Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica"

Transcript

1 Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni x R si ha e che la sima è oimale. x + cos x x 4,. Calcolare x x x e x + cos(πx).. Disegnare i grafici G f e G g delle funzioni f(x) x x e g(x) max{, x 6}, e calcolare l area della figura piana deiaa da quelli (i grafici) delle resrizioni di f e g all inervallo [, ]. 4. Daa f() log(+), si consideri la funzione inegrale Si chiede di F (x) : f() d. () (a) sabilire in che senso va ineso l inegrale in (??), precisando il dominio e la regolarià della funzione F ; (b) deerminare evenuali asinoi della funzione F (x), per x + ; (c) sabilire il caraere della serie n ( F. n)

2 Svolgimeno Esercizio. Allo scopo di provare la disuguaglianza del eso, è uile inrodurre la funzione h definia da h(x) : x + cos x x 4, x R, ed indagarne le proprieà (globali), quali monoonia e/o convessià (concavià). Si osservi preinarmene che h è una funzione pari: è perano sufficiene analizzare la sua resrizione a R +. Si noa subio che h(), e che h(x) per x +, come segue immediaamene riscrivendo h(x) x 4( x cos x ) x 4 per x. Il ie mosra in paricolare che la sima cercaa h(x) è ceramene soddisfaa per x sufficienemene grande. Si ha h C (R), con h (x) : 6x 6 cos x sin x 4x 6x sin(x) 4x, x R. () Al fine di deerminare il segno della derivaa h (x), si osserva che una più accuraa riscriura di (??) produce da cui segue ( h (x) x sin(x) 4 x) (x sin(x) (x) 6 h (x) x, richiamando la noa sima dal basso per la funzione seno: ), x R, sin 6,. () (Si ricorda che la sima (??) si dimosra provando la convessià della funzione sin + 6 per, in virù della sima elemenare sin,.) In conclusione, h è monoona decrescene in [, ) e di conseguenza h(x) h() per ogni x ; poiché h è pari, essa risula crescene in (, ] e la validià della sima su uo R è provaa. Infine, la sima risula oimale poiché h(). In alernaiva, si poeva osservare che si ha anche h C (R): derivando nuovamene in (??), si ricava ( h (x) cos(x) 4x ) 6 ( cos(x) (x)) per ogni x; uilizzando in queso caso la sima cos x x, con x in luogo di x, si oiene immediaamene che h (x) su R. Dunque h è concava in R ed il suo grafico G h sa soo a ue le ree ad esso angeni; in paricolare, alla rea angene passane per (, ), che ha equazione y dao che h () (x è un puno criico per h). Si conclude di nuovo che h(x) per ogni x.

3 (È imporane soolineare che anche nel caso non ci si avvalesse delle sime richiamae per le funzioni circolari, la esi si oiene ugualmene e facilmene calcolando la derivaa (erza e) quara di h(x). I calcoli sono omessi e lasciai al leore.) menre Esercizio. Poniamo x + cosicché per x si ha. Si ha x x e x e log x x e x e (e log(+) ++ ) e (e +o( ) ++ ) e (e + +o()++ ) e (e +o() ) e ( + + o() ) e ( + o()) + cos(πx) + cos(π + π) cos(π) ( (π) π + o( )) + o( ) π + o(), da cui x ± x x e x + cos(πx) ± e ( + o()) π + o() ± e ( + o()) ± π + o() ± e π ± eπ. Si evince che il ie richieso non esise in quano ie desro e ie sinisro sono ra loro diversi. (I valori dei ii desro e sinisro sono oenui sopra.) Esercizio. La funzione f(x) è definia per ogni x R, si annulla per x e x ed è negaiva per x <. Per x < si ha f(x) x x da cui e f (x) x + x x 4 x x f (x) ( x) (4 x) x 4( x) x 8. 4( x) 6( x) + (4 x) 4( x) x

4 f g 4 5 Dunque sull inervallo (, 4/] la funzione è crescene, e su [4/, ] è decrescene. Su uo l inervallo (, ] la funzione è concava. Menre per x > si ha f(x) x x da cui e f (x) x + x x x 4 x f (x) ( x ) (x 4) x 4(x ) x 8. 4(x ) 6(x ) (x 4) 4(x ) x Dunque sull inervallo [, + ) la funzione è crescene, su [, 8/] è concava e su [8/, + ) è convessa. Nel puno x c è una cuspide, infai la derivaa desra ende a + e la derivaa sinisra a. Non ci sono asinoi orizzonali né obliqui, in quano sia f(x) che f(x)/x endono a ±. Il grafico della funzione g è l unione di due semiree: per x < si ha y per x > si ha y x 6. Per x si ha un puno angoloso. I grafici delle due funzioni f e g si inconrano nei puni x, x e x (lo si verifica per sosiuzione). Per il calcolo dell area ci ineressa sapere se ci sono alri puni, nell inervallo [, ] in cui le due funzioni si occano. Per x < non ci sono alri puni di inersezione in quano f è posiiva. Per x > osserviamo che si ha f () 5/ < g (). 4

5 Essendo f convessa ra 8/ e sappiamo quindi che il grafico di f sa sopra la rea angene in x che a sua vola sa sopra il grafico di g (che è una rea più ripida della angene). Nell inervallo [, 8/] la funzione g è invece concava e quindi sa sopra alla rea secane. Di nuovo la rea secane sa sopra al grafico di g (in quano le due ree si inersecano in x menre in x la rea secane abbiamo già viso che è sopra il grafico di g). Dunque l area cercaa è daa da: f(x) g(x) dx (f(x) g(x)) dx x x dx + x x dx (x 6) dx. Calcoliamo a pare i re inegrali. x e dx d: Nel primo facciamo la sosiuzione x da cui x x dx ( )( ) d [ 4 + ] ( ) d Nel secondo facciamo la sosiuzione x da cui x + e dx d: Il erzo inegrale: x x dx ( + ) d [ ] (4 + 4 ) d Dunque, in conclusione: (x 6) dx [ ] x 6x f(x) g(x) dx In alernaiva i primi due inegrali poevano essere svoli per pari. Ad esempio: x(x ) dx x(x ) (x ) dx x(x ) 4 5 (x ) 5. Esercizio 4. 4a) La funzione f() log(+) è definia e coninua in R +. Di fao f è esendibile con coninuià in, ponendo f(), poiché f() log( + ), per + ; 5

6 in paricolare, f è iaa in ogni inervallo chiuso di esremi e x e l inegrale in (??) va ineso secondo Riemann. La coninuià di f assicura che la funzione inegrale F è definia per ogni x, e perano dom F R + {x R: x }. Inolre, indicando con f l esensione coninua di f su R +, il Teorema fondamenale del Calcolo Inegrale assicura che F C, con F (x) f(x) log( + x) x, x >, F +() f() x + f(x). 4b) Al fine di sabilire se F ammee asinoi per x +, si indaga innanziuo se esise x + F (x). Si riscrive, ad esempio per x >, F (x) f() d f() d + ove il primo addendo è un numero, menre per il secondo si ha f() d f() d, (4) log d +, x +. (5) Ne consegue che F (x) +, per x + e se vi è un asinoo, queso dovrà essere obliquo. Si discue perano l esisenza del ie F (x) x + x, (6) ed è qui naurale esplorare l applicabilià del Teorema di de L Hôpial: si ha F (x) log( + x), (7) x + x + x da cui segue F (x) (8) x + x e F non ha asinoi obliqui (l esisenza di asinoi orizzonali era già saa esclusa). 4c) Il caraere della serie di ermine generale a n F (/n) scaurisce dall analisi del comporameno asinoico di a n. Si osserva innanziuo che a n è infiniesima: F (/n) F () ; (9) n d alra pare, uilizzando ancora una vola il ie noevole [log( + x)]/x per x, si oiene F (x) f(x) log( + x). () x + d x/ x + x/ x + x dx La domanda in che senso va ineso... è saa generalmene mal inerpreaa: i possibili sensi sono secondo Riemann oppure in senso improprio. 6

7 Dal Teorema di de L Hôpial (forma /) segue che anche x + F (x) x/, () cioè F (x) x/ per x +. Si conclude che a n F (/n) è asinoica a b n : che è il ermine generale di una n / serie convergene. Per il crierio del confrono asinoico, n a n converge. 7

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del..9 TEMA Esercizio Si consideri la funzione f(x) = e x 6 x+, x D =], [. i) deerminare i ii di f agli esremi di D e gli evenuali asinoi;

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del Analisi Maemaica II Corso di Ingegneria Gesionale Compio A del -6-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

1) Data la funzione f(x) =

1) Data la funzione f(x) = Analisi I per Ingegneria Online Prova scria del 0 0 06 A.A. 05/06 Si possono consulare libri, appuni, noe ec. Nome(Sampaello) Cognome(Sampaello) Maricola ) Daa la funzione f(x) = segueni domande (le dimosrazioni

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4).

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: Prima parte: Teoria (punti 4+4). T.(a) T.(b) Es.1 Es. Es.3 Es.4 Toale Analisi e Geomeria 1 Quaro Appello Seembre 18 Docene: Numero di iscrizione: Cognome: Nome: Maricola: Prima pare: Teoria (puni 4+4). T.(a) Enunciare e dimosrare il eorema

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, /9/8 II Prova - Maemaica Classe V Sez. Unica Soluzione Problemi. Risolvi uno dei due problemi: Problema. Un produore di candeline ea ligh

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale, oc. M. Moa e G. Zanzoo Soluzioni degli esercizi di auoverifica. 3. Inegrali di superficie.. ae la superficie Vicenza

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011 Poliecnico di Milano Ingegneria Indusriale Analisi e Geomeria Primo appello 4 Febbraio 0 Cognome: Nome: Maricola: Compio A Es. : 7 puni Es. : 0 puni Es. 3: 7 puni Es. 4: 6 puni Es. 5: 3 puni Toale. a Scrivere

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica Anno Scolasico 15-16 5 maggio 16 - Eserciazione Prova Scria di Maemaica Il candidao svolga, a sua scela, uno dei problemi e quaro dei quesii proposi. ➊ L inflazione, cioè l aumeno generalizzao e prolungao

Dettagli

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017 Analisi Maemaica Ingegneria Informaica Gruppo 4, canale 6 Argomeni 9 oobre 207. Esercizio. Da p://www.ma.unip.i/~moni/a_ing_205/appuni2.pf (Maeriali iaici Successioni numerice.) suiare il capiolo 3 fino

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione Universià degli Sudi di Milano-Bicocca - Facolà di Economia Maemaica Generale Modulo B - 5 Luglio 00 Eserciio. Dare la definiione di rango di una marice. Enunciare il Teorema di Rouchè-Capelli., verifi-

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

FORMULE GONIOMETRICHE

FORMULE GONIOMETRICHE FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può

Dettagli

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica Simulazione miniseriale dell Esame di Sao 09_ Maemaica e Fisica Problema n. q a e segue Daa la funzione b b q ' ae b Il cui segno è dao da se b 0 b b q ' ae b 0 b 0 se b 0 se b 0 b a Perano il puno di

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

LICEO SCIENTIFICO STATALE "Leonardo da Vinci" MAGLIE. 12 maggio 2008

LICEO SCIENTIFICO STATALE Leonardo da Vinci MAGLIE. 12 maggio 2008 LICEO SCIENTIFICO STATALE "Leonardo da Vinci" MAGLIE VII CERTAMEN FISICO MATEMATICO " FABIANA D'ARPA" 12 maggio 28 I CANDIDATI RISOLVANO IL PROBLEMA DEL GRUPPO A oppure IL PROBLEMA DEL GRUPPO B (a scela)

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

A Nome:... Cognome:... Matricola:...

A Nome:... Cognome:... Matricola:... A Nome:................... Cognome:................... Maricola:................... Quando desidera sosenere la prova orale? /2/28 8/2/28 Universià di Milano Bicocca Corso di Laurea di primo livello in

Dettagli

ha il seguente grafico:

ha il seguente grafico: P.1 Un filo reilineo, di lunghezza eoricamene infinia, percorso da correne crea un campo magneico, le cui linee di forza sono circonferenze, pose su piani perpendicolari al filo e con cenro sul filo. Applicando

Dettagli

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica su equazioni differenziali - teoria generale

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica su equazioni differenziali - teoria generale Analisi Maemaica 3 (Fisica e Asronomia) Esercizi di auoverifica su equazioni differenziali - eoria generale Universià di Padova - Lauree in Fisica ed Asronomia - A.A. 018/19 maredì 7 novembre 018 Isruzioni

Dettagli

Liceo scientifico e opzione scienze applicate

Liceo scientifico e opzione scienze applicate SIMULAZIONE DELLA PROVA D ESAME 9 APRILE Liceo scienifico e opzione scienze applicae Lo sudene deve svolgere uno dei due problemi e rispondere a 5 quesii del quesionario. Duraa massima della prova: ore.

Dettagli

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto Seconda legge di Newon: Fd = dp Legame fra l azione della forza agene sul puno durane l inervallo d e la variazione della sua quania di moo Casi in cui F() e noa: relaivamene rari Spesso per conoscere

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Esercizi di Analisi Matematica Equazioni differenziali

Esercizi di Analisi Matematica Equazioni differenziali Esercizi di Analisi Maemaica Equazioni differenziali Tommaso Isola 8 gennaio 00 Indice Generalià. Equazioni del primo ordine inegrabili 3. Teoria............................................ 3. Equazioni

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Esercizi sulla soluzione dell equazione del calore

Esercizi sulla soluzione dell equazione del calore Esercizi sulla soluzione dell equazione del calore Corso di Fisica Maemaica 2, a.a. 202-203 Diparimeno di Maemaica, Universià di Milano 5 Dicembre 202 Equazione del calore omogenea Esercizio.. Si consideri

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti Recupero 1 compiino di Analisi Maemaica Ingegneria Eleronica. Poliecnico di Milano Es. Puni A.A. 18/19. Prof. M. Bramani 1 Tema n 1 3 4 5 6 To. Cognome e nome in sampaello codice persona o n di maricola

Dettagli

I principali indicatori sintetici sulle revisioni

I principali indicatori sintetici sulle revisioni I principali indicaori sineici sulle revisioni Con la realizzazione e la diffusione dei riangoli delle revisioni, l Isa si propone di analizzare il processo di revisione dell informazione saisica congiunurale

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

1), punti (7.5) Sia data la funzione f(x) =

1), punti (7.5) Sia data la funzione f(x) = Analisi II per Ingegneria Eleronica e Telecomunicazioni A.A. /, Terzo scrio, compio A Allegare ui i coni rienui necessari. Risulai senza giusificazione non verranno presi in considerazione Nome(Sampaello)

Dettagli

Equazioni di Hamilton-Jacobi

Equazioni di Hamilton-Jacobi Corsi di doorao, Universià La Sapienza di Roma, a.a. 2003-2004 Equazioni di Hamilon-Jacobi Ialo Capuzzo Dolcea Diparimeno di Maemaica, Universià di Roma - La Sapienza capuzzo@ma.uniroma1.i Federica Dragoni

Dettagli

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt

Proprietà della Trasformata. Funzioni trasformabili (1/3) L {af(t) + bg(t)} (s) = (af(t) + bg(t))e st dt. Tabella 1. = a f(t)e st dt + b g(t)e st dt Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 27/28 (aggiornaa al 8//27) 2 Proprieà della rasformaa

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

PROCESSI D URTO IN UNA DIMENSIONE

PROCESSI D URTO IN UNA DIMENSIONE 4/5 PROCESSI D URTO IN UNA DIMENSIONE 9/1 1 PROCESSI D URTO IN UNA DIMENSIONE Consideraa una paricella che si muove in un poenziale che si annulla per x ±, siamo ineressai a discuere paricolari soluzioni

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A Universià degli Sudi di Bergamo orso di Geomeria e Algebra Lineare (vecchio programma) 7 giugno Tema A Tempo a disposizione: ore. alcolarici, libri e appuni non sono ammessi. Ogni esercizio va iniziao

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli