Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1"

Transcript

1 Lez.3 Accoppiamento mutuo Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina

2 Doppio bipolo Trasformatore deale È un doppio bipolo caratterizzato da un solo parametro a, detto rapporto di trasformazione a: i (t) i (t) v (t) v (t) v v i i a a Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina

3 Proprietà del Trasformatore ideale: ) Elevatore di tensione e abbassatore di corrente se a ; ) Abbassatore di tensione ed elevatore di corrente se a ; 3) Trasparente alle potenze; 4) Trasporto :R eq = a R. 5) Trasporto nel dominio simbolico: z eq = a z Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 3

4 nduttori accoppiati - Doppio bipolo accoppiamento mutuo Una bobina di N spire, realizzata con conduttore ideale percorso da corrente i t è posta in vicinanza di una bobina analoga realizzata con N spire percorsa dalla corrente i t n v (t) v (t) i (t) n i (t) Se le bobine sono a distanza sufficiente, il campo magnetico generato dalla corrente in una spira non interagisce con l altra e viceversa. l campo magnetico prodotto dalla corrente concatenato con le N spire che dà luogo al flusso totale i t genererà un flusso t. Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 4

5 Analoga considerazione potrà essere fatta per la seconda bobina. Se i campi non interagiscono, usando la convenzione dell utilizzatore: v v d dt d dt n linearità ( Li, Li) e tempo invarianza, v v L L di dt di dt Otteniamo le caratteristiche di due induttori. Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 5

6 Avvicinando le bobine, i campi interagiscono: Ad esempio, il flusso totale concatenato con il primo circuito è dato dalla somma di due contributi: quello di i t. i t e quello di Analogamente per il flusso totale φ concatenato con il circuito. { φ = φ (i 0;i =0) φ = φ (i =0;i 0) { φ = φ (i 0;i =0) φ = φ (i =0;i 0) n linearità e tempo invarianza: { v = d dt (L i ) + d dt (M i ) v = d dt (M i ) + d dt (L i ) di dt + M { v = L di v = M + L dt di dt di dt Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 6

7 l doppio bipolo accoppiamento mutuo è definito dal parametro L coefficiente di autoinduzione del primo avvolgimento, L coefficiente di autoinduzione del secondo avvolgimento, M coefficiente di mutua induzione del secondo avvolgimento sul primo e M coefficiente di mutua induzione del primo avvolgimento sul secondo l simbolo grafico è: i (t) i (t) v (t) v (t) Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 7

8 Proprietà del doppio bipolo accoppiamento mutuo ) L 0 e L 0, il coefficiente di autoinduzione è positivo; ) M M M per la proprietà di reciprocità (e per motivi energetici); 3) M può assumere segno qualsiasi perché dipende dalle convenzioni M L L per questioni energetiche. 4) M 0 M 0 Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 8

9 Potenza ed energia del doppio bipolo accoppiamento mutuo La potenza assorbita risulta: p a di dt t vi vi L M i M L i l differenziale dw(t) dell energia è: dw = (L di + M di ) + (M di + L di ) l differenziale dell energia deve essere un differenziale esatto perché l energia è una funzione di stato e la variazione di energia tra due stati diversi (ad esempio lo stato e lo stato ) non può dipendere dal cammino fatto per raggiungerli, ma solo dallo stato iniziale e finale. di dt di dt di dt Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 9

10 Affinché il differenziale dell energia sia esatto deve accadere che M M M. Solo in questo caso, infatti, può definirsi una funzione energia interna W(t) tale che dw = W (t)dt e: dw = W() W() Per cui: dw(t) = L di i + Mdi i + Mdi i + L di i dw(t) = d ( L i + Mi i + L i ) E l energia interna del doppio bipolo è: W(t) = L i + Mi i + L i Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 0

11 L energia interna all istante t del doppio bipolo accoppiamento mutuo dipende solo dal valore delle correnti i e i in quell istante. L accoppiamento mutuo è un componente passivo. Esso può fornire tutta l energia che ha precedentemente immagazzinato, ma non ne può fornire una quantità maggiore. Per dimostrarlo, basta considerare una qualsiasi evoluzione delle correnti. W(t) W(t ) t t Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina

12 Ad esempio: ) si parte da uno stato iniziale in cui le correnti sono nulle e l energia interna è pertanto nulla (i (t 0 ) = 0; i (t 0 ) = 0); ) si fa assorbire energia, passando ad un nuovo stato in cui i (t ) = 0 e i (t 0 ) = 0 e l energia è W(t ) = L 0 + M L 0 ; 3) si fa evolvere liberamente il circuito e si verifica che, da questo momento, la massima energia erogabile si ha quando i (t ) = i (t ) = 0. Tale energia è non superiore a quella posseduta in t, pari a W(t ). L accoppiamento mutuo è un doppio bipolo conservativo perché l energia assorbita dal componente viene immagazzinata nel campo magnetico sotto forma di energia interna per poi essere restituita al circuito. Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina

13 L energia immagazzinata (nel campo magnetico) è per definizione una B quantità positiva ( W d ) e dipende da i e i : W(i, i ) = L i + Mi i + L i 0 Può essere riscritta come W i i L, i i i M L i i 0 Posto x = ( i i ), l espressione nel piano (W/i, x) è una parabola di equazione: W i = L x + Mx + L Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 3

14 W i Questa parabola non deve mai intersecare l asse delle x perché non deve esistere una coppia di valori (i,i ) della corrente in corrispondenza della quale l energia immagazzinata è negativa. Ciò può accadere solo se l equazione L x Mx L 0 ha radici complesse. Considerando il discriminante dell equazione (Δ = M L L ), si ricava la condizione di fisica realizzabilità: M L L Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 4 x

15 Tale condizione può essere espressa anche tramite il coefficiente di accoppiamento k definito come: e si esprime con k + k M L L La condizione k ( M LL) individua l accoppiamento perfetto. n tal caso esiste una coppia di valori ( i, i ) per i quali l energia immagazzinata W è nulla e ciò significa che è nullo in ogni punto dello spazio il campo magnetico associato al doppio bipolo. Esiste una coppia di correnti tali che è possibile annullare il campo prodotto dalla corrente in un avvolgimento, facendo circolare un opportuna corrente nel secondo avvolgimento. Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 5

16 Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 6 Accoppiamento mutuo in regime sinusoidale L j M j V M j L j V M L M j V L M L j V Con accoppiamento perfetto ( L L M ), i secondi membri sono uguali: M j V L j V a L M M L V V

17 V V V jl a a: a i (t) i (t) v (t) L v (t) Un mutuo induttore ad accoppiamento magnetico perfetto è equivalente a un trasformatore ideale avente in parallelo alla prima porta un induttore di induttanza L Nell ipotesi in cui sia, si ottiene un trasformatore ideale. L Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 7

18 Se l accoppiamento non è perfetto ( M LL), è possibile imporre le seguenti condizioni L L M L' L' L'' L'' L'' n modo da ricavare una coppia di valori L '' L' ' tali che M L' ' L'' L'' Potremo scrivere: V V jl' jl' jl'' jm jm jl'' Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 8

19 termini in parentesi descrivono un accoppiamento perfetto con M L' ' L'' e a L'' M M L'' { E = jωl + jωm E = jωm + jωl l circuito equivalente si ottiene poi aggiungendo j L', jl' L i i L v L e e v a Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 9

20 Come si realizza, fisicamente, un accoppiamento perfetto? Gli avvolgimenti devono essere realizzati in modo tale che siano trascurabili i termini L ' e L ', ossia in modo che sia nullo il flusso disperso, cioè non esistano linee di campo che si concatenano con un avvolgimento e non con l altro. Se poi gli avvolgimenti sono realizzati su materiale con permeabilità magnetica estremamente elevata (μ ), per cui sia ha che L, allora si riesce ad ottenere un trasformatore ideale. Università di Napoli Federico, CdL ng. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 0

Elettrotecnica. 13 Doppi bipoli di ordine uno

Elettrotecnica. 13 Doppi bipoli di ordine uno Elettrotecnica 13 Doppi bipoli di ordine uno 1 Doppi bipoli ideali di ordine uno governati da due semplici equazioni funzionali F 1 [v 1 (t),v (t),i 1 (t),i (t)]=0 F [v 1 (t),v (t),i 1 (t),i (t)]=0 contenti

Dettagli

Trasformatore monofase Da un punto di vista di trasformazioni di energia, si tratta di una macchina elettrica in grado di trasformare energia elettrica in altra energia elettrica. Il suo funzionamento

Dettagli

Elettrotecnica - A.A Prova n gennaio 2012

Elettrotecnica - A.A Prova n gennaio 2012 ognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 V G1 1 2 3 I G6 ri 2 4 7 8 E D Supponendo noti i valori delle resistenze, della tensione V G1, della corrente I G6 e del parametro di trasferimento

Dettagli

Lez.14 Bipoli dinamici. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 14 Pagina 1

Lez.14 Bipoli dinamici. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 14 Pagina 1 Lez.14 Bipoli dinamici Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 14 Pagina 1 Il bipolo condensatore ideale i (t) v(t) C Il condensatore lineare è un

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

TRASFORMATORE. Struttura generale dei trasformatori

TRASFORMATORE. Struttura generale dei trasformatori TRASFORMATORE Il trasformatore è una macchina elettrica statica(priva di parti in movimento), trasforma l energia elettrica che riceve dalla rete di alimentazione ancora in energia elettrica data al carico,

Dettagli

Lez.19 Rifasamento e risonanza. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 19 Pagina 1

Lez.19 Rifasamento e risonanza. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 19 Pagina 1 Lez.19 Rifasamento e risonanza Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 19 Pagina 1 Rifasamento Nel trasporto dell energia elettrica lungo le reti di

Dettagli

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011 Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 Supponendo noti i valori delle resistenze, della tensione V G1 e dei parametri di trasferimento dei generatori dipendenti, illustrare il

Dettagli

Lez.27 La macchina in corrente continua. Cenni.

Lez.27 La macchina in corrente continua. Cenni. Lez.27 La macchina in corrente continua. Cenni. Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 27 Pagina 1 Conduttore in moto in un campo magnetico Supponiamo

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1

Lez.22 Circuiti dinamici di ordine due. 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 22 Pagina 1 Lez.22 Circuiti dinamici di ordine due. 2 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 22 Pagina 1 Equazioni di stato L analisi dei circuiti dinamici tramite

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Università degli Studi di Bergamo Facoltà di ingegneria Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Es. 1 Dato il circuito magnetico in figura, trascurando gli effetti di bordo, calcolare

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Cosa è un alternatore?

Cosa è un alternatore? L alternatore Cosa è un alternatore? L alternatore è una macchina elettrica rotante il cui funzionamento è basato sul fenomeno dell'induzione elettromagnetica. L alternatore trasforma energia meccanica

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

Introduzione ai circuiti

Introduzione ai circuiti università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di Introduzione ai circuiti Corso di laurea in Ingegneria delle Telecomunicazioni Dettate dal

Dettagli

Università degli Studi di Napoli Federico II

Università degli Studi di Napoli Federico II Università degli Studi di Napoli Federico II Facoltà di Ingegneria Registro delle lezioni del corso di Elettrotecnica per allievi Meccanici dettate da Luigi Verolino, professore ordinario nell Anno Accademico

Dettagli

Richiami di Elettrotecnica

Richiami di Elettrotecnica Dip. di Ingegneria dell Informazione ed Elettrica e Matematica Applicata Corso di Laurea in Ingegneria Informatica Corso di Tecnologie Elettriche per l Informatica Industriale prof. Vincenzo Tucci/Patrizia

Dettagli

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici Azionamenti Elettrici Parte Generazione del moto mediante motori elettrici Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 05-6443024 E-mail mail: atonielli@deis deis.unibo.itit Collocazione del

Dettagli

Lez.16 Il metodo simbolico. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 16 Pagina 1

Lez.16 Il metodo simbolico. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 16 Pagina 1 Lez.16 Il metodo simbolico Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 16 Pagina 1 Regime sinusoidale Stato di funzionamento di un circuito in cui tutte

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

INDUTTANZA ENERGIA MAGNETICA

INDUTTANZA ENERGIA MAGNETICA INDUTTANZA E ENEGIA MAGNETICA Una corrente variabile in una bobina induce una f.e.m. in un altra bobina: è possibile avere lo stesso fenomeno in una sola bobina quando la corrente i varia nel tempo? Fenomenologia

Dettagli

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note:

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note: data 20 settembre 2017 data 22 settembre 2017 data 27 settembre 2017 data 29 settembre 2017 Introduzione al corso e sua organizzazione didattica, sussidi didattici. Interazione elettromagnetica, sistemi

Dettagli

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c)

B B B. 5.2 Circuiti in regime sinusoidale. (a) (b) (c) V V A 5.2 Circuiti in regime sinusoidale 219 W B B B (a) (b) (c) Figura 5.4. Simboli del (a) voltmetro, (b) amperometro e (c) wattmetro ideali e relativi schemi di inserzione I I V Nel simbolo del voltmetro

Dettagli

Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli

Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli Lezione n.1 Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli 1. Definizioni 1.1 Il circuito elettrico 1.2 L intensità di corrente elettrica 1.3 La tensione elettrica e il

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli

Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli Lezione n.1 Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli 1. Definizione di circuito elettrico 2. Bipolo e relazione caratteristica di un bipolo 3. Corrente elettrica

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2016-2017 Insegnamento: Introduzione ai circuiti Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria Elettrica

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esercizio 1 Esame Scritto Fisica Generale T-B (dl Ingegneria ivile) Prof. M. Sioli VI Appello A.A. 2014-2015 - 11/09/2015 Soluzioni Esercizi Tre cariche positive Q 1, Q 2, Q 3 = 5 µ sono disposte sui vertici

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

Rs Afe. δ1 δ2 δ3 Rs. Vs R1

Rs Afe. δ1 δ2 δ3 Rs. Vs R1 Dato il circuito in figura funzionante in regime stazionario, sono noti: Rs = 7.333 Ω, R = 2 Ω, R3 = 7 Ω, δ = mm, δ2 =.3 mm, δ3 =.5 mm, Α = 8 cm 2, N = 00, = 500, V = 30 V. Si consideri la permeabilità

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

Lez.3 I bipoli. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 1

Lez.3 I bipoli. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 3 Pagina 1 Lez.3 I bipoli Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 3 Pagina 1 Bipoli - Proprietà Il bipolo è un componente di un circuito elettrico caratterizzato

Dettagli

Lezioni n.16. Trasformatore

Lezioni n.16. Trasformatore Lezione 6 Trasformatore Lezioni n.6 Trasformatore. Trasformatore ideale. Proprietà del trasporto di impedenza 3. Induttori accoppiati trasformatore reale 4. Schema circuitale equialente per accoppiamento

Dettagli

ITI M. FARADAY AS 2018/19. Programmazione modulare

ITI M. FARADAY AS 2018/19. Programmazione modulare ITI M. FARADAY AS 2018/19 Programmazione modulare Indirizzo: Elettrotecnica ed elettronica Classe: 3 AEE Disciplina: ELETTROTECNICA - ELETTRONICA Classe: 3 AEE Ore settimanali previste: 6 (3 ore Teoria

Dettagli

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 Tipo 1 ompiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 Es. 1: (Esempio di risoluzione) 1. Scelto l albero formato dai lati 1, 3, 4, le incognite sono le correnti di maglia I 1 e I 5 (la corrente I 6 = I

Dettagli

TEST DI ELETTROTECNICA - 2

TEST DI ELETTROTECNICA - 2 Zeno Martini (admin) TEST DI ELETTROTECNICA - 2 10 September 2012 Potenza ed energia 1 La potenza elettrica in continua è data da: A - Il rapporto tra la tensione ai capi di un bipolo e l'intensità di

Dettagli

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici XI Prefazione 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF 1 1.1 Modello circuitale dei fenomeni elettromagnetici 1.1.1 Modello a parametri concentrati, p. 1-1.1.2 Modello a parametri

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

Simbolo induttore. Un induttore. Condensatore su nucleo magnetico

Simbolo induttore. Un induttore. Condensatore su nucleo magnetico INDUTTORI Un induttore elettrico è un elemento collegabile in un circuito in due punti che, nella sua forma più semplice, è costituito da un avvolgimento elettrico che può essere avvolto in aria oppure

Dettagli

Lez.25 Le macchine elettriche. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 25 Pagina 1

Lez.25 Le macchine elettriche. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 25 Pagina 1 Lez.25 Le macchine elettriche Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 25 Pagina 1 Le macchine sono sistemi fisici in cui avvengono trasformazioni di

Dettagli

Lezione 19 - Induzione elettromagnetica

Lezione 19 - Induzione elettromagnetica Lezione 19 - Induzione elettromagnetica Una spira percorsa da corrente è equivalente ad un momento magnetico: se si pone questa spira in un campo magnetico esterno essa subisce un momento torcente Si verifica

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015 ognome Nome Matricola Firma Parti svolte: E E D Esercizio I G 4 gv E 5 D 6 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Lez.4 Bipoli elementari. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 4 Pagina 1

Lez.4 Bipoli elementari. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 4 Pagina 1 Lez.4 Bipoli elementari Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 4 Pagina 1 Bipoli elementari adinamici Sono governati da semplici equazioni del tipo

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi

Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti. Gianluca Susi Richiami su grandezze fisiche considerate e convenzioni utilizzate nell analisi di circuiti Gianluca Susi Carica E indicata con q e si misura in Coulomb [C] Principio di conservazione della carica elettrica:

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 14/6/2018. b) 26.9

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 14/6/2018. b) 26.9 Fisica II - Ingegneria iomedica - A.A. 07/08 - Appello del 4/6/08 ) onsideriamo le 3 cariche in figura con q = -q, q = -q, q3 = -q, q = ; le loro distanze dall origine sono r = 3 cm, r = r3 = cm, e l angolo

Dettagli

Lez.12 n-poli. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 12 Pagina 1

Lez.12 n-poli. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 12 Pagina 1 Lez.12 n-poli Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 12 Pagina 1 n-poli Un n-polo è un componente di un circuito elettrico caratterizzato da una superficie

Dettagli

Il trasformatore 1/55

Il trasformatore 1/55 l trasformatore /55 Costituzione di un trasformatore monofase l trasformatore monofase è costituito da un nucleo di ferro, formato da un pacco lamellare di lamierini sagomati (colonne e gioghi) e isolati

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica Lavoro meccanico ed energia elettrica -trattazione qualitativa

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13 Prova Scritta del 11/11/2013 - NOME 1) Un commerciante prepara palloncini colorati all interno di un magazzino di volume di

Dettagli

Descrizione dei bipoli lineari e tempo invarianti utilizzati in questo corso

Descrizione dei bipoli lineari e tempo invarianti utilizzati in questo corso Lezione n.2 Descrizione dei bipoli lineari e tempo invarianti utilizzati in questo corso 1. Relazione caratteristica di un bipolo 2. Resistore 3. Circuito aperto 4. Corto circuito 5. Generatori di tensione

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

ENERGIA E FORZA MAGNETICA

ENERGIA E FORZA MAGNETICA ENERGIA E FORZA MAGNETICA Energia Magnetica Autoinduttanza e mutua induttanza sono stati esaminati in termini statici, considerando la corrente permanente. Sebbene gli induttori privi di resistenza si

Dettagli

Lezione 8 L induzione elettromagnetica (sintesi slides)

Lezione 8 L induzione elettromagnetica (sintesi slides) Lezione 8 L induzione elettromagnetica (sintesi slides) Questa sintesi fa riferimento alla lezione 8 L induzione elettromagnetica del corso online di Fisica II accessibile, previa iscrizione, da http://federica.eu/c/fisica_ii

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE

MACCHINE ELETTRICHE TRASFORMATORE TRIFASE MACCHNE ELETTRCHE TRASFORMATORE TRFASE Trasformatore Trifase Un trasformatore trifase può essere realizzato tramite tre trasformatori monofase gemelli, collegando opportunamente gli avvolgimenti primari

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

CIRCUITI MAGNETICAMENTE ACCOPPIATI

CIRCUITI MAGNETICAMENTE ACCOPPIATI Zeno Martini (admin) CIRCUITI MAGNETICAMENTE ACCOPPIATI 22 March 2015 La richiesta del calcolo di coefficienti di auto e mutua induzione pervenuta nel forum, mi ha ricordato questo articolo di un paio

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Ingegneria dei Sistemi Elettrici_5d

Ingegneria dei Sistemi Elettrici_5d ngegneria dei Sistemi Elettrici_5d Energia magnetica Autoinduttanza e mutua induttanza sono stati esaminati in termini statici, considerando la corrente permanente. Sebbene gli induttori privi di resistenza

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

Università di Napoli Federico II Scuola Politecnica e delle Scienze di Base. Corso di Laurea in Ingegneria Meccanica (II anno I semestre)- 9 CFU

Università di Napoli Federico II Scuola Politecnica e delle Scienze di Base. Corso di Laurea in Ingegneria Meccanica (II anno I semestre)- 9 CFU Università di Napoli Federico II Scuola Politecnica e delle Scienze di Base Corso di Laurea in Ingegneria Meccanica (II anno I semestre)- 9 CFU Proff. Carlo Petrarca e Fabio Villone Programma del Corso

Dettagli

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Università degli Studi di Pavia Facoltà di Ingegneria Corso di Corso di Elettrotecnica Teoria dei Circuiti Doppi bipoli Che cos è? E un dispositivo con due porte di scambio della potenza elettrica (Porta

Dettagli

LINEE CON CAVO COASSIALE

LINEE CON CAVO COASSIALE LINEE CON CAVO COASSIALE Coefficiente di autoinduzione di un cavo coassiale Sia dato il cavo coassiale di fig. 1 Fig. 1 Cavo coassiale esso è costituito da due conduttori coassiali lunghi, di sezione e

Dettagli

Capitolo V I bipoli in regime dinamico: bipoli passivi

Capitolo V I bipoli in regime dinamico: bipoli passivi Capitolo V I bipoli in regime dinamico: bipoli passivi Nell esposizione della teoria dei circuiti, che abbiamo fin qui presentato, il tempo è entrato in maniera veramente marginale. Dovendo trattare di

Dettagli

Lez.26 La macchina asincrona. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 26 Pagina 1

Lez.26 La macchina asincrona. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 26 Pagina 1 Lez.26 La macchina asincrona Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 26 Pagina 1 La macchina asincrona (a induzione) è utilizzata sia come generatore

Dettagli

Errata Corrige. M. Repetto, S. Leva

Errata Corrige. M. Repetto, S. Leva Errata Corrige M. epetto, S. Leva 21 marzo 2016 Indice 0.1 CAPITOLO 1............................ 2 0.1.1 pagina 16, nel testo..................... 2 0.1.2 pagina 16, Fig.1.17..................... 2 0.1.3

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Elementi di elettrologia. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 1 Pagina 1

Elementi di elettrologia. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 1 Pagina 1 Lez.1 Elementi di elettrologia Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 1 Pagina 1 Obiettivi formativi del corso di Elettrotecnica Introdurre le leggi

Dettagli

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2 Esame scritto di Elettromagnetismo del 17 Giugno 014 - a.a. 013-014 proff. F. Lacava, F. icci, D. Trevese Elettromagnetismo 10 o 1 crediti: esercizi 1,,3 tempo 3 h e 30 min; ecupero di un esonero: esercizi

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Circuiti Elettrici. Capitolo 7 Condensatori e induttori

Circuiti Elettrici. Capitolo 7 Condensatori e induttori Circuiti Elettrici Capitolo 7 Condensatori e induttori Prof. Cesare Svelto (traduzione e adattamento) Copyright McGraw-Hill Education. Permission required for reproduction or display. Alexander, Sadiku,Gruosso,

Dettagli

Modellistica di sistemi elettrici e magnetici

Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Interazione tra cariche elettriche Legge di Coulomb q q 2 F d F F = q q 2 4 π ǫ d 2, ǫ = ǫ 0 ǫ r ǫ : permettività del mezzo ǫ 0 : permettività del vuoto ǫ

Dettagli

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018 Compito di Fisica Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 018 1 Una distribuzione volumetrica di carica a densità volumetrica costante = + 4 10-6 C/m 3 si + + + + + + estende nella

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corsi di Corso di Elettrotecnica e Teoria dei Circuiti Teoria dei Circuiti Doppi Bipoli Che cos è? E un dispositivo con due porte di scambio della

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli IV Appello - 12/06/2013 Soluzioni Esercizi Ex. 1 Tre cariche puntiformi Q 1 = 2q, Q 2 = 4q e Q 3 = 6q (dove

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Il trasformatore Principio di funzionamento

Il trasformatore Principio di funzionamento Il trasformatore Principio di funzionamento Il trasformatore è una macchina elettrica statica reversibile, che funziona sul principio della mutua induzione. È formato da un nucleo in lamierino ferromagnetico

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2018-2019 Insegnamento: Fondamenti di circuiti elettrici Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria

Dettagli