Meccanica introduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Meccanica introduzione"

Transcript

1

2 Meccanica inroduzione La meccanica e quella pare della Fisica che sudia il moo dei corpi. Essa e cosiuia dalla cinemaica e dalla dinamica. La dinamica si occupa dello sudio del moo e delle sue cause. La cinemaica sudia il moo da un puno di visa descriivo ramie le grandezze empo, posizione, velocia ed accelerazione senza occuparsi delle cause del moo sesso. La meccanica classica, cioe la meccanica che sudieremo nel presene corso, descrive in modo correo il moo di corpi macroscopici che si muovono con velocia rascurabili rispeo alla velocia della luce nel vuoo. Definiamo puno maeriale un oggeo di cui possiamo rascurare le dimensioni rispeo alle lunghezze che inervengono nella descrizione del suo moo. La descrizione del moo di un puno maeriale e complea quando siamo in grado di descriverne la posizione in funzione del empo.

3 Veore posizione Il moo di un corpo puo essere descrio rispeo ad un sisema di assi caresiani Oxyz fisso rispeo al sisema di riferimeno usao. Definiamo veore posizione r di una paricella P quel veore che ha la coda nell origine del sisema di assi caresiani scelo e la puna nel puno occupao dalla paricella. Il veore posizione sara una funzione veoriale del empo. Le componeni caresiane del veore posizione corrispondono alle coordinae caresiane x() y() z() della paricella P perano: r()x() i + y() j + z() k. Veore sposameno Quando il puno maeriale si muove da A a B nell inervallo di empo f - i il suo veore posizione cambia da r i ad r f. Definiamo veore sposameno r r f -r i

4 Veore velocia Definiamo velocia media del puno nell inervallo di empo f - i il veore dao dal rapporo fra il veore sposameno ed il empo necessario per realizzare queso sposameno. v r Quando l inervallo di empo f - i durane il quale osserviamo il moo divena sempre piu piccolo, la direzione del veore sposameno ende a quella angene alla raieoria nel puno A. Definiamo velocia isananea il veore v v lim r dr La velocia isananea e uguale alla derivaa del veore posizione rispeo al empo. La direzione del veore velocia isananea in un puno e quella della rea angene la raieoria in quel puno menre il verso e quello del moo. Nel S.I. la unia di misura della velocia e il mero al secondo m/s. Da quano viso si ha che le componeni caresiane del veore velocia sono la derivaa rispeo al empo delle componeni del veore posizione dr d dx dy dz v ( xi + yj+ zk) i + j+ k v x i + v y j + v z k

5 Veore accelerazione Supponiamo che, nell inervallo di empo f - i, il veore velocia isananea cambi di v v f -v i dove v i a v f sono le velocia agli isani i e f. Definiamo accelerazione media il veore : a v Nel S.I la unia di misura della accelerazione e quindi il mero al secondo quadrao m/s. La accelerazione isananea e definia come: a lim v d v d x i d y d z + j + k a x i + a y j + a z k Quindi le componeni caresiane del veore accelerazione sono la derivaa seconda rispeo al empo delle componeni caresiane del veore posizione.

6 Moo ad accelerazione cosane Consideriamo il moo di un puno maeriale che si muove con accelerazione cosane a. Per ale ipo di moo, deo anche moo uniformemene accelerao, ci proponiamo di rovare le equazioni orarie del moo aa() ; vv() ; rr() La prima equazione oraria e banale: aa()a Per ricavare la seconda equazione oraria occorre inegrare la prima fra un generico isane iniziale 1 ed un generico isane finale. d v a d v a d v a v -v 1 a ( - 1 ) v v 1 + a ( - 1 ) Se si ipoizza che il moo cominci all isane 1, indicando la velocia iniziale v 1 v e la velocia finale v v si oiene la equazione generalizzaa v v + a Per ricavare la erza equazione oraria inegriamo la seconda equazione oraria fra un generico isane iniziale 1 ed un generico isane finale. d r v + a d r v + a 1 dr v 1 + a r -r 1 v ( - 1 )+1/ a ( - 1 ) r r 1 + v ( - 1 ) +1/ a ( - 1 ) Se si ipoizza che il moo cominci all isane 1, indicando la velocia iniziale v 1 v la posizione iniziale r 1 r e la posizione finale r r si oiene la equazione generalizzaa r r + v +1/ a 1 1 1

7 Quindi le re equazioni orarie per un moo ad accelerazione uniforme sono a a ; v v + a ; r r + v +1/ a Ognuna di quese equazioni orarie, come ue le equazioni veoriali, puo essere proieaa sugli assi x, y, z fornendo re equazioni scalari che legano le componeni caresiane dei veori. Dalla aa oeniamo a x a x ; a y a y, ; a z a z Dalla v v + a oeniamo: v x v x +a x ; v y v y +a y ; v z v z +a z Dalla r r + v +1/ a oeniamo: x x +v x +1/a x ; y y +v y +1/a y ; zz +v z +1/a z Noiamo che: Un moo ad accelerazione cosane avviene sempre in un piano individuao dai veori a e v Il moo puo essere considerao come la composizione di re moi indipendeni lungo gli assi x, y, z. Infai la componene x della posizione dipende solo dalle componeni x di velocia iniziale ed accelerazione e cosi via. Cio puo essere di aiuo nella risoluzione dei problemi. Un moo con accelerazione cosane a e un moo a velocia cosane. Tale moo (a velocia cosane) deve necessariamene essere un moo reilineo (cioe che avviene lungo una rea) con direzione e verso idenificai dal veore velocia v Un moo reilineo a velocia cosane prende il nome di moo reilineo uniforme. Dao un corpo che si muove con componene della accelerazione cosane lungo un asse, (ad es. l asse x) combinando le leggi orarie per la velocia e per la posizione (v x v x +a x ; xx +v x +1/a x ) si oiene: v x v x +a x (x-x ) Tale relazione puo essere uile nella risoluzione di problemi.

8 Moo parabolico Un ipico esempio di moo con accelerazione cosane e quello di corpo lanciao con velocia iniziale v in prossimia della superficie erresre. Infai, rascurando l ario con l aria, ui i corpi doai di massa che si muovono in prossimia della superficie erresre sono doai di una accelerazione di gravia a g rivola verso il basso dove g g 9.81 m/s Per sudiare ale moo piano e consigliabile scegliere come riferimeno un sisema di assi caresiani Oxyz con il piano xy coincidene con il piano del moo (idenififao dai veori g e v ), l asse y parallelo al veore g e rivolo verso l alo, e l origine coincidene con la posizione della paricella al empo. In al modo il veore accelerazione g ha componene non nulla solo rispeo all asse y e ue le componeni di velocia ed accelerazione sono nulle rispeo all asse z, semplificando la risoluzione del problema. (In generale, nella risoluzione dei problemi bisogna sempre cercare un sisema di assi caresiani rispeo al quale la descrizione del moo in esame risuli piu semplice.) v ox v o cos θ i v oy v o sen θ i a oy -g; a ox x o y o V oy V o V y V y Vo y Le equazioni orarie per il moo lungo l asse x saranno: a x a ox ; v x v ox +a ox v ox ; xx o + v ox +1/ a ox v ox Avremo un moo reilineo uniforme lungo l asse x. Le equazioni orarie per il moo lungo l asse y saranno: a y a oy -g; v y v oy +a oy ; yy o + v oy + 1/a oy Avremo un moo reilineo uniformemene accelerao lungo l asse y.

9 Eliminando la variabile dalle leggi orarie per il moo lungo gli assi y ed x oeniamo la equazione della raieoria xv ox ; x/v ox yv oy +1/a oy (v oy /v ox )x +1/(a oy /v ox ) x Ricordando che: v ox v o cos θ i ; v oy v o sen θ i ; a oy -g Si ha che: y x g θ i -1/ g [1/(v o cos θ i )] x Abbiamo quindi oenuo una equazione del ipo yax+bx Cioe la equazione di una parabola passane per l origine e con l asse parallelo all asse y. Perano: una paricella che si muove con accelerazione cosane a ed ha una velocia iniziale non parallela al veore accelerazione a percorrera una raieoria parabolica. Noiamo che per le componeni delle velocia nel moo considerao abbiamo : v x v ox ; v y v oy -g Cioe la componene della velocia lungo l asse x e cosane con il empo menre la componene della velocia lungo y diminuisce con il empo V oy V y V y V oy

10 Esempio: Due palline vengono lasciae andare allo sesso isane dalla sessa quoa h. La pallina 1 con velocia iniziale nulla, la pallina con velocia iniziale v rivola nel verso posiivo dell asse x. Trascurando la inerazione con l aria deerminare: 1) in che isane le due palline giungono al suolo. ) la disanza percorsa dalla pallina lungo l asse x nell isane in cui occa il suolo. Le equazioni per il moo lungo l asse y per le due palline saranno uguali yyo+voy+1/aoy h+-1/g Perano ue e due le palline raggiungeranno la quoa y allo sesso isane ale che h-1/g (h/g)1/ y La equazione per il moo lungo l asse x per la pallina sara : x xo+vox+1/aox vo Perano all isane (h/g)1/ al quale la pallina occa il suolo essa avra percorso una disanza xv (h/g)1/ x

11 Esempio: massima alezza e giaa di un proieile Un proieile viene sparao con velocia iniziale v formane un angolo θ i con l orizzonale. Deerminare la quoa massima h raggiuna dal proieile e la disanza R (giaa) percorsa dal proieile rascurando l inerazione con l aria. Ho che: v oy v o sen θ i ; v ox v o cos θ i ; a oy -g; a ox ; x o y o v o Per il moo lungo l asse x abbiamo: 1) x x o +v ox +1/a ox v ox ; ) v x v ox +a ox v ox Per il moo lungo l asse y abbiamo: 3) y y o +v oy +1/a oy v oy -1/g ; 4) v y v oy +a oy v oy -g Per calcolare la quoa massima dalla equazione 4) oeniamo il empo necessario per raggiungere la quoa yh dove avremo v y v oy -g v oy /g Sosiuendo nella equazione 3) oeniamo la quoa massima h v oy (v oy /g)-1/g(v oy /g) (v oy /g)(1-1/) (v o sen θ i ) /g

12 Per calcolare la giaa considero le precedeni equazioni 1) e 3) per il moo lungo gli assi x e y 1) x v ox ; 3) yv oy -1/g Dalla 3) oengo il empo per percorrere la disanza R imponendo y v oy -1/g (v oy -1/g ) Quesa ha soluzioni: (corrisponde all isane iniziale quando il proieile e nell origine) v oy /g (corrisponde all isane finale quando il proieile occa il suolo) Sosiuendo nella equazione 1) ho: R v ox (v oy /g )(/g) v o sen θ i cos θ i ricordando che sen(θ) cos(θ) sen(θ) R (1/g) v o sen( θ i ) la giaa e quindi massima per θ i 9 cioe θ i 45 Fissao il modulo della velocia iniziale esisono sempre due angoli di lancio θ i che danno la sessa giaa R.

13 Alcuni quesii di verifica 1) Cosa inendiamo quando diciamo proieare una equazione veoriale sui re assi x,y,z di un sisema caresiano? )Siee in grado di definire i veori posizione, velocia ed accelerazione? 3)Conoscee ed avee capio il significao delle leggi orarie per il moo ad accelerazione cosane? 4)Saprese spiegare perche un moo ad accelerazione cosane e un moo piano? 5)Lanciae verso l alo in direzione vericale con la sessa velocia iniziale due corpi rispeivamene di massa m 1 1 kg ed m 1 kg. Quale dei due raggiunge la quoa maggiore? Spiegae. 6)Lasciae cadere dalla sessa quoa con velocia iniziale nulla due corpi rispeivamene di massa m 1 1 kg ed m 1 kg. Quale dei due raggiunge il suolo prima? Spiegare. Le velocia dei due corpi quando quesi occano il suolo saranno differeni?

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza MECCANICA (sudio del moo dei corpi) Cinemaica: descrizione del moo Dinamica: descrizione del moo in funzione della forza CINEMATICA del puno maeriale oo in una dimensione x 2 x 1 2 1 disanza percorsa empo

Dettagli

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r!

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r! Posizione-Sposameno-velocià media Consideriamo un puno maeriale che si muove nel empo lungo una rea (moo unidimensionale) 5 1 5 1 2 2 4 ( 1 ) = 1 ( 2 ) = 2 ( 3 ) = 3 ( 4 ) = 4 ( 5 ) = 5 v, ʹ < 1 < 2

Dettagli

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

Fisica Cinematica del punto

Fisica Cinematica del punto Fisica - Cinemaica del puno 5 a d accelerazione angenziale a dφ u + u N a N a + a N accelerazione normale (cenripea) Cenro e raggio di curaura La raieoria localmene può essere approssimaa da una circonferenza

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno. x Z z k i r j P (x,y,z) y Y i, j, k eore unià

Dettagli

v t v t m s lim d dt dt Accelerazione ist

v t v t m s lim d dt dt Accelerazione ist 1 Accelerazione Se la elocià non si maniene cosane il moo non è più uniforme ma prende il nome di moo accelerao. ACCELERAZIONE: ariazione della elocià rispeo al empo Disinguiamo ra ACCELERAZIONE MEDIA

Dettagli

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni Lezione Meccanica di un sisema puniforme Cinemaica in due dimensioni Moo in un piano Il moo di un corpo su una rea può essere definio, in ogni isane da una sola funzione del empo ;spazio percorso. Se la

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 3-4 Cinemaica del puno maeriale 5 Coordinae polari (r, θ): Angolo θ() aggio r ( ) cos. Cinemaica del puno maeriale Moo circolare Caso paricolare di moo curilineo nel piano Traieoria: circonferenza

Dettagli

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t

P posizione i occupata dal punto materiale all istante di tempo t: x ( t ) coordinata del punto P. x ( t ) = x ( t) i vettore posizione all istante t MOTO RETTILINEO: formalismo eoriale Il puno maeriale si muoe lungo una rea O O origine x () P asse X P posizione i occupaa dal puno maeriale all isane di empo : x ( ) coordinaa del puno P x ( ) x ( ) i

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. C.d.L. Scienze e Tecnoloie Ararie, A.A. 6/7, Fisica Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessario conoscere la posizione del corpo nello spazio e quindi occorre fissare un sisema di riferimeno.

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 5 Moo circolare Caso paricolare di moo curilineo nel piano raieoria: circonferenza Modulo della elocià (in enerale) non uniforme Coordinae polari: Anolo aio r( ) Coordinaa curilinea Posizione

Dettagli

Meccanica cinematica : moti rettilinei. Appunti di fisica. Prof. Calogero Contrino

Meccanica cinematica : moti rettilinei. Appunti di fisica. Prof. Calogero Contrino 6 Meccanica cinemaica : moi reilinei Appuni di fisica Prof. Caloero Conrino cadua libera in prossimià della erra È noo a ui che in prossimià della erra un corpo lasciao libero di cadere o lanciao luno

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D IL MOVIMENTO Spazio e empo Sposameno Legge oraria Velocia Moo uniforme Accelerazione Moo uniformemene accelerao Esempi di moi in 2-D Il movimeno pag.1 Spazio e empo Ingredieni fondamenali: Disanza variazione

Dettagli

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie CINEMATICA 8 febbraio 9 (PIACENTINO - PREITE) Fisica per Scienze Moorie 1 Cosa è la Cinemaica? La cinemaica è quel ramo della meccanica che si occupa di descriere il moo dei corpi a prescindere dalle cause

Dettagli

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo CINEMATICA DEL PUNTO Inroduzione Con il ermine cinemaica si indica lo sudio del moo dei corpi. Per poer sudiare ciò si approssima la realà ramie una schemaizzazione della sessa. La prima approssimazione

Dettagli

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE 1 2 3 4 5 6 7 In un sisema di riferimeno inerziale: A se la somma delle forze che agiscono su un puno maeriale è nulla, la sua velocià non è cosane e, se

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Universià degli Sudi di Milano Facolà di Scienze Maemaiche Fisiche e Naurali Corsi di Laurea in: Informaica ed Informaica per le Telecomunicazioni Anno accademico 1/11, Laurea Triennale, Edizione diurna

Dettagli

Forze dipendenti dalla velocità

Forze dipendenti dalla velocità Forze dipendeni dalla velocià Ario Viscoso Corpo in cadua libera in un fluido -> resisenza f R del mezzo In casi semplici (geomeria semplice, bassa velocià, assenza di urbolenze nel fluido) vale f R =

Dettagli

Mo# con accelerazione costante

Mo# con accelerazione costante Mo# con accelerazione cosane Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uuali si hanno incremeni di elocià euali. In un piano - quesa equazione

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

Equazioni orarie. Riassumendo. 1 2 at

Equazioni orarie. Riassumendo. 1 2 at Equazioni orarie Riassumendo s s 1 a a as Moo ericale dei grai o Tui i corpi cadono nel uoo con accelerazione cosane (esperienza di Galileo). g = 9.8 m/s h P s s suolo g gs 1 g Da una orre ala 8m cade

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 Moo reilineo O ( ) ( ) Dalla posizione alla elocià d ) ( ) d d d Dalla elocià alla posizione d ) d d ) d ( ) + ) d α d α d α + Inerali α + α + α + + C ( α ) ( ) α + α + α + α d α + C d +

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Impulso di una forza

Impulso di una forza Uri Nel linguaggio di ui i giorni chiamiamo uro uno sconro fra due oggei. Piu in generale, possiamo definire uri quei fenomeni in cui la inerazione di due o piu corpi per un breve inervallo di empo genera

Dettagli

VARIAZIONI GRADUALI DI PORTATA

VARIAZIONI GRADUALI DI PORTATA eonardo aella VARIAZIONI GRAAI I PORTATA Vi sono siuazioni nelle uali una condoa è desinaa ad eroare una pare o ua la sua poraa luno un cero percorso come ad esempio le condoe uilizzae neli acuedoi per

Dettagli

Corso di Fisica. Lezione 4 La dinamica

Corso di Fisica. Lezione 4 La dinamica Corso di Fisica Lezione 4 La dinamica Lo scopo della dinamica La dinamica si occupa di sudiare perché e come si muovono i corpi. Parlare di movimeno di un corpo significa che il corpo sesso cambia la sua

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Esercizi di Cinemaica 8 febbraio 9 PIACENTINO - PREITE (Fisica per Scienze Moorie) Le equazioni cinemaiche Moo reilineo uniforme Moo reilineo uniformemene accelerao a cosane ) ( e cosane a a + 8 febbraio

Dettagli

I - Cinematica del punto materiale

I - Cinematica del punto materiale I - Cinemaica del puno maeriale La cinemaica deli oei puniformi descrie il moo dei puni maeriali. La descrizione del moo di oni puno maeriale dee sempre essere faa in relazione ad un paricolare sisema

Dettagli

Meccanica. Cinematica

Meccanica. Cinematica Meccanica Sisemi meccanici: Il più semplice è il PUNTO MATERIALE: oggeo prio di dimensioni (doao di massa) Asrazione uile: ü per definire in modo semplice alcune grandezze fondamenali ü quando ineressa

Dettagli

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0 CINEMATICA EX 1 Un puno nello spazio è definio dal veore posizione ˆr() = 3 3 î + ĵ + ˆk dove è il empo. Calcolare: a) velocià e accelerazione isananea, b) velocià veoriale media in un empo compreso fra

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicaa (FIS/07) 9CFU Facolà di Ingegneria, Archieura e delle Scienze Moorie 18-marzo-013 Archieura (corso magisrale a ciclo unico quinquennale) Prof. Lanzalone Gaeano Cinemaica del Puno Maeriale

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Capitolo 3 : Esercizio 42 lancio di una goccia di inchiostro in una printer inkjet

Capitolo 3 : Esercizio 42 lancio di una goccia di inchiostro in una printer inkjet Capiolo 3 : Esercizio 4 lancio di una goccia di inchiosro in una priner inkje Una singola goccia di inchiosro( 1 pl ) è circa un milionesimo di una goccia d'acqua che esce da un conagocce. Un caraere medio

Dettagli

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella

Dettagli

DOCENTE:Galizia Rocco MATERIA: Fisica

DOCENTE:Galizia Rocco MATERIA: Fisica COMPITI PER LE VACANZE ESTIVE E INDICAZIONI PER IL RECUPERO DEL DEBITO FORMATIVO DOCENTE:Galizia Rocco MATERIA: Fisica CLASSE BL Anno scolasico 6-7 Gli sudeni con giudizio sospeso in Fisica dovranno sudiare

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Compito di Fisica I, Ingegneria Informatica, 23/06/05

Compito di Fisica I, Ingegneria Informatica, 23/06/05 Compio di Fisica I, Ingegneria Informaica, 3/6/5 ) Un alalena lunga 3m, schemaizzabile come un asa rigida soile praicamene priva di massa, è incernieraa senza ario nel suo puno di mezzo a,5 m dal suolo.

Dettagli

Meccanica Applicata alle Macchine Compito A 14/12/99

Meccanica Applicata alle Macchine Compito A 14/12/99 page 1a Meccanica Applicaa alle Macchine Compio A 14/12/99 1. La figura mosra una pressa per la formaura per soffiaura di coneniori in maeriale plasico. Il meccanismo è sudiao in modo che in aperura (mosraa

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Prof. Ailio Sanocchia Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 75-585 78 E-mail: ailio.sanocchia@pg.infn.i Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t" è la grandezza

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t è la grandezza Capiolo 3 Cinemaica generale (pare prima) 87 48 (a) Dao che a ds = v dv (vedi precedene risp.44), e al empo sesso a = k v (dao del problema), possiamo scrivere k v ds = v dv, ovvero k ds = (dv) /v. er

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b]

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b] U n i v e r s i à d e g l i S u d i d i C a a n i a - C o r s o d i s u d i o i n I n g e g n e r i a I n f o r m a i c a - D i p a r i m e n o d i F i s i c a e s r o n o m i a MOI OSCILLOI - Moo armonico

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale, oc. M. Moa e G. Zanzoo Soluzioni degli esercizi di auoverifica. 3. Inegrali di superficie.. ae la superficie Vicenza

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Meccanica Introduzione

Meccanica Introduzione Meccanica 23-24 Inroduzione FISICA GENERALE Meccanica: -Sudio del moo dei corpi -Forza di gravià Termodinamica: - Calore, fenomeni ermici, applicazioni Eleromagneismo: - Cariche eleriche, magnei FISICA

Dettagli

Riassunto di Meccanica

Riassunto di Meccanica Riassuno di Meccanica Cinemaica del puno maeriale 1 Cinemaica del puno: moo nel piano 5 Dinamica del puno: le leggi di Newon 6 Dinamica del puno: Lavoro, energia, momeni 8 Dinamica del puno: Lavoro, energia,

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Moto in una dimensione

Moto in una dimensione Cosa fa rabbriidire il piloa olre al frasuono? Moo in una dimensione La meccanica, la più anica delle scienze fisiche, ha come scopo lo sudio del moo degli oggei correlao con le sue cause, le forze La

Dettagli

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c Algebra eoriale A B modulo, direzione e ero A puno di applicazione Somma e differenza di eori: a + b = c b a c meodo grafico: regola del parallelogramma Proprieà della omma: a + b = b + a (commuaia) (a

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

FAM. dt = d2 x. . Le equazioni del MUA sono

FAM. dt = d2 x. . Le equazioni del MUA sono Serie 8: Soluzioni FAM C. Ferrari Esercizio Moo accelerao. Usando le definizioni oeniamo v = d d e a = dv d = d d v() = v( 0 )+a 0 ( 0 ) e a() = a 0.. Abbiamo v() = m/s+9,8m/s e a() = 9,8m/s. È un MRUA.

Dettagli

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto Seconda legge di Newon: Fd = dp Legame fra l azione della forza agene sul puno durane l inervallo d e la variazione della sua quania di moo Casi in cui F() e noa: relaivamene rari Spesso per conoscere

Dettagli

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica

Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: Cinematica Dinamica Statica CINEMATICA STUDIO del MOTO INDIPENDENTEMENTE dalle CAUSE che lo hanno GENERATO DINAMICA STUDIO del MOTO e delle CAUSE

Dettagli

Meccanica Applicata alle Macchine compito del 17/ 2/99

Meccanica Applicata alle Macchine compito del 17/ 2/99 ompio 7//99 pagina Meccanica Applicaa alle Macchine compio del 7/ /99 A) hi deve sosenere l'esame del I modulo deve svolgere i puni e. B) hi deve sosenere l'esame compleo deve svolgere i puni, e 3. ) hi

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Uniesià Poliecnica delle Mache, Facolà di Agaia C.d.L. Scienze Foesali e Ambienali, A.A. 009/010, Fisica 1 Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello

Dettagli

Il moto. Posizione e spostamento.

Il moto. Posizione e spostamento. Il moo. Posizione e sposameno. VETTORE POSIZIONE E necessaio conoscee la posizione del copo nello spazio e quindi occoe fissae un sisema di ifeimeno. x Z z k i θ ϕ j P (x,y,z) y Y i, j, k eoe unià (esoe)

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia.

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia. LE ONDE A ui è capiao di osservare ciò che accade se si lancia un sasso nel mare, oppure si scuoe una corda esa. Il fenomeno che osserviamo è comunemene chiamao ONDA. Che cos è un onda? Un onda è una perurbazione

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 09-00 5 O O r r x r x Moo nel piano: elocià dr Componeni caresiane r x + dx d x + xx + Modlo della elocià: + x x Componeni polari dr r, r r r d dr d dr r ( r ) r + r r + r r Deriaa di n ersore

Dettagli

Equazione vettoriale del moto: traiettoria legge oraria. rappresentazione intrinseca della traiettoria ascissa curvilinea

Equazione vettoriale del moto: traiettoria legge oraria.  rappresentazione intrinseca della traiettoria ascissa curvilinea Equazione veoriale del moo: raieoria e legge oraria. Si dice che un corpo è in moo rispeo a un dao sisema di riferimeno S, quando la sua posizione in S cambia con il empo. Nello schema del puno maeriale,

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Ailio Sanocchia Ø Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 075-585 708 Ø E-mail: ailio.sanocchia@pg.infn.i Ø Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

Meccanica Applicata alle Macchine Compito 27/12/99

Meccanica Applicata alle Macchine Compito 27/12/99 page 1a Meccanica Applicaa alle Macchine Compio 27/12/99 1. Il disposiivo mosrao in figura serve per il sollevameno di veicoli. Il corpo indicao con 1 si appoggia al erreno (considerarlo solidale con il

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del Analisi Maemaica II Corso di Ingegneria Gesionale Compio A del -6-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

MOTO RETTILINEO UNIFORME

MOTO RETTILINEO UNIFORME MOTO RETTILINEO UNIFORME = cosane a = 0 = cos ( x-x o )/ = cos x = x o + 1 MOTO RETTILINEO UNIFORME = cosane a a = 0 = cos ( x-x o )/ = cos x = x o + 2 MOTO RETTILINEO UNIFORME a = 0 = cos = cosane ( x-x

Dettagli