ENERGIA E FORZA MAGNETICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ENERGIA E FORZA MAGNETICA"

Transcript

1 ENERGIA E FORZA MAGNETICA

2 Energia Magnetica Autoinduttanza e mutua induttanza sono stati esaminati in termini statici, considerando la corrente permanente. Sebbene gli induttori privi di resistenza si comportano come un corto circuito in regime permanete (in c.c.) diventa necessario studiare il campo magnetico dovuto a correnti variabili quando si vogliono studiare gli effetti delle induttanze nei circuiti e nei campi magnetici. il lavoro necessario per portare una correnti da 0 ad un certo valore I in una spire conduttrici, viene immagazzinato sotto forma di energia magnetica

3 Energia Magnetica Si consideri una spira di induttanza L percorsa da una corrente variabile che, in un certo intervallo di tempo, passa 0 a I. In base alla legge di Lenz, nella spira verrà indotta una forza elettromotrice f.e.m e, tale da opporsi alla corrente che la ha generata, data da: d di e L dt dt I di v e L dt C in un circuito non dissipativo (R=0) la f.e.m. e compensa perfettamente la tensione v del generatore che alimenta la spira. 3

4 Il lavoro compiuto per incrementare la corrente da 0 a I nella spira sarà: W Energia Magnetica v i dt L di dt e poiché per i mezzi lineari il flusso concatenato è =L I L = /I, l energia magnetica immagazzinata, può essere espressa anche in funzione del flusso concatenato : i dt L I 0 i di L I W L I I Φ 4

5 Energia Magnetica Analogamente, è possibile calcolare l energia magnetica immagazzinata nel caso di due spire percorse dalle correnti i e i rispettivamente con correnti inizialmente nulle, che siano incrementate rispettivamente da 0 sino ai valori I e I. I I C C Per determinare il lavoro richiesto, applichiamo il principio di sovrapposizione degli effetti. 5

6 Energia Magnetica Inizialmente si mantenga i = 0 ( circuito aperto) e si incrementi i da 0 a I. Ciò richiede un lavoro W nella spira C e nessun lavoro nella spira C, perché i =0: W v i dt L Successivamente manteniamo i = I costante e incrementiamo i da 0 a I. A causa del mutuo accoppiamento, una parte del flusso I 0 i di L I magnetico dovuto a i si concatena con la spira C, inducendo una f.e.m e che deve essere compensata con un aumento della tensione applicata v e acui è associata una energia W : di v e L dt W v I dt L I di L I I 0 I 6

7 Energia Magnetica Allo stesso modo, per poter aumentare la corrente al valore I, deve essere fatto un lavoro W sulla spira C W LI Quindi il lavoro totale W tot richiesto per far circolare entrambe le correnti nelle spire concatenate sarà: W W W W L I L I I L I L I I tot kj j k k j Questa relazione può essere scritta in forma compatta ad un sistema di N spire : N N N N N Wtot Lkj I jik Lkj I j Ik k Ik k j k j k Dove Ф k è il flusso concatenato alla spira k-esima dovuto a tutte le 7 I j.

8 Energia Magnetica in funzione delle grandezze di campo Si dimostra che l energia magnetica totale W m necessaria per produrre un indizione തB in un volume v dovuta ad distribuzione continua di corrente è: Wm H B dv J v Dove J w è l energia magnetica specifica. m H B 3 m Poiché l energia magnetica immagazzinata é esprimibile in funzione della autoinduttanza o induttanza L, come: Wm LI [ J ] Da cui si può determinare L in funzione di W m : W L m [ H ] I 8

9 Energia Magnetica specifica L energia magnetica specifica è l energia necessaria per magnetizzare al valore di induzione B un mezzo di materiale magnetico di volume infinitesimo J wm H B 3 m B per i mezzi lineari con permeabilità costante, dove H, si ha: B w m μ H B H μ Quando si percorre un ciclo di isteresi, la differenza tra l energia spesa e l energia resa, pari a quella immagazzinata, è data dall area del ciclo tratteggiata in figura B H 9

10 Perdite per isteresi magnetica Se il ciclo di isteresi viene ripetuto con la frequenza f, la potenza specifica dissipata (perdite per isteresi ) vale:.6 W p η f B 0 M 3 m

11 Perdite per correnti parassite Un altra perdita presente nei materiali ferromagnetici è dovuta alle correnti parassite. Esse sono correnti indesiderate, indotte nel materiale ferromagnetico (in quanto conduttore), per la legge di Lenz: di el dt Le correnti indotte circolano su piani perpendicolari alla direzione del flusso, perciò per ridurre queste correnti si lamina il materiale nella direzione del flusso. Con la laminazione le correnti indotte vengono ridotte, infatti si dimostra la potenza persa è legata allo spessore dei lamierini con legge quadratica: W p β f Δ B cp M 3 m Talvolta è sufficiente l ossidazione delle lamiere per ottenere l isolamento desiderato tra una lamina e l altra.

12 Effetto Hall Si consideri un materiale conduttore con sezione trasversale rettangolare immerso in un campo magnetico uniforme തB = തa z B 0 e percorso da una densità di corrente continua J=J ҧ 0 തa y = Nq തu B a zb o z o d y x b B - J + V x N è il numero di per unità di volume q carica trasportata തu velocità J a yj 0 F Per la relazione F m qu B N, ciascuna carica in movimento sarà sottoposta a una forza perpendicolare a B e a u.

13 Effetto Hall a) conduttore o semiconduttore di tipo n Le cariche trascinate sono elettroni, e q è negativa. La forza magnetica tende a muovere gli elettroni lungo la direzione x, creando un campo elettrico trasversale E x. Questo effetto è noto come effetto Hall. Il fenomeno continua sino a quando il campo trasversale sarà sufficiente a fermare il trasporto delle cariche e la forza risultante sulle cariche sarà nulla. Imponendo questa condizione, è possibile calcolare l entità del campo elettrico trasversale generato: F Fe Fm q(eh u B) 0 perciò E (u x B) ( a u a B ) a ub h y z o x o 3

14 Effetto Hall Per effetto degli elettroni trascinatisi stabilisce tra le due facce del materiale un potenziale trasversale V x : x h o 0 V x è chiamata tensione di Hall e il rapporto d V E dx ub d E y x J B z Nq è chiamato coefficiente di Hall e caratterizza il materiale. Caso b): conduttore o semiconduttore di tipo p. Le cariche trascinate sono le buche, o cariche positive. L effetto Hall sarà ugualmente presente, ma il potenziale che si stabilisce sarà di segno contrario al caso precedente. 4

15 Effetto Hall L effetto Hall può essere usato per: misurare il campo magnetico H = f (B); determinare la natura del materiale, ossia il segno predominante delle cariche trascinate (distinguendo un semiconduttore di tipo n da uno di tipo p); realizzare un generatore elementare di corrente elettrica Magnetoidrodinamico MHD, che non necessita di turbine, ossia di parti meccaniche in movimento, quindi in grado di operare con temperature del gas ionizzato in movimento molto più elevate. Con la conversione diretta MHD si possano raggiungere efficienze termodinamiche tra il 50 e il 60 %. 5

16 Forze Magnetica S dv I F m q u B N dq Ne dv N e S dl dl Si consideri un elemento di un corpo conduttore dl, percorso dalla corrente elettrica I e sezione trasversale S, immerso in un campo d induzione B, se N sono le cariche (elettroni) trascinate per unità di volume con una velocità തu, la forza magnetica che agisce sull elemento differenziale sarà: d F N e S dl u B m 6

17 Forze Magnetica d F m N e S dl u B N e S u dl B dove e è la carica elettronica. Le due espressioni sono equivalenti perché la velocità e il conduttore hanno la stessa direzione e le cariche sono vincolate a muoversi nella direzione della dimensione prevalente del conduttore. Inoltre, essendo: dl dv dq NeS u NeS Ne I dt dt dt la forza magnetica elementare che agisce sull elemento differenziale dl può essere scritta con la seguente espressione: d F m I dl B La forza magnetica complessiva che agisce su un circuito chiuso con contorno C, sarà: F m I dl B C N 7

18 Quando due circuiti adiacenti sono entrambi attraversati dalle correnti I e I rispettivamente, ciascuno di essi è sotto l influsso del campo magnetico generato dall altro. Si dimostra che la forza magnetica agente sul circuito, quando la corrente I che circola nel circuito genera un campo magnetico di induzione B (espresso tramite la legge di biot- Savart) è: Mentre la forza magnetica agente sul circuito, quando la corrente I circola nel circuito Con F F Forze Magnetica F I dl B I I R o 4 R C C C F a dl dl a dl dl R o - II 4 R C C 8

19 Conduttori paralleli Si suppone che giacciano nel piano x-y. La forza agente per unità di lunghezza sul conduttore dovuta al campo തB generato dalla circolazione della corrente nel conduttore, sarà: z F I B a z I I μi πd 0 con B ax da cui : x F F d 0 B y F a y analogamente: F F a μoii N π d m y μoii N d m se le due correnti sono equiverse le forze sono attrattive se le due correnti sono controverse le forze sono repulsive. 9

20 Forza espressa in termini di energia magnetica La determinazione delle forze e delle coppie agenti su conduttori e circuiti attraversati da corrente in presenza di un campo magnetico utilizzando la legge di Ampere è piuttosto complicata, se non esistono particolari condizioni di simmetria. Un metodo alternativo per la determinazione delle forze (o coppie) suddette quando non esistono particolari condizioni di simmetria, è basato sul principio dei lavori virtuali, considerando i due casi: I) un sistema di circuiti con Φ k flussi magnetici concatenati costanti II) un sistema di circuiti con I k correnti costanti. 0

21 Forza espressa in termini di energia magnetica I)Se si assume che, per uno spostamento virtuale differenziale dl di uno dei circuiti attraversati dalla corrente, dф=0 nei flussi concatenati, non ci sarà alcuna f.e.m. indotta e = dф = 0, perciò la sorgente non fornisce energia dw s, il bilancio energetico sarà: dws dwm dwm dove തF Ф indica la forza in condizioni di flusso costante. Dunque, il lavoro meccanico fatto dal sistema è fatto a spesa di un decremento della energia magnetica accumulata. Se il circuito è vincolato a ruotare di un angolo θ intorno ad un asse, la z componente della coppia agente sul circuito sarà: Wm T N m z dt N F dl dw W dl F W m m m 0

22 Forza espressa in termini di energia magnetica II) Se si assume che, per uno spostamento virtuale dl i circuiti sono collegati a generatori di corrente (I=cost) che compensano alle f.e.m. indotte dovute alle variazioni di flusso concatenato, l energia che fornita dalle sorgenti é: dw I d Questa energia differenziale deve essere uguale alla somma del lavoro meccanico fatto dal sistema dw M = തF I dlҧ e dell incremento della energia magnetica: Poiché l energia magnetica è s k k k dw dw dw s M m Wm Ikdk Se il circuito è vincolato a ruotare intorno all asse z, la z componente della coppia agente sul circuito sarà: Wm T N m k dw I [N] dw F dl dw W dl F W M I m m m I z s

23 Forza espressa in termini di energia magnetica Si consideri un elettromagnete di sezione S e si voglia determinare la forza di attrazione sull armatura. Si consideri uno spostamento virtuale della armatura dy: I) nella ipotesi che la generatore (di tensione) mantenga il flusso costante, lo spostamento della armatura cambia la geometria del circuito nella sola lunghezza del traferro; quindi varia solo l energia magnetica immagazzinata nei due traferri. II) nella ipotesi la corrente I nella bobina sia costante, il generatore (di corrente) compensa la f.e.m indotta dovuta alla variazione di flusso per lo spostamento virtuale dl. In questo caso l energia magnetica immagazzinata aumenta a spese della energia fornita dal sistema esterno. Φ N F I 3 y

Ingegneria dei Sistemi Elettrici_5d

Ingegneria dei Sistemi Elettrici_5d ngegneria dei Sistemi Elettrici_5d Energia magnetica Autoinduttanza e mutua induttanza sono stati esaminati in termini statici, considerando la corrente permanente. Sebbene gli induttori privi di resistenza

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2

a/2+l/2 a/2-l/2 -a/2+l/2 -a/2-l/2 Esame scritto di Elettromagnetismo del 17 Giugno 014 - a.a. 013-014 proff. F. Lacava, F. icci, D. Trevese Elettromagnetismo 10 o 1 crediti: esercizi 1,,3 tempo 3 h e 30 min; ecupero di un esonero: esercizi

Dettagli

INDUTTANZA ENERGIA MAGNETICA

INDUTTANZA ENERGIA MAGNETICA INDUTTANZA E ENEGIA MAGNETICA Una corrente variabile in una bobina induce una f.e.m. in un altra bobina: è possibile avere lo stesso fenomeno in una sola bobina quando la corrente i varia nel tempo? Fenomenologia

Dettagli

S N S N S N N S MAGNETISMO

S N S N S N N S MAGNETISMO MAGNETISMO Esistono forze che si manifestano tra particolari materiali (ad es. la magnetite, il ferro) anche privi di carica elettrica. Queste forze possono essere sia attrattive che repulsive, analogamente

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018 Compito di Fisica Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 018 1 Una distribuzione volumetrica di carica a densità volumetrica costante = + 4 10-6 C/m 3 si + + + + + + estende nella

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Cosa è un alternatore?

Cosa è un alternatore? L alternatore Cosa è un alternatore? L alternatore è una macchina elettrica rotante il cui funzionamento è basato sul fenomeno dell'induzione elettromagnetica. L alternatore trasforma energia meccanica

Dettagli

Applicazioni delle derivate alla Fisica

Applicazioni delle derivate alla Fisica Liceo Scientifico Statale S. Cannizzaro Applicazioni delle derivate alla Fisica erasmo@galois.it Indice 1 Intensità di corrente elettrica 1 2 Tensione e corrente ai capi di un condensatore 2 3 Forza elettromotrice

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

PERDITE NEI NUCLEI MAGNETICI

PERDITE NEI NUCLEI MAGNETICI PERDITE NEI NUCLEI MAGNETICI Nei nuclei magnetici delle macchine elettriche si hanno perdite di potenza attiva dovute a: 1) Isteresi magnetica 2) Correnti parassite PERDITE NEL FERRO Entrambi i fenomeni

Dettagli

Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1

Lez.23 Accoppiamento mutuo. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 23 Pagina 1 Lez.3 Accoppiamento mutuo Università di Napoli Federico, CdL ng. Meccanica, A.A. 07-08, Elettrotecnica. Lezione 3 Pagina Doppio bipolo Trasformatore deale È un doppio bipolo caratterizzato da un solo parametro

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esame Scritto Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli IV Appello - 12/06/2013 Soluzioni Esercizi Ex. 1 Tre cariche puntiformi Q 1 = 2q, Q 2 = 4q e Q 3 = 6q (dove

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Lez.25 Le macchine elettriche. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 25 Pagina 1

Lez.25 Le macchine elettriche. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 25 Pagina 1 Lez.25 Le macchine elettriche Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 25 Pagina 1 Le macchine sono sistemi fisici in cui avvengono trasformazioni di

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione UARTO APPELLO 11092017 FISICA GENERALE T-2, Prof G Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione ESERCIZIO 1 Una sfera conduttrice di raggio R1 = 2 cm e carica = 1 mc è circondata

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T-2 (CdL Ingegneria Civile e Informatic Prof. B. Fraboni - M. Sioli VI Appello A.A. 2013-2014 - 11/09/2014 Soluzioni Esercizi Ex. 1 Due cariche puntiformi 1 = + e 2 =

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

Lezione 19 - Induzione elettromagnetica

Lezione 19 - Induzione elettromagnetica Lezione 19 - Induzione elettromagnetica Una spira percorsa da corrente è equivalente ad un momento magnetico: se si pone questa spira in un campo magnetico esterno essa subisce un momento torcente Si verifica

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA Commento ai problemi proposti nell incontro del 17 febbraio 2016 Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 I problemi proposti TRACCE

Dettagli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 2 FISICA GENERALE L-B. Prof. Antonio Zoccoli

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 2 FISICA GENERALE L-B. Prof. Antonio Zoccoli 1) Un disco sottile di raggio R, recante sulla superficie una carica Q uniformemente distribuita, è mantenuta in rotazione attorno al suo asse di simmetria con velocità angolare ω. Calcolare le espressioni

Dettagli

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo magnetico prodotto da una corrente Si consideri

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esercizio 1 Esame Scritto Fisica Generale T-B (dl Ingegneria ivile) Prof. M. Sioli VI Appello A.A. 2014-2015 - 11/09/2015 Soluzioni Esercizi Tre cariche positive Q 1, Q 2, Q 3 = 5 µ sono disposte sui vertici

Dettagli

Il vettore densità di corrente è solenoidale V=RI

Il vettore densità di corrente è solenoidale V=RI Corrente elettrica Equazione di continuita' r r ρ = J t ρ nel caso stazionario: = 0 e r J r = 0 t J densità di corrente ρ densità di carica Il vettore densità di corrente è solenoidale Leggi di ohm V=RI

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Esame Scritto Fisica Generale T-B/T-2

Esame Scritto Fisica Generale T-B/T-2 Esame Scritto Fisica Generale T-B/T- (CdL Ingegneria Civile e Informatica [A-K] Prof. M. Sioli II Appello A.A. 013-01 - 9/01/01 Soluzioni Esercizi Ex. 1 Sulla superficie della Terra, in condizioni di bel

Dettagli

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 =

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 = Esame scritto di Elettromagnetismo del 19 Giugno 2012 - a.a. 2011-2012 proff. F. Lacava, F. Ricci, D. Trevese Elettromagnetismo 10 o 12 crediti: esercizi 1,2,3 tempo 3 h e 30 min; Recupero di un esonero:

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Modellistica di sistemi elettrici e magnetici

Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Interazione tra cariche elettriche Legge di Coulomb q q 2 F d F F = q q 2 4 π ǫ d 2, ǫ = ǫ 0 ǫ r ǫ : permettività del mezzo ǫ 0 : permettività del vuoto ǫ

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 9 Luglio 2010 Parte 1 Esercizio 1 Un astronauta di massa m=80 Kg atterra su un pianeta dove il suo peso vale P=200 N.

Dettagli

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto

- Introduzione all elettromagnetismo. - Elettrizzazione per strofinio. - Carica elettrica. - Elettrizzazione per contatto Lezione del 28/09/2017 - Introduzione all elettromagnetismo - Elettrizzazione per strofinio - Carica elettrica - Elettrizzazione per contatto - Elettrizzazione per induzione - Isolanti e conduttori - Legge

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Il trasformatore 1/55

Il trasformatore 1/55 l trasformatore /55 Costituzione di un trasformatore monofase l trasformatore monofase è costituito da un nucleo di ferro, formato da un pacco lamellare di lamierini sagomati (colonne e gioghi) e isolati

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Attività didattica FISICA [MFN0598] Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO Corso di studio: INFORMATICA [008707] Docente titolare del corso: MIGLIORE

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Verifica scritta di Fisica Classe V

Verifica scritta di Fisica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 19/01/2019 Verifica scritta di Fisica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Una sbarra

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione

Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione Esercitazione 1 Legge di Ohm, induzione elettromagnetica, leggi di conservazione March 15, 2016 1 Legge di Ohm 1.1 Gusci sferici concentrici Griffiths problema 7.1 Due gusci metallici sferici e concentrici,

Dettagli

Modellistica dei Sistemi Elettro-Meccanici

Modellistica dei Sistemi Elettro-Meccanici 1 Prof. Carlo Cosentino Fondamenti di Automatica, A.A. 2016/17 Corso di Fondamenti di Automatica A.A. 2016/17 Modellistica dei Sistemi Elettro-Meccanici Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

L induzione elettromagnetica

L induzione elettromagnetica L induzione elettromagnetica Alcune esperienze Consideriamo una bobina collegata ad un galvanometro a zero centrale (amperometro in grado di misurare correnti positive e negative di intensità molto piccola)

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2011/12. Prova di esame del 2/7/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2011/12. Prova di esame del 2/7/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2011/12 Prova di esame del 2/7/2012 - NOME 1) Una centrale elettrica di potenza brucia carbone a 750 ºC. Il calore viene poi ceduto

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6

Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW , 27.6 Elettromagnetismo (5/6) L'induzione elettromagnetica Lezione 23, 7/1/2019, JW 27.1-27.4, 27.6 1 1. L esperimento di Faraday Una corrente elettrica produce un campo magnetico. Vale anche per l opposto!

Dettagli

Corso di Laurea in Biotecnologie Agro-Industriali Prova scritta di Fisica - A.A giugno 2018

Corso di Laurea in Biotecnologie Agro-Industriali Prova scritta di Fisica - A.A giugno 2018 1) Uno studente che pesa 67 kg abita a 1.52 km dall Università. Per recarvisi, prima solleva il suo zaino da 3.8 kg all altezza della spalla pari a 163 cm e poi si muove a piedi percorrendo l intero tratto

Dettagli

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013 POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 II a prova in itinere, 25 giugno 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Corso di Principi di ingegneria elettrica II

Corso di Principi di ingegneria elettrica II Anno Accademico 2015/2016, II anno: Corso di Laurea in Ingegneria Elettrica Corso di Principi di ingegneria elettrica II prof. G. Rubinacci Diario delle Lezioni Materiale didattico di riferimento: Circuiti

Dettagli

EFFETTO MAGNETICO DELLA CORRENTE

EFFETTO MAGNETICO DELLA CORRENTE IL CAMPO MAGNETICO E GLI EFFETTI MAGNETICI DELLA CORRENTE 1 EFFETTO MAGNETICO DELLA CORRENTE Ogni conduttore percorso da corrente crea intorno a sé un campo magnetico (H), cioè una perturbazione di tipo

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Fisica 21 Gennaio 2013

Fisica 21 Gennaio 2013 Fisica 2 Gennaio 2 ˆ Esame meccanica: problemi, 2 e. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema Su un piano inclinato rispetto all orizzontale di gradi è posto un oggetto puntiforme di massa

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 010-11 II a prova in itinere (Elettricità + Magnetismo), 8 giugno 011 Giustificare le risposte e scrivere

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica.

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica. TN DUCA DEGL ABRUZZ di Catania Compito di elettrotecnica ed elettronica. Cognome.. Nome... Classe. Data / / Quesiti Dalla 1 alla 15 16 17 18 19 0 tot Punteggio totale previsto 45 3 10 4 6 70 Esatte. x3

Dettagli

Lez.14 Bipoli dinamici. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 14 Pagina 1

Lez.14 Bipoli dinamici. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 14 Pagina 1 Lez.14 Bipoli dinamici Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 14 Pagina 1 Il bipolo condensatore ideale i (t) v(t) C Il condensatore lineare è un

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO

CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO CAPITOLO 8 CAMPI ELETTRICI E MAGNETICI VARIABILI NEL TEMPO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo elettromagnetico Campo ELETTRICO e campo MAGNETICO sono generati entrambi da

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

ESERCIZI DI RIEPILOGO

ESERCIZI DI RIEPILOGO ESERCIZI DI RIEPILOGO Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Esercizio R.1 Una spira rettangolare di lati a = 10 cm e b = 6 cm e di resistenza R = 10 Ω si muove con velocità costante

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo:

La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: tibo5794_em11_test1 Nome Classe Data 1 - Scelta multipla La legge di Faraday-Neumann afferma che in un circuito attraversato da un campo magnetico il cui flusso varia nel tempo: esiste una forza esterna

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

MODULI DI FISICA (QUINTO ANNO)

MODULI DI FISICA (QUINTO ANNO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI FISICA (QUINTO ANNO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 ELETTROSTATICA 1-2 TRIMESTRE U.D. 1.

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

Elettrotecnica. 13 Doppi bipoli di ordine uno

Elettrotecnica. 13 Doppi bipoli di ordine uno Elettrotecnica 13 Doppi bipoli di ordine uno 1 Doppi bipoli ideali di ordine uno governati da due semplici equazioni funzionali F 1 [v 1 (t),v (t),i 1 (t),i (t)]=0 F [v 1 (t),v (t),i 1 (t),i (t)]=0 contenti

Dettagli

P I P I 100W P R. eff. Veff. eff. eff

P I P I 100W P R. eff. Veff. eff. eff esercizi 1 Uno stereo da 100 W per canale ha gli altoparlanti da 8 W. Calcolare i valori efficaci della corrente e tensione, a) al valore massimo della potenza b) quando il volume è abbassato ad una potenza

Dettagli