FORMULE GONIOMETRICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FORMULE GONIOMETRICHE"

Transcript

1 FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può essere risola enendo cono della precisazione che 90 < < 80, quindi: 8 a queso puno oeniamo: cos 89 Sapendo che cos e 0 < < 0 calcolare le alre funzioni goniomeriche di. Uilizziamo la relazione fondamenale: + cos ± cos per risolvere l ambiguià del segno dobbiamo enere presene che l angolo è nel quadrane, quindi in ale inervallo il segno del seno è negaivo. Si ha quindi: per la angene si ha:

2 an Calcolare le funzioni goniomeriche di / sapendo che Possiamo applicare direamene le formula di bisezione: cos con 0 <<90 cos ± ± Tenendo cono che l angolo appariene al primo quadrane, si risolve l ambiguià del segno. Procediamo quindi ad applicare le formule: cos an cos verificare la seguene idenià: ( g Risula: cos sen + cos + sen sen + cos + cos sen ( sen + cos sen + ( g + Verificare la seguene idenià: co g + co g cos Si oinene:

3 co g + co g cos cos + cos ( + ( ( + Facendo uso delle formule di prosaferesi, verificare la seguene idenià: cos g sen sen Ricordiamo le formule: Si oiene allora: p + q p q cos p cos q sen sen p q p + q sen p sen q sen cos cos sen sen + sen sen + sen cos sen sen an sen( cos cos sen Uilizzando le formule parameriche semplificare la seguene espressione: sen + sen Ricordiamo le formule parameriche: Procedendo con la sosiuzione si ha: sen + sen ( + (

4 8 Calcolare il valore della seguene espressione: ( 0 g g0 ( + 0 g + g0 Si oiene subio: ( 0 ( + 0 g g0 cos0 0 g + g0 cos Sapendo che è 0 < < 90 e calcolare, cos e g Dobbiamo applicare le formule di duplicazione: cos cos Poiché in esse compare anche il coseno, conviene per prima cosa calcolarlo a parire dal seno: ± 9 Si noi che l ambiguià del segno è risola enendo cono che l angolo appariene al primo quadrane. Procediamo applicando le formule vise sopra: 9 cos cos an 0 Verificare la seguene idenià: g g cos cos

5 Si oiene: g g cos g cos g cos g cos g cos g g cos ( g g g Verificare la seguene idenià: cos cos g Si ha: cos cos sen cos cos cos cos sen cos g verificare la seguene idenià: cos g a g si ha: g g g cos cos cos a g g cos cos g cos a Sapendo che sen e 0 < < 90, calcolare sen,cos, an Ricordiamo le formule di bisezione: cos ± sen ± Osserviamo preliminarmene che in enrambi i casi dovremo prendere il segno posiivo perché è nel primo quadrane. Le formule conengono la funzione coseno, menre nei dai abbiamo il seno dell angolo; dovremo quindi ricavare il coseno: ± sen 9 Noare che si è preso il segno posiivo per quano deo sopra. Applicando le formule richiamae sopra si ha:

6 cos cos sen g sen Calcolare i valori delle funzioni goniomeriche dell angolo di osservando che + 0 Possiamo calcolare i valori richiesi applicando le formule di addizione del seno e del coseno: da cui: ( ( + β cos β + β cos + β cos β β sen( sen( + 0 cos( cos( + 0 g( + ( verificare la seguene idenià: sen sen co g cos Applicando le formule di prosaferesi si ha: sen sen cos + cos + cos ( cos co g

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: sin x = m con m x = arcsin m + k6 x = 8 arcsin m + k6 sin x = x = + k6 x = 5 + k6 sin(f (x)) = sin(g(x)) f(x) = g(x) + k6 o f (x) = 8 g(x)

Dettagli

TRIGONOMETRIA formule goniometriche, parte 2

TRIGONOMETRIA formule goniometriche, parte 2 TRIGONOMETRIA formule goniometriche, parte SAPER FARE:. Conoscendo le funzioni dell'angolo x, trovare il valore delle funzioni goniometriche dell'angolo somma/differenza tra x ed un qualsiasi angolo y,

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

ANGOLI ASSOCIATI. Considerando sempre valida l uguaglianza tra i triangoli OPH e ORK si ricava quanto segue: 1) Angoli complementari.

ANGOLI ASSOCIATI. Considerando sempre valida l uguaglianza tra i triangoli OPH e ORK si ricava quanto segue: 1) Angoli complementari. ANGLI ASSCIATI Considerando sempre valida l uguaglianza tra i triangoli H e K si ricava quanto segue: ) Angoli complementari K H K = H sen = (9 ) cos K = H cos(9 ) = sen (9 ) = c ) Angoli che differiscono

Dettagli

01 LE FUNZIONI GONIOMETRICHE

01 LE FUNZIONI GONIOMETRICHE 0 LE FUNZIONI GONIOMETRICHE. LA MISURA DEGLI ANGOLI ESERCIZI Esprimi in forma sessadecimale le seguenti misure di angoli. A 4 9 ; 8 56 6 ; 57 59 B 44 ; 78 56 ; 9 4 0.,57 ; 8,97 ; 57,0. 4,4 ; 7,5 ; 9,569

Dettagli

Equazioni goniometriche riconducibili a equazioni elementari

Equazioni goniometriche riconducibili a equazioni elementari Equazioni goniometriche riconducibili a equazioni elementari Le equazioni non elementari, in cui sono presenti più funzioni goniometriche, si riconducono a equazioni elementari nel seguente modo: 1. Si

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x. QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI V PARTE: TRIGONOMETRIA MISURE DEGLI ANGOLI IN GRADI E IN RADIANTI Nota; nel seguito per la misura degli angoli in gradi viene utilizzato il sistema "sessadecimale"

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Goniometria e Trigonometria

Goniometria e Trigonometria Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica

Dettagli

TRIGONOMETRIA Goniometria, parte 1

TRIGONOMETRIA Goniometria, parte 1 TRIGONOMETRIA Goniometria, parte 1 1 Funzioni goniometriche elementari SAPER FARE: 1. dato il valore di una funzione goniometrica e conoscendo il quadrante di appartenenza di un angolo, determinare il

Dettagli

Goniometria per il TOL - Guida e formulario

Goniometria per il TOL - Guida e formulario Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi

Dettagli

Anno 4 Formule goniometriche

Anno 4 Formule goniometriche Anno 4 Formule goniometriche Introduzione In questa lezione descriveremo le formule goniometriche. Le formule goniometriche permettono semplificare alcune espressioni e calcolare i valori delle funzioni

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos

Dettagli

Matema&ca. GONIOMETRIA Le formule goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. GONIOMETRIA Le formule goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca GONIOMETRIA Le formule goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LE FUNZIONI GONIOMETRICHE DI ANGOLI ASSOCIATI definizione Sono detti angoli associati a un angolo α quegli

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:

Dettagli

ESERCIZI SUI NUMERI COMPLESSI

ESERCIZI SUI NUMERI COMPLESSI ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

Formule goniometriche

Formule goniometriche Appunti di Matematica Formule goniometriche Come possiamo calcolare ( + β )? E chiaro che non può risultare ( β ) + β + : se infatti fosse così e per esempio β avremo + + +! Dobbiamo ricavare delle relazioni

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

TRIGONOMETRIA PRECORSO DI MATEMATICA

TRIGONOMETRIA PRECORSO DI MATEMATICA PRECORSO DI MATEMATICA Angoli Trigonomeria Disosizione degli angoli rinciali riseo alla circonferenza rigonomerica 3i/4 i/3 PI/ Pi/3 Pi/4 Relazione er assare dalla misura in gradi alla misura in radiani

Dettagli

TRIGONOMETRIA. Ripasso veloce

TRIGONOMETRIA. Ripasso veloce TRIGONOMETRIA Ripasso veloce Definizioni principali Sia u un segmento con un estremo nell origine e l altro sulla circonferenza di centro l origine e raggio (circonferenza goniometrica) che formi un angolo

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE 1. Destinatari questa unità didattica è destinata a studenti del IV^ anno del liceo scientifico tradizionale. Le ore settimanali di matematica previste

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

Analisi Matematica - Corso A. Soluzioni del test di ingresso

Analisi Matematica - Corso A. Soluzioni del test di ingresso Analisi Matematica - Corso A Soluzioni del test di ingresso con cenni di risoluzione Versione [ 1 ] Versione [ ] 1. E A B D C F. C 3. C 6. C 9. S ( x ) = x + 1 R ( x ) = - x - 1 10. C 11. A 1. B 14. C

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

FUNZIONI TRIGONOMETRICHE E IPERBOLICHE

FUNZIONI TRIGONOMETRICHE E IPERBOLICHE FUNZIONI TRIGONOMETRICHE E IPERBOLICHE Indice. Qualche formula di trigonometria.. Identità fondamentale.. Periodicità.. Alcune formule notevoli.4. Alcuni valori notevoli.5. Formule di addizione 5.6. Formule

Dettagli