMMA Con la calcolatrice 2:3+1:12=. Con la calcolatrice 4 : 9 + :. S O T T R A Z I O N E tra frazioni tra frazioni Dopo aver trasformato le frazioni in numeri decimali Dopo aver trasformato le frazioni in numeri decimali FRAZIONE 2 3 =. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO FRAZIONE 2 =. APPROSSIMATO A MENO DI UN DECIMO APPROSSIMATO A MENO DI UN CENTESIMO DIFFERENZA DIFFERENZA Con la calcolatrice Con la calcolatrice :3 + : 4. 14:25- :3.

7 M O L T I P L I C A Z I O N E tra frazioni tra frazioni Dopo aver trasformato le frazioni in numeri decimali Dopo aver trasformato le frazioni in numeri decimali FRAZIONE. 9. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO FRAZIONE. 3. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO PRODOTTO PRODOTTO Con la calcolatrice Con la calcolatrice 5:9+18:25. ( : 3) ( : ) tra frazioni Dopo aver trasformato le frazioni in numeri decimali FRAZIONE 2 =. APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO 3 3. PRODOTTO Con la calcolatrice ( : 49) (3 : 3 )..

8 D I V I S I O N E tra frazioni 2 :. Dopo aver trasformato le frazioni in numeri decimali FRAZIONE... QUOZIENTE Con la calcolatrice APPROSSIMA A MENO APPROSSIMA A MENO DI DI UN DECIMO UN CENTESIMO ( : ):( : ). tra frazioni 2 : 3 3. Dopo aver trasformato le frazioni in numeri decimali RIFLETTI Quali operazioni si possono svolgere più facilmente con i numeri decimali? Quali con le frazioni? Se devo svolgere dei calcoli con la maggior precisione possibile, quale delle due modalità (frazioni o numeri decimali) devo preferire? Cosa puoi dire sull approssimazione? Dove si notano di più i suoi effetti? Dall attività emerge che la quasi totalità degli alunni ritiene che fare i calcoli con i numeri decimali sia molto più facile e veloce nel caso di addizioni e sottrazioni, mentre l uso di frazioni è preferito nel caso di moltiplicazioni e divisioni. Si sottolinea inoltre come, nel caso in cui si voglia un risultato molto preciso, convenga utilizzare le frazioni, anche perché spesso nel calcolo con i numeri decimali occorre ricorrere all approssimazione. A questo punto ci siamo chiesti: quali sono gli effetti dell approssimazione nel calcolo? Sarà più conveniente approssimare prima di calcolare o dopo aver calcolato il risultato? FRAZIONE APPROSSIMA A MENO DI UN DECIMO APPROSSIMA A MENO DI UN CENTESIMO Ecco che viene presentata agli alunni la scheda EXCHANGE con cui si cerca di stimolarli a trovare una risposta alle domande. QUOZIENTE Con la calcolatrice ( 4: 3): (4 : 39).

9 E XC H A N G E Se viaggerai dovrai fare i conti con il cambio. Supponiamo che tu debba cambiare euro in dollari. Il tasso di cambio odierno è di 1,3558. Cosa vuol dire? Che 1 euro oggi vale 1,3558 dollari. In realtà, bisogna tener conto del fatto che nelle monete non esistono né i millesimi, né i decimi di millesimo, e che quindi la cifra deve essere arrotondata, 1 euro vale 1,36 dollari. Se tu potessi *, sarebbe più conveniente cambiare tutti i dollari insieme o cambiarne uno per volta? (*ovviamente esistono le spese di cambio, per cui si paga per ogni operazione che si effettua). I D U E C H E F Se voglio confrontare due grandezze, posso procedere in due modi: calcolarne la DIFFERENZA mediante la sottrazione; calcolarne il RAPPORTO mediante la divisione. Per esempio La signora Prelibatesse, rinomato chef del ristorante Gran Gourmet di Nizza, guadagna euro al mese, mentre il signor Miscottoledita, cuoco del ristorante Il Ramaiolo di Montevarchi, guadagna euro al mese. Confronta i loro stipendi utilizzando sia la differenza che il rapporto. Quale dei due risultati ti fa comprendere con maggior chiarezza la disparità di trattamento economico?

10 SCHERMI TELEVISIVI Quando andiamo a comprare un televisore, un tablet, il monitor di un computer, tra le indicazioni che troviamo ci sono il numero di pollici ed i formati con cui possiamo visualizzare l immagine. Secondo te cosa significano questi dati? Nel disegno sotto rappresenta come viene misurata, secondo te, la grandezza dello schermo televisivo La visione, nei televisori a schermo piatto di ultima generazione, può essere impostata con vari formati per es. 4:3 o 16:9. Questi numeri rappresentano il rapporto tra le dimensioni della base e quella dell altezza dello schermo. Prova a disegnare sotto le due tipologie di schermo cercando di mantenere l altezza costante. Calcola di quanto aumenta, in percentuale, la superficie di uno schermo 16:9, rispetto ad uno 4:3 a parità di altezza. Ma quali saranno le dimensioni di un televisore di 16 pollici? E di uno di 23? I due numeri 16 e 9 indicano la proporzione tra le dimensioni di base b e altezza h del rettangolo in cui vengono visualizzate le immagini. Se la base è di 16 centimetri, l altezza sarà di 9 centimetri. Ovviamente queste dimensioni aumentano se lo schermo è più grande, ma rimangono sempre proporzionali ai valori 16 (per il lato orizzontale) e 9 (per il lato verticale). Per indicare in modo rapido la dimensione di uno schermo televisivo o di un monitor, si usa fornire la misura della diagonale d, espressa in pollici. A partire dalla diagonale è possibile

11 avere una idea della grandezza complessiva dello schermo, grazie alla sua forma rettangolare e alla proporzione fissa tra la base e l altezza. Ma come si calcolano questi valori? Come si ottiene la dimensione reale della superficie di visualizzazione di un televisore widescreen? La prima cosa da fare è convertire la misura della diagonale da pollici a centimetri (ti ricordo che 1in=2,54 cm). Prova a calcolare prima la diagonale di un ipotetico televisore con la base di 19 cm e l altezza di 9 cm. Pitagora ti può aiutare!!! A questo punto potresti ricorrere all aiuto delle proporzioni? R I P A R T I R E S E C O ND O U N R A P P O R T O Abbiamo già detto che fino al 1600 circa non esistevano i numeri decimali, ma come potevano gli artigiani dividere in modo preciso un oggetto? Usavano il METODO DEL FALEGNAME: Se dobbiamo dividere un asse di legno in parti che stiano tra loro in rapporto di 2:5 basta usare quello che si chiama metodo del falegname (basato sul teorema di Talete) Occorre disegnare una semiretta a piacere che origina da un estremo dell asse. Su questa occorre riportare, a partire dall origine della semiretta, un segmento a piacere (preso come unità di riferimento) tante volte quante sono quelle indicate dal rapporto [nel nostro caso 2+5=7] A questo punto occorre unire l estremo dell ultimo segmento con l estremità dell asse. Si ottiene così un segmento che ci servirà come riferimento perché dovremo condurre dal secondo punto individuato sulla semiretta una parallela a questo. Quest ultimo segmento individua sull asse il punto in cui occorre effettuare il taglio.

12 Dopo aver letto con attenzione la scheda precedente abbiamo deciso di trasformare l aula in una falegnameria e di costruire dei solidi partendo da semplici stecche di legno. Ciascuna stecca doveva essere ripartita in tre parti in rapporto di 1:2:3 Una volta tagliati i bastoncini i ragazzi li hanno assemblati per costruire l intelaiatura di parallelepipedi Ciò che li ha sorpresi è che nonostante i vari gruppi avessero usato tutti pezzi della stessa lunghezza i parallelepipedi costruiti differivano tra loro! Inoltre, quando hanno provato a costruire un cubo, utilizzando pezzi ricavati da una stecca avanzata, si sono resi conto che, pur avendo usato pezzi tutti uguali, in realtà avevano ottenuto di nuovo un parallelepipedo! Questo è stato lo spunto per una discussione che li ha portati a scoprire gli accorgimenti che devono essere adottati per tali costruzioni: per esempio il taglio a 45 delle estremità delle stecche.

13 I L C A M BI O D E L L A BI C I C L E T T A Questa attività è stata proposta e realizzata da alcuni alunni. I ragazzi hanno portato due biciclette a scuola e, dopo aver spiegato ai compagni come è fatto il sistema di trasmissione del movimento dai pedali alla ruota posteriore, hanno realizzato la seguente attività. Hanno contato il numero dei denti presenti nelle ruote dentate delle corone (o moltipliche, montate sul pedale ) e dei pignoni (montati sul mozzo della ruota posteriore) di ciascuna bicicletta. Hanno misurato il diametro delle ruote e calcolato la lunghezza della loro circonferenza, corrispondente alla lunghezza del battistrada della ruota e quindi allo spazio percorso dalla bici ad ogni giro delle ruote. A questo punto hanno preso in considerazione tutte le possibili combinazioni che si possono ottenere spostando la catena di trasmissione della bicicletta sulle varie ruote dentate anteriori e posteriori. Anche se hanno precisato che non è consigliabile combinare corona grande con pignone grande o corona piccola con pignone piccolo perché altrimenti la catena non sarebbe più parallela all asse della bici e quindi verrebbe sottoposta ad una tensione eccessiva, con il rischio di spezzarsi. Calcolando il rapporto tra il numero di denti della corona e quello del pignone, nei vari casi, e moltiplicando i risultati per la circonferenza della ruota hanno ottenuto lo spazio percorso dalla bicicletta con una pedalata. Poi con un metro a fettuccia hanno controllato l esattezza dei loro calcoli. Dall attività è emerso che maggiore è il rapporto, maggiore è la distanza percorsa e più grande è la forza richiesta per far muovere la bici (i ciclisti dicono che il rapporto è più duro).

14 Q U A NTO V A L E L O S C O NTO 3 X2? Molto spesso nei supermercati alcuni prodotti vengono venduti con uno sconto 3x2. Ma a quanto corrisponde in realtà? Semplice se il costo di un prodotto è 100 euro, è come se spendessi 200 euro per comprare 3 prodotti. Quindi il costo di ciascun pezzo è 3 euro Quindi lo sconto è del 33 3 %. Addirittura nelle offerte 1+1 (prendi 2 e paghi 1) lo sconto è del 50%. Ma allora come fanno i venditori a guadagnarci? Attenti molte volte il prezzo degli articoli messi in offerta è stato appositamente rialzato prima dello sconto. Quindi OCCHIO! L A M A T E M A T I C A D E L L ALC O O L L alcool etilico (o etanolo) detto anche alcool alimentare è presente in varia concentrazione nelle bevande alcoliche e deriva dalla fermentazione degli zuccheri contenuti nella frutta (uva per il vino, mele per il sidro, ecc.) o dalla fermentazione degli amidi di cui sono ricchi i cereali (per esempio il malto per la birra) e i tuberi. L alcool ha un valore energetico pari a 7 kcal per grammo. L ingestione di alcool provoca numerosi effetti nel nostro organismo. Essendo una molecola piccola, l alcool non ha bisogno di essere digerito e viene assorbito subito dallo stomaco, diffondendosi in tutto l organismo. Attraverso il sangue raggiunge velocemente il cervello e influenza il funzionamento del sistema nervoso. Gli effetti variano in base alla dose di alcool ingerita, alla concentrazione alcolica della bevanda e al fatto che venga ingerito a stomaco vuoto oppure durante i pasti. Contano anche le differenze di sesso, il peso corporeo e lo stato di salute. L eliminazione dell alcool avviene attraverso il fegato che lo trasforma in altre sostanze grazie all azione di alcuni enzimi. In un ora è in grado di trasformare un grammo di alcool puro, per ogni 10 kilogrammi di peso corporeo. In realtà nelle donne e in alcuni individui questa capacità è ridotta, per cui sono maggiormente vulnerabili all alcool. Nonostante la maggior parte di alcool ingerito (90-98%) venga rimossa dal fegato, una piccola parte (2-10%) viene eliminata inalterata attraverso i polmoni, l urina, il sudore, le lacrime e il latte materno. Tale sistema viene utilizzato per i test (palloncino) che misurano la quantità di alcool presente nel sangue (alcolemia). Vediamo quali sono gli effetti sull uomo in relazione alla diversa concentrazione di alcol nel sangue TASSO ALCOLEMICO g/l EFFETTI 0,1-0,2 iniziale sensazione di ebbrezza con affievolimento del livello di attenzione e controllo 0,3-0,4 sensazione di ebbrezza e diminuzione delle inibizioni, accompagnate da nausea, riduzione del coordinamento motorio e del livello di attenzione 0,5-0,8 stato di ebbrezza, cambiamento di umore, nausea, sonnolenza, stato di eccitazione emotiva che comportano minor capacità di giudizio, riflessi rallentati e vomito 0,9-1,5 stato di ebbrezza, umore alterato, confusione, disorientamento con conseguente riduzione dell autocontrollo, alterazione dell equilibrio, linguaggio male articolato e vomito 1,6-3,0 Stato di ubriachezza:stordimento, aggressività, stato depressivo con grave alterazione dello stato psicofisico, stato di inerzia generale, ipotermia e vomito 3,1-4,0 stato di incoscienza accompagnato da allucinazioni, riflessi annullati, coma e possibilità di morte per soffocamento da vomito oltre 4 problemi respiratori, sensazione di soffocamento con conseguente battito cardiaco rallentato, coma e possibile morte per arresto cardiaco

15 Per il codice della strada la guida in stato di ebbrezza è un reato. Il codice prevede che per guidare un autoveicolo il livello di alcolemia deve essere zero, per i giovani che hanno meno di 21 anni o le persone che hanno la patente da meno di 3 anni, mentre per tutti gli altri il tasso alcolemico deve essere inferiore a 0,5. Come si può calcolare il tasso di alcool nel sangue di una persona? Basta una semplice formula: à ( ) ( ) ( ) ( ( )) Il fattore di Widmark vale 0,73 per gli uomini e 0,66 per le donne. Come si può calcolare la quantità di alcool in una bevanda? Nelle etichette degli alcolici (sia che si tratti di birra, vino o superalcolici) è riportata la gradazione alcolica in % di volume (ml di alcool presenti in 100 ml di bevanda). Basta moltiplicarla per la quantità che ci interessa e si ottiene il volume di alcool. Per trasformarlo in peso, occorre moltiplicare il tutto per il peso specifico dell alcool che è di 0,79 Ricordiamoci che: 9 BEVANDA QUANTITÀ GRADO ALCOLICO % Lattina o bottiglia di birra leggera 330 ml 5 Bottiglia di birra doppio malto 330 ml 8 Bicchiere di vino 125 ml 11 Bicchiere di vino liquoroso 125 ml 16 Bicchierino di superalcolico 40 ml 40 Come calcolare quanto tempo impiega una persona a eliminare l alcool dal proprio organismo. ( ) ( ): Ora prova tu 1. Qual è la concentrazione di alcool nel sangue delle seguenti persone? Una donna di 54 kg che ha bevuto due bicchieri di vino nell arco di poco tempo. Un uomo di 70 kg che ha bevuto due bottiglie di birra doppio malto nell arco di poco tempo Una donna di 60 kg che ha bevuto due bicchierini di superalcolico nell arco di poco tempo 2. Il signore e la signora Sbronzetti (rispettivamente di 75kg e 64 kg), hanno bevuto metà bottiglia di vino (da 75 cl) per ciascuno. Quanto tempo impiegherà ciascuno ad eliminare l alcool dal proprio organismo?

16 C O C KT A I L D I M A T E M A T I C A Agli alunni, divisi in piccoli gruppi, sono state fornite schede con ricette per realizzare cocktail analcolici. Garibaldi 3/10 di Bitter o Ginger 7/10 di succo d arancia Caipiroska analcolica alla fragola 1 lime 30g di zucchero di canna 50 g di fragole 50 ml di acqua tonica o Sprite Colpo di fulmine 15% succo di limone 25% succo di arancia 15% succo di fragola 10% succo di ananas 10% zucchero liquido 25% acqua tonica o soda Lucky 35% Succo di pompelmo 35% Succo di mandarino 5% Sciroppo di frutti di bosco 20 % Acqua tonica o soda 5% Sciroppo di zucchero Fragolemon Fragola: Bitter: limone: soda In rapporto 3 : 2 : 1 : 3 Virgin Bellini pesca: limone: soda: sciroppo di zucchero in rapporto 4 : 2: 4: 1 Smeraldo 8cl succo di mela verde 4 cl sciroppo di sambuco 3 cl succo di limone 5 cl acqua tonica o soda Virgin colada 4 cl di succo di arancia 6 cl succo di ananas 2cl latte di cocco 2-3 fragole e tocchetti di ananas Rosso sambuco 1/5 Fragola 1/10 sciroppo di sambuco 3/10 limone 2/5 acqua tonica Virgin mojito 15 cl Soda 1/2 frutto Lime 2 cucchiaini Zucchero di canna 5-6 foglie di Menta

17 Come si può vedere le quantità degli ingredienti sono espresse in modo diverso: ci sono frazioni, rapporti, percentuali e misure decimali. Per prima cosa gli aspiranti barman dovevano calcolare per ogni ingrediente la quantità necessaria per preparare mezzo litro di cocktail, dopo di che dovevano procurarsi il necessario e preparare i cocktail. Inoltre ciascun gruppo doveva inventare un cocktail, dargli un nome, scrivere la ricetta e realizzarlo. L esperienza si è conclusa con l assaggio e la proclamazione del cocktail vincitore tra quelli di nuova invenzione: Il COLPO DI FRUTTA

18 Il materiale utilizzato per la realizzazione del progetto in parte è inventato e in parte ha preso spunto dai seguenti testi e siti internet. BIBLIOGRAFIA La matematica degli Egizi- I papiri matematici del nuovo regno,a. Cartocci, Firenze University Press,2007 Storia della matematica, Carl B. Boyer, Oscar Mondadori, 2013 La Matematica Numeri A e B- Emma Castelnuovo, La Nuova Italia,2005 Matematica a Sorpresa- Aritmetica 2- A. Gorini, Principato Ed., 2011 Matematica intorno a te- Numeri 2- Zarattini et al., Edizioni scolastiche Bruno Mondadori, 2010 Matematica in azione- Vol C Aritmetica, Arpinati, Musiani, Zanichelli,2011 Contaci! Numeri, relazioni, dati- vol 1 e 2, C. Bertinetto et al., Zanichelli, 2012 Matematica in volo Aritmetica B, Colosio Giliani, Editrice La scuola,2009 SITOGRAFIA Le frazioni Cenni storici sui numeri decimali Appunti scienze della formazione Parenti Scienze della Formazione Primaria Modulo Matematica I - A.A. 2008/2009 Docente L. Parenti Lettura: la scrittura delle frazioni nella storia, confronto con i nostri metodi Argomento: numeri decimali e scrittura dei numeri Lezione 16: 28/04/03 NUMERI DECIMALI E MISURE VERBALE (a cura di Carla Ivaldi, Claudia Celentano e Maria A. Mazzotta) Corso di laurea in Scienze della Formazione Primaria A.A. 2011/12 Corso di Matematica I modulo Docente Parenti Laura

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Alcol: ma quanto ce n'è in quello che bevo?

Alcol: ma quanto ce n'è in quello che bevo? www.iss.it/stra ISTITUTO SUPERIORE DI SANITÀ DIPARTIMENTO AMBIENTE E CONNESSA PREVENZIONE PRIMARIA REPARTO AMBIENTE E TRAUMI OSSERVATORIO NAZIONALE AMBIENTE E TRAUMI (ONAT) Franco Taggi Alcol: ma quanto

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

AL SUPERMERCATO UNITÁ 11

AL SUPERMERCATO UNITÁ 11 AL SUPERMERCATO Che cosa ci serve questa settimana? Un po di tutto; per cominciare il pane. Sì, prendiamo due chili di pane. Ci serve anche il formaggio. Sì, anche il burro. Prendiamo 3 etti di formaggio

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle scatole alle figure piane Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle Indicazioni nazionali per il curricolo Le conoscenze matematiche contribuiscono alla formazione

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Costruire una pila in classe

Costruire una pila in classe Costruire una pila in classe Angela Turricchia, Grazia Zini e Leopoldo Benacchio Considerazioni iniziali Attualmente, numerosi giocattoli utilizzano delle pile. I bambini hanno l abitudine di acquistarle,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri

Giovanna Mayer. Ordinamento dei numeri e retta numerica. Nucleo: Numeri Giovanna Mayer Nucleo: Numeri Introduzione Tematica: Si propongono attività e giochi per sviluppare in modo più consapevole la capacità di confrontare frazioni, confrontare numeri decimali e successivamente

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

DIECI ESPERIMENTI SULL ARIA

DIECI ESPERIMENTI SULL ARIA ANNARITA RUBERTO http://scientificando.splinder.com DIECI ESPERIMENTI SULL ARIA per i piccoli Straws akimbo by Darwin Bell http://www.flickr.com/photos/darwinbell/313220327/ 1 http://scientificando.splinder.com

Dettagli

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N.

FORMAT DELL UNITÀ DI APPRENDIMENTO. Scuola secondaria 1 grado S.Ricci di Belluno classe 2. ULSS n.1 Belluno PERSONALE AZIENDA ULSS N. FORMAT DELL UNITÀ DI APPRENDIMENTO Scuola secondaria 1 grado S.Ricci di Belluno classe 2 ULSS n.1 Belluno Autori: PERSONALE AZIENDA ULSS N. 1 BELLUNO: Dr.ssa Mel Rosanna Dirigente medico SISP (Dipartimento

Dettagli

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99 Bravissimo/a! Sei arrivato/a alla fine della parte di italiano... Adesso perché non ripassi un po di matematica? A settembre sarai un bolide nelle operazioni, nel risolvere i problemi e in geometria! matematica

Dettagli

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria

Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Facoltà di Scienze della Formazione Cdl Scienze della Formazione Primaria Indirizzo Scuola Primaria Laurent Lafforgue: il calcolo mentale e quello in colonna devono essere introdotti molto presto su numeri

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Università per Stranieri di Siena. Centro. Certificazione CILS. Certificazione. di Italiano come Lingua Straniera. Sessione: Dicembre 2012 Livello: A1

Università per Stranieri di Siena. Centro. Certificazione CILS. Certificazione. di Italiano come Lingua Straniera. Sessione: Dicembre 2012 Livello: A1 Università per Stranieri di Siena Centro CILS Sessione: Dicembre 2012 Test di ascolto Numero delle prove 2 Ascolto - Prova n. 1 Ascolta i testi: sono brevi dialoghi e annunci. Poi completa le frasi.

Dettagli

Se dico la parola TEMPO che cosa ti viene in mente?

Se dico la parola TEMPO che cosa ti viene in mente? Se dico la parola TEMPO che cosa ti viene in mente? Ognuno di noi ha espresso le proprie opinioni, poi la maestra le ha lette ad alta voce. Eravamo proprio curiosi di conoscere le idee ti tutti! Ecco tutti

Dettagli

Centro Documentazione SerT Arezzo COSA NE SO? QUESTIONARIO DI VALUTAZIONE DELLE CONOSCENZE POSSEDUTE SU DROGHE E ALCOL. Barrare la risposta corretta

Centro Documentazione SerT Arezzo COSA NE SO? QUESTIONARIO DI VALUTAZIONE DELLE CONOSCENZE POSSEDUTE SU DROGHE E ALCOL. Barrare la risposta corretta Centro Documentazione SerT Arezzo COSA NE SO? QUESTIONARIO DI VALUTAZIONE DELLE CONOSCENZE POSSEDUTE SU DROGHE E ALCOL Barrare la risposta corretta A cura della Dott.ssa Cristina Cerbini Febbraio 2006

Dettagli

Bambini oppositivi e provocatori 9 regole per sopravvivere!

Bambini oppositivi e provocatori 9 regole per sopravvivere! Anna La Prova Bambini oppositivi e provocatori 9 regole per sopravvivere! Chi sono i bambini Oppositivi e Provocatori? Sono bambini o ragazzi che sfidano l autorità, che sembrano provare piacere nel far

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

DAL LIBRO AL TEATRO Caduto dal basso

DAL LIBRO AL TEATRO Caduto dal basso DAL LIBRO AL TEATRO Caduto dal basso LIBERI PENSIERI PER LIBERI SENTIMENTI La riflessione circa In viaggio verso l incontro come ci è stato proposto, nasce attorno alla lettura del romanzo : C è nessuno?

Dettagli

Valutare gli apprendimenti degli alunni stranieri

Valutare gli apprendimenti degli alunni stranieri MPI - USP di Padova Comune di Padova Settore Servizi Scolastici Centro D.A.R.I. Una scuola per tutti Percorso di formazione per docenti Valutare gli apprendimenti degli alunni stranieri I parte a cura

Dettagli

alcoliche alcoliche: Bevande se sì, solo in quantità controllata

alcoliche alcoliche: Bevande se sì, solo in quantità controllata 7. alcoliche alcoliche: Bevande se sì, solo in quantità controllata 53 7. Bevande alcoliche: se sì, solo in quantità controllata 1. DEFINIZIONE DI UNITÀ ALCOLICA (U.A.) Una Unità Alcolica (U.A.) corrisponde

Dettagli

SISTEMI DI MISURA ED EQUIVALENZE

SISTEMI DI MISURA ED EQUIVALENZE Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA SISTEMI DI MISURA ED EQUIVALENZE Un tappezziere prende le misure di una stanza per acquistare il quantitativo di tappezzeria

Dettagli

DAL MEDICO UNITÁ 9. pagina 94

DAL MEDICO UNITÁ 9. pagina 94 DAL MEDICO A: Buongiorno, dottore. B: Buongiorno. A: Sono il signor El Assani. Lei è il dottor Cannavale? B: Si, piacere. Sono il dottor Cannavale. A: Dottore, da qualche giorno non mi sento bene. B: Che

Dettagli

4. Conoscere il proprio corpo

4. Conoscere il proprio corpo 4. Conoscere il proprio corpo Gli esseri viventi sono fatti di parti che funzionano assieme in modo diverso. Hanno parti diverse che fanno cose diverse. Il tuo corpo è fatto di molte parti diverse. Alcune

Dettagli

PROVA DI ITALIANO - Scuola Primaria - Classe Seconda

PROVA DI ITALIANO - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti PROVA DI ITALIANO - Scuola Primaria - Classe Seconda Anno Scolastico 2011 2012 PROVA DI ITALIANO Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

In collaborazione con

In collaborazione con In collaborazione con OSSERVATORIO NAZIONALE ALCOL CNESPS bere SIA WHO COLLABORATING CENTRE FOR RESEARCH AND HEALTH PROMOTION ON ALCOHOL AND ALCOHOL-RELATED HEALTH PROBLEMS SOCIETÀ ITALIANA ALCOLOGIA non

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Frazioni e numeri razionali I numeri naturali sono i primi numeri che hai incontrato, quando hai cominciato a contare con le dita. Ma vuoi eseguire tutte le sottrazioni. E allora hai bisogno dei numeri

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Unità VI Gli alimenti

Unità VI Gli alimenti Unità VI Gli alimenti Contenuti - Gusti - Preferenze - Provenienza Attività AREA ANTROPOLOGICA 1. Cosa piace all Orsoroberto L Orsoroberto racconta ai bambini quali sono i cibi che lui ama e che mangia

Dettagli

Alcol: sei sicura? Le ragazze e l alcol. Il libretto per conoscere e non rischiare.

Alcol: sei sicura? Le ragazze e l alcol. Il libretto per conoscere e non rischiare. OSSERVATORIO NAZIONALE ALCOL CNESP WHO COLLABORATING CENTRE FOR RESEARCH AND HEALTH PROMOTION ON ALCOHOL AND ALCOHOL-RELATED HEALTH PROBLEMS SIA SOCIETÀ ITALIANA ALCOLOGIA Alcol: sei sicura? Le ragazze

Dettagli

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen Programmare con LOGO 1 Istruzioni di base Un istruzione è un comando che il computer è in grado di capire e di

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

CHIMICA ORGANICA. Gli alcoli

CHIMICA ORGANICA. Gli alcoli 1 E1-ALCOLI CIMICA OGANICA ALCOLI Formula generale Desinenza -olo Gli alcoli Gli alcoli sono, dopo gli idrocarburi, i composti organici più comuni, che è possibile considerare come derivati dagli alcani

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c RSB0001 In quale/i dei disegni proposti l area tratteggiata é maggiore dell area lasciata invece bianca? a) Nel disegno contrassegnato con il numero uno. b) In nessuno dei due. c) Nel disegno contrassegnato

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Che cosa provoca una commozione cerebrale?

Che cosa provoca una commozione cerebrale? INFORMAZIONI SULLE COMMOZIONI CEREBRALI Una commozione cerebrale è un trauma cranico. Tutte le commozioni cerebrali sono serie. Le commozioni cerebrali possono verificarsi senza la perdita di conoscenza.

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

ma quanto è antico quest osso?

ma quanto è antico quest osso? ATTIVITÀ: ma quanto è antico quest osso? LIVELLO SCOLARE: primo biennio della scuola secondaria di secondo grado PREREQUISITI: lettura e costruzione di grafici, concetti di base di statistica modello atomico,

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

LA TEORIA DEL CUCCHIAIO

LA TEORIA DEL CUCCHIAIO 90 ICARO MAGGIO 2011 LA TEORIA DEL CUCCHIAIO di Christine Miserandino Per tutti/e quelli/e che hanno la vita "condizionata" da qualcosa che non è stato voluto. La mia migliore amica ed io eravamo nella

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA

SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA 24 2 Sommario Perché questo opuscolo 3 Il benessere sostenibile e i consumi delle famiglie italiane 4 Le etichette energetiche 5 La scheda di prodotto 9 L etichetta

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

SETTE MOSSE PER LIBERARSI DALL ANSIA

SETTE MOSSE PER LIBERARSI DALL ANSIA LIBRO IN ASSAGGIO SETTE MOSSE PER LIBERARSI DALL ANSIA DI ROBERT L. LEAHY INTRODUZIONE Le sette regole delle persone molto inquiete Arrovellarvi in continuazione, pensando e ripensando al peggio, è la

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

COSCIENZA COSMICA. FIRMAMENTO: Quant è grande un milione? 2012/13 novembre-dicembre 2012 Istituto Comprensivo Statale PETRITOLI

COSCIENZA COSMICA. FIRMAMENTO: Quant è grande un milione? 2012/13 novembre-dicembre 2012 Istituto Comprensivo Statale PETRITOLI COSCIENZA COSMICA FIRMAMENTO: Quant è grande un milione? Dati identificativi ANNO SCOLASTICO periodo SCUOLA DOCENTI COINVOLTI ORDINE SCUOLA DESTINATARI FORMATRICI 2012/13 novembre-dicembre 2012 Istituto

Dettagli

Compiti di prestazione e prove di competenza

Compiti di prestazione e prove di competenza SPF www.successoformativo.it Compiti di prestazione e prove di competenza Maurizio Gentile www.successoformativo.it www.iprase.tn.it www.erickson.it Definizione 2 I compiti di prestazione possono essere

Dettagli

Zuccheri. Zuccheri, dolci e bevande. zuccherate: nei giusti limiti

Zuccheri. Zuccheri, dolci e bevande. zuccherate: nei giusti limiti 4. Zuccheri Zuccheri, dolci e bevande zuccherate: nei giusti limiti 4. Zuccheri, dolci e bevande zuccherate: nei giusti limiti 36 1. ZUCCHERI E SAPORE DOLCE Tutti gli zuccheri sono fonti di energia e non

Dettagli

Indovinelli Algebrici

Indovinelli Algebrici OpenLab - Università degli Studi di Firenze - Alcuni semplici problemi 1. L EURO MANCANTE Tre amici vanno a cena in un ristorante. Mangiano le stesse portate e il conto è, in tutto, 25 Euro. Ciascuno di

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Appunti di Matematica

Appunti di Matematica Silvio Reato Appunti di Matematica Settembre 200 Le quattro operazioni fondamentali Le quattro operazioni fondamentali Addizione Dati due numeri a e b (detti addendi), si ottiene sempre un termine s detto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Regole per un buon Animatore

Regole per un buon Animatore Regole per un buon Animatore ORATORIO - GROSOTTO Libretto Animatori Oratorio - Grosotto Pag. 1 1. Convinzione personale: fare l animatore è una scelta di generoso servizio ai ragazzi per aiutarli a crescere.

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480...

classe delle migliaia seimilionitrecentosedicimilaquattrocento 2 h di miliardi 120 501 926 840... 8 h di milioni 8 926 145 480... ARITMETICA Le classi del numero Leggi i numeri che si riferiscono agli abitanti di alcuni Stati del mondo, poi riscrivili nella tabella in ordine crescente. Argentina 0 5 Nigeria 5 78 900 Australia 06

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Equilibrio Termico tra Due Corpi

Equilibrio Termico tra Due Corpi Equilibrio Termico tra Due Corpi www.lepla.eu OBIETTIVO L attività ha l obiettivo di fare acquisire allo sperimentatore la consapevolezza che: 1 il raggiungimento dell'equilibrio termico non è istantaneo

Dettagli

LE SOLUZIONI 1.molarità

LE SOLUZIONI 1.molarità LE SOLUZIONI 1.molarità Per mole (n) si intende una quantità espressa in grammi di sostanza che contiene N particelle, N atomi di un elemento o N molecole di un composto dove N corrisponde al numero di

Dettagli

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50

Esempi di problemi di 1 grado risolti Esercizio 1 Problema: Trovare un numero che sommato ai suoi 3/2 dia 50 http://einmatman1c.blog.excite.it/permalink/54003 Esempi di problemi di 1 grado risolti Esercizio 1 Trovare un numero che sommato ai suoi 3/2 dia 50 Trovare un numero e' la prima frase e significa che

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

MISURA PERFETTA DEL TUO ANELLO

MISURA PERFETTA DEL TUO ANELLO TROVA LA MISURA PERFETTA DEL TUO ANELLO ANELLI misure PANDORA Diametro Ø Controlla le tue impostazioni di stampa per essere sicuro che la misura in scala corrisponda esattamente a 50 millimetri. 48 50

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Rapporti e Proporzioni

Rapporti e Proporzioni Rapporti e Proporzioni (a cura Prof.ssa R. Limiroli) Rapporto tra numeri Il rapporto diretto tra due numeri a e b, il secondo dei quali diverso da zero, si indica con Ricorda a e b sono i termini del rapporto

Dettagli

Q84 A1073 K92 J65 VALENTINO DOMINI

Q84 A1073 K92 J65 VALENTINO DOMINI VALENTINO DOMINI L attacco iniziale, prima azione di affrancamento della coppia controgiocante, è un privilegio e una responsabilità: molti contratti vengono battuti o realizzati proprio in rapporto a

Dettagli

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI Indice 1 La ricerca operativa 2 1.1 Introduzione......................................... 2 1.2 Le fasi della ricerca operativa...............................

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Appunti sull orientamento con carta e bussola

Appunti sull orientamento con carta e bussola Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...

Dettagli

Livello CILS A2. Test di ascolto

Livello CILS A2. Test di ascolto Livello CILS A2 GIUGNO 2012 Test di ascolto numero delle prove 2 Ascolto Prova n. 1 Ascolta i testi. Poi completa le frasi. Scegli una delle tre proposte di completamento. Alla fine del test di ascolto,

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

PERCENTUALI CON LE FRAZIONI

PERCENTUALI CON LE FRAZIONI Visto che il 20% di un numero è uguale a frazionario per calcolare le percentuali. 20 100 n allora possiamo utilizzare il calcolo DATI n= numero intero p= frazione (percentuale) r= numeratore (tasso di

Dettagli

Esperienze con l elettricità e il magnetismo

Esperienze con l elettricità e il magnetismo Esperienze con l elettricità e il magnetismo Laboratorio di scienze Le esperienze di questo laboratorio ti permettono di acquisire maggiore familiarità con l elettricità e il magnetismo e di sperimentare

Dettagli

U.D.: LABORATORIO ELETTRICITA

U.D.: LABORATORIO ELETTRICITA U.D.: LABORATORIO ELETTRICITA 1 ATTREZZI MATERIALI 2 Tavoletta compensato Misure: 30cmx20-30 cm spellafili punteruolo cacciavite Nastro isolante Metro da falegname e matita Lampadine da 4,5V o 1,5V pinza

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Chimica Suggerimenti per lo studio

Chimica Suggerimenti per lo studio Chimica Suggerimenti per lo studio Dr. Rebecca R. Conry Traduzione dall inglese di Albert Ruggi Metodo di studio consigliato per la buona riuscita degli studi in Chimica 1 Una delle cose che rende duro

Dettagli