EQUAZIONI GONIOMETRICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "EQUAZIONI GONIOMETRICHE"

Transcript

1 EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± cos cos 80 + k60 ± 60 + k60 6) risolvere: sen + cos Si raa di un equazione lineare in seno e coseno non omogenea, per cui possiamo ricorrere al sisema: sin + cos sin + cos sin cos + cos ( cos ) sviluppando l equazione di II grado nell incognia cos oeniamo: cos + cos + cos 0 cos Le soluzioni oenue danno luogo ai due sisemi: ( cos ) 0 cos 0 cos cos 0 sin cos sin 0 ± 90 + k k k60 k60 k60 k k60 ) Ricordando le relazioni ra le funzioni goniomeriche degli angoli associai e complemenari, risolvere: cos ( 45 ) cos( + 0 ) Ricordiamo per prima cosa che l equazione: è risola per: cos α cos β α ± β + k60 Nel nosro caso si ha quindi:

2 ( 45 ) ± ( + 0 ) + k60 da cui i due insiemi di soluzioni: ) k k60 ) k k k0 ) Trovare ue le soluzioni dell equazione: sen Ricordiamo la soluzione dell equazione elemenare: senα α 60 + k60 α 0 + k60 Nel nosro caso si hanno quindi i due insiemi di soluzioni: ) risolvere: ) 60 + k60 ) 0 + k60 sin sin cos k80 : 60 + k80 Osserviamo che si raa di un equazione omogenea di secondo grado in seno e coseno, che può essere facilmene risola dividendo ui i ermini per cos. Si oiene infai: an an 0 k80 an (an ) k80 an 0 an ) sin + cos + 0 Traandosi di un equazione lineare in seno e coseno possiamo procedere uilizzando le formule parameriche: sin cos con an + + Ricordiamo che occorre preliminarmene verificare se 80 è soluzione. Si ha: sin80 + cos perano effeivamene abbiamo una soluzione: 80 + k60 Effeuiamo ora la sosiuzione con le parameriche:

3 ( ) k k60 0 an ) cos sen g 0 Applichiamo le formule di duplicazione del seno e del coseno: cos an sin k80 sin cos sin cos 0 an 50 + k80 cos an ± sin 0 DISEQUAZIONI GONIOMETRICHE ) risolvere: sin cos > 0 Procediamo allo sudio del segno del numeraore e del denominaore della frazione. Per il numeraore si ha: sin > 0 sin > sin < I valori di che soddisfano le condizioni di cui sopra sono riporae nello schema seguene:

4 Per il denominaore, i valori che soddisfano la condizione: cos > 0 sono riporai nello schema seguene. Combinando i due schemi si oiene: Da ciò si deduce che la disequazione sin cos > 0 è soddisfaa per:

5 45 < < 90 5 < < 5 70 < < 5 ) risolvere: an an < 0 Possiamo procedere risolvendo la disequazione di grado nell incognia an. Si vede subio che la disequazione è risola per: 0 < an < La siuazione è rappresenaa nello schema seguene: Si vede quindi che la disequazione è soddisfaa per: 0 < < < < 40 ) Risolvere la disequazione ( cos ) cos < 0 nell inervallo 0 L espressione è cosiuia dal prodoo di due faori, quindi possiamo sudiare separaamene il segno di ciascuno di essi: cos > 0 cos > Passando all equazione si oiene: cos ± 0 6 ( ± )

6 Il primo faore risula quindi posiivo nell inervallo < <, evidenziao in verde nello 6 6 schema seguene: Passiamo ora a sudiare il segno del secondo faore: cos > 0 esso risula posiivo nell inervallo: < <, evidenziao in verde nello schema seguene: A queso puno sovrapponiamo i due schemi. In blu sono evidenziae le zone che soddisfano la disequazione originaria, quelle cioè in cui il prodoo dei due faori è negaivo.

7 In conclusione, nell inervallo 0, la disequazione è soddisfaa per: < < < < 6 6 g ) Risolvere: < 0 sen Procediamo allo sudio del segno di numeraore e denominaore della frazione. Per semplicià sudieremo la disequazione nell inervallo Per il numeraore si ha: N : g > 0 g > 0 < < 90 0 < < 70 D : sen > 0 sen > 60 < < 0 Passiamo ora alla rappresenazione grafica:

8 Nella corona più inerna è rappresenao il segno del numeraore, in quella più eserna quello del denominaore. Dall esame del grafico si evince che la disequazione è soddisfaa per: 0 < < < < 0 0 < < 70 ) sin cos + > sin Applichiamo per prima cosa le formule di duplicazione del seno: sin sin cos sin cos + > sin sin cos cos + sin > 0 procediamo ora raccogliendo a faor comune a gruppi: sin cos cos + sin > 0 ( cos )( sin ) > 0 sin (cos ) cos + > 0 procediamo ora allo sudio del segno dei due faori, limiandoci ai valori 0 < < 60 : cos > 0 cos > la disequazione evidenemene non è verificaa per nessun, quindi il faore è sempre negaivo sin > 0 sin > 0 < < 50 La siuazione è schemaizzaa nella figura seguene:

9 Si evince che la disequazione è soddisfaa per: 0 < < 0 50 < < 60 4sin ) Risolvere: 0 g Sudiamo il segno del numeraore: 4sin > 0 sin > 4 sin > sin < la siuazione è rappresenaa nello schema seguene: Il numeraore è posiivo nelle zone evidenziae in rosso. Per il denominaore abbiamo:

10 an > 0 an 0 k Quindi il denominaore è sempre posiivo ranne che per k, dove si annulla. E quindi necessario escludere quesi puni olre ai valori in cui la angene non è definia; in conclusione deve essere k La disequazione è quindi soddisfaa per: 5 7 0< < < < ) Risolvere: sin + 4sin cos + cos 0 Osserviamo che l equazione associaa è omogenea di grado in seno e coseno. Dividendo ciascun ermine per cos si oiene: an + 4 an + 0 an ± 4 an an da cui: an an La siuazione è rappresenaa nello schema seguene:

11 La disequazione è quindi soddisfaa per: < < < < < < ) Risolvere: 0 cos sin + Osserviamo che la disequazione è lineare in seno e coseno, per cui possiamo procedere uilizzando le formule parameriche: an cos sin con + + Procedendo con le sosiuzioni si ha: L equazione associaa ha due soluzioni coincideni in quano il discriminane è nullo. Infai la disequazione può essere riscria come: ( ) 0 Vediamo quindi che la disequazione è soddisfaa solo per il valore, ossia per: k k 6 an + + ) Risolvere: 0 cos cos > +

12 Posa la sosiuzione cos la disequazione divena: + > 0 Le soluzioni dell equazione associaa: + 0 sono quindi la disequazione è risola per: cos < cos > La prima delle due non ammee soluzioni, menre la seconda è soddisfaa per: 0 < < < 60 come si deduce dallo schema seguene: ) ( g )( sin + ) 0 Possiamo risolvere la disequazione sudiando il segno dei due faori. Si ha: an > 0 an > an < an > rapprendiamo la siuazione nello schema seguene:

13 In verde sono indicai gli inervalli in cui il faore risula posiivo. Noare che i valori 90 e 70 vanno esclusi in quano la angene non è definia. Passiamo ora a sudiare il segno del secondo faore: sin + > 0 sin > La disequazione evidenemene è soddisfaa per ogni 70. Riassumiamo la siuazione nello schema seguene: Si vede quindi che la disequazione è soddisfaa per: 0 < < 50 0 < < 0

14 RISOLUZIONE TRIANGOLI RETTANGOLI ) Senza uilizzare la calcolarice scienifica, calcolare il perimero di un riangolo reangolo, sapendo che l area è di 4 cm e che g β 4 Sappiamo che l area del riangolo reangolo è 4 cm quindi, con riferimeno alla figura, possiamo scrivere: bc 4 Inolre, per la definizione di angene dell angolo β, possiamo scrivere: b gβ c 4 Possiamo quindi cosruire un sisema con quese due equazioni: bc 4 b c 4 bc 48 b c 4 c 48 4 b c 4 c 64 b c 4 c 8 b 6 Possiamo a queso puno calcolare anche l ipoenusa con il eorema di Piagora: a b + c In conclusione il perimero richieso è: p ) Risolvere un riangolo reangolo sapendo che un caeo è lungo 4 cm e che l ipoenusa è 7/5 dell alro caeo. (E consenio l uso della calcolarice) La siuazione è schemaizzaa nella figura seguene.

15 Indicando con la misura del caeo incognio, possiamo scrivere il eorema di Piagora: e quindi l ipoenusa è: Il riangolo diviene dunque: Possiamo quindi scrivere: 45 cos β β cos 5 y β 8 RISOLUZIONE TRIANGOLI QUALSIASI 4) risolvere il riangolo di cui sono noi: b 4 c γ 6 Consideriamo il riangolo generico rappresenao in figura:

16 Essendo noi b, c e γ possiamo uilizzare il eorema dei seni: b c b 4 sin β sin γ sin β sin β sin β sin γ c L equazione è soddisfaa per β e β 4 4 Osserviamo che enrambi i valori sono acceabili in quano in corrispondenza di essi si oengono per α due valori enrambi acceabili: 7 α α Occorrerà quindi considerare due possibili soluzioni per il riangolo: prima soluzione 7 b 4 c γ β α 6 4 applichiamo ancora il eorema dei seni: a b sinα a b a 4 sinα sin β sin β ( 6 + ) ( + ) 4 seconda soluzione b 4 c γ β α 6 4 applichiamo il eorema dei seni: a b sinα a b a 4 sinα sin β sin β ( 6 ) ( ) 4 4) risolvere (senza uso della calcolarice scienifica) il riangolo di cui è noo: a 6 α 60 β 45

17 Osserviamo per prima cosa che possiamo subio ricavare la misura dell angolo γ : γ Possiamo risolvere il riangolo uilizzando il eorema dei seni: a b sin β b a b 6 sinα sin β sinα b a c sin γ c a c 6 4 sinα sin γ sinα c 4) Risolvere, senza usare la calcolarice, il riangolo ABC essendo noi: a 6 b 4 γ 45 Per prima cosa racciamo lo schizzo di un generico riangolo ( + ) Dai dai fornii deduciamo che occorre uilizzare il eorema di Carno: c c a + b ab cosγ 4 c 6 c

18 Noiamo che il lao c è congruene al lao a, dal che ne deduciamo che il riangolo è isoscele e quindi deve essere α γ 45. Perano risula: β 80 - ( ) 90 ) Risolvere, senza uilizzare la calcolarice scienifica, il riangolo di cui si conosce: a b α 60 Del riangolo si conoscono due lai e l angolo opposo ad uno di essi, quindi possiamo iniziare applicando il eorema dei seni per deerminare l angolo β : a b b senα senβ senβ senβ senα senβ a da cui si oengono le sue soluzioni: β 45 (acceabile) e β 5 (non acceabile, perché α + β 95 ) A queso puno possiamo ricavare l angolo γ: γ 80 -(α + β) 75 Per oenere il lao c uilizzeremo ancora una vola il eorema dei seni, ma prima di ciò è necessario ricavare il valore del seno dell angolo di 75 : sin 75 sin ( ) sin 45 cos0 + sin 0 cos A queso puno possiamo scrivere: a c a senγ 6 + c c 6 + senα senγ senα 4

19 PROBLEMI VARI In una circonferenza di raggio 0a è inscrio un reangolo ABCD. Deermina l ampiezza dell angolo BAC in modo che l area del reangolo sia 00a I limii di variazione di sono: 0 < < Si ha: Area AB BC AB 0a cos BC 0a sin Area a 400 sin cos 400a sin cos 00a 4sin cos sin cos 5 5 sin 6 6 Enrambi i valori sono acceabili

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

FORMULE GONIOMETRICHE

FORMULE GONIOMETRICHE FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011 Poliecnico di Milano Ingegneria Indusriale Analisi e Geomeria Primo appello 4 Febbraio 0 Cognome: Nome: Maricola: Compio A Es. : 7 puni Es. : 0 puni Es. 3: 7 puni Es. 4: 6 puni Es. 5: 3 puni Toale. a Scrivere

Dettagli

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione Corso di Geomeria e Algebra Lineare: Geomeria Lineare 6^ Lezione Luoghi geomerici del piano. Rea. Equazione caresiana. Equazione esplicia. Forme paricolari dell equazione della rea. Equazione segmenaria

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

SULLA GEOMETRIA ANALITICA

SULLA GEOMETRIA ANALITICA SULLA GEOMETRIA ANALITICA.La rea Nel piano caresiano ad ogni equazione di primo grado,definia a meno di un faore di proporzionalià,del ipo () ab c0 corrisponde una rea,e viceversa. Se a 0, l'equazione

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: sin x = m con m x = arcsin m + k6 x = 8 arcsin m + k6 sin x = x = + k6 x = 5 + k6 sin(f (x)) = sin(g(x)) f(x) = g(x) + k6 o f (x) = 8 g(x)

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

TRIGONOMETRIA PRECORSO DI MATEMATICA

TRIGONOMETRIA PRECORSO DI MATEMATICA PRECORSO DI MATEMATICA Angoli Trigonomeria Disosizione degli angoli rinciali riseo alla circonferenza rigonomerica 3i/4 i/3 PI/ Pi/3 Pi/4 Relazione er assare dalla misura in gradi alla misura in radiani

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del Analisi Maemaica II Corso di Ingegneria Gesionale Compio A del -6-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Scuole italiane all'estero Europa

Scuole italiane all'estero Europa PROVA D ESAME SESSIONE ORDINARIA Scuole ialiane all'esero Europa Il candidao risolva uno dei due problemi e risponda a quesii del quesionario Duraa massima della prova: ore È consenio l uso della calcolarice

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

IIS A.Moro Dipartimento di Matematica e Fisica

IIS A.Moro Dipartimento di Matematica e Fisica IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica Anno Scolasico 15-16 5 maggio 16 - Eserciazione Prova Scria di Maemaica Il candidao svolga, a sua scela, uno dei problemi e quaro dei quesii proposi. ➊ L inflazione, cioè l aumeno generalizzao e prolungao

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

Formule goniometriche

Formule goniometriche Appunti di Matematica Formule goniometriche Come possiamo calcolare ( + β )? E chiaro che non può risultare ( β ) + β + : se infatti fosse così e per esempio β avremo + + +! Dobbiamo ricavare delle relazioni

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

HP VP. (rispettivamente seno, coseno e tangente di β)

HP VP. (rispettivamente seno, coseno e tangente di β) Trigonometria Prerequisiti: Nozione di angolo e di arco. Obiettivi convertire le misure degli angoli dai gradi ai radianti e viceversa; sapere le relazioni fra gli elementi (lati, angoli) di un triangolo;

Dettagli

Meccanica introduzione

Meccanica introduzione Meccanica inroduzione La meccanica e quella pare della Fisica che sudia il moo dei corpi. Essa e cosiuia dalla cinemaica e dalla dinamica. La dinamica si occupa dello sudio del moo e delle sue cause. La

Dettagli

FUNZIONI TRIGONOMETRICHE

FUNZIONI TRIGONOMETRICHE FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

Alcune nozioni di trigonometria 1

Alcune nozioni di trigonometria 1 Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Perturbazione armonica : teoria generale

Perturbazione armonica : teoria generale Perurbazione armonica : eoria generale Absrac Queso documeno rispecchia buona pare del capiolo XIII del Cohen. Si raa dapprima la ransizione ra due sai dello spero discreo di un non meglio specificao sisema,

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, /9/8 II Prova - Maemaica Classe V Sez. Unica Soluzione Problemi. Risolvi uno dei due problemi: Problema. Un produore di candeline ea ligh

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Trigonometria Indice. Trigonometria.

Trigonometria Indice. Trigonometria. Trigonometria Indice Risoluzione dei triangoli rettangoli...1 Teoremi di Euclide e Pitagora...2 Teorema dei seni...3 Teorema del coseno (Carnot)...4 Risoluzione di triangoli qualunque...5 Trigonometria.

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

Esercizi sulla soluzione dell equazione del calore

Esercizi sulla soluzione dell equazione del calore Esercizi sulla soluzione dell equazione del calore Corso di Fisica Maemaica 2, a.a. 202-203 Diparimeno di Maemaica, Universià di Milano 5 Dicembre 202 Equazione del calore omogenea Esercizio.. Si consideri

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

TRIGONOMETRIA. Ripasso veloce

TRIGONOMETRIA. Ripasso veloce TRIGONOMETRIA Ripasso veloce Definizioni principali Sia u un segmento con un estremo nell origine e l altro sulla circonferenza di centro l origine e raggio (circonferenza goniometrica) che formi un angolo

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Isometrie nel piano cartesiano

Isometrie nel piano cartesiano Le isomerie nel piano sono rasformazioni che associano ad ogni puno del piano uno ed un solo puno del piano in modo ale che, se A e B sono una qualsiasi coppia di puni del piano e A e B sono i loro puni

Dettagli

Questionario di TRIANGOLI. per la classe 3^ Geometri

Questionario di TRIANGOLI. per la classe 3^ Geometri Questionario di TRIANGOLI per la classe 3^ Geometri Questo questionario è impostato su 25 domande disponibili e ideate per la verifica prevista dopo la parte di corso fino ad oggi svolta. Tutte le domande

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI V PARTE: TRIGONOMETRIA MISURE DEGLI ANGOLI IN GRADI E IN RADIANTI Nota; nel seguito per la misura degli angoli in gradi viene utilizzato il sistema "sessadecimale"

Dettagli

Capitolo 8: introduzione alla trigonometria

Capitolo 8: introduzione alla trigonometria Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0

Dettagli

Meccanica Applicata alle Macchine compito del 17/ 2/99

Meccanica Applicata alle Macchine compito del 17/ 2/99 ompio 7//99 pagina Meccanica Applicaa alle Macchine compio del 7/ /99 A) hi deve sosenere l'esame del I modulo deve svolgere i puni e. B) hi deve sosenere l'esame compleo deve svolgere i puni, e 3. ) hi

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3

Dettagli

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 }

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 } Esercizi Spazi veoriali. Nello spazio veoriale R 3 si considerino i veori v, v, v 3 si deermini un veore non nullo apparenene a span{v, v } span{v 3, v 4 }, v 4. Si deermini per quali valori del paramero

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4).

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4). T.(a) T.(b) Es.1 Es. Es.3 Es.4 Toale Analisi e Geomeria 1 Quaro Appello Seembre 18 Docene: Numero di iscrizione: Cognome: Nome: Maricola: Prima pare: Teoria (puni 4+4). T.(a) Enunciare e dimosrare il eorema

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule 8 Trigonometria 81 Seno, coseno, tangente Un angolo α può essere definito geometricamente come la parte di piano compresa tra due semirette, dette lati dell angolo, aventi origine nello stesso punto O,

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli