( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:"

Transcript

1 Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB r cos. Ora PH HC con HC HB BC PB cos r r cos CP e PH PB sin r sin cos. Il rapporo ricieso è r cos [ sin cos cos cos ] cos cos sin r CP r y AP * PB sin cos sin cos r r sin cos cos sin cos cos sin cos

2 Sessione sraordinaria LS_ORD 7 Ora ricordiamo ce sin an cos,cos, per cui il rapporo può essere an an così scrio: cos an an y an an co an sin cos an an an an con la resrizione geomerica raggio ma solo funzione dell angolo.,. Si noa come il rapporo ricieso sia indipendene dal Sudiamo la funzione Dominio: y an an : nell inervallo [, ] an, Z e paricolareggiando all inervallo di sudio [ ], il dominio sarà:,,,,. Inersezioni con gli assi: non ci sono inersezioni con gli assi; an an an Evenuali simmerie: f f per cui an an an la funzione è dispari; Posiivià: Asinoi vericali: an > an y >,, ; an,,,,, an an an, an an an an an

3 Sessione sraordinaria LS_ORD 7 an an an an an an an an [ an co an ] [ an co an ] [ an co an ],, [ an co an ] Quindi le ree di equazione,,,, sono asinoi vericali; Asinoi orizzonali ed obliqui: non ce ne sono; Crescenza e decrescenza: ' sin cos an y per cos sin sin cos sin cui nel dominio di definizione an y ' > an > an > an le cui soluzioni sin nell inervallo [, ] sono: arcan arcan arcan arcan Quindi la funzione presena i massimi nei puni arcan,, arcan, ; minimi nei puni arcan,, arcan, ed i La derivaa seconda è sin 8cos sin 8cos y' ' per cui essa non si cos sin sin cos annulla mai, cioè la funzione non presena flessi. Il grafico è soo presenao:

4 Sessione sraordinaria LS_ORD 7 an Dalla figura soprasane emerge ce il rapporo y nell inervallo, assume an valore minimo per arcan '. L area riciesa è rappresenaa nella figura soosane con A:

5 Sessione sraordinaria LS_ORD Tale area è pari a: [ ] [ ] 9 ln ln 8 9 ln cos sin ln ln sin ln cos sin cos cos sin an co an d d A

6 Sessione sraordinaria LS_ORD 7 Soluzione Sudiamo la funzione ln y. > Dominio: >,, Inersezione asse delle ascisse: ln ± 5 y ; Inersezione asse delle ordinae: non esisono viso il dominio di definizione; Evenuali simmerie: la funzione è pari viso ce ln f y ln ; Posiivià: > > > 5 > 5 y ln > 5 > 5 ; Asinoi vericali: ln ln ln sono asinoi vericali; per cui le ree ± Asinoi orizzonali: non ce ne sono; infai ln ± Asinoi obliqui: non ce ne sono; infai, se esisessero avrebbero equazione ln H nel nosro caso m, q [ ln ] ± ± ± Crescenza e decrescenza: la funzione ln scria come ln y la cui derivaa è definizione,, ; y m q, ma y nel dominio di definizione può essere y ', per cui nel dominio di la funzione risula essere sempre crescene; la derivaa ; 6

7 Sessione sraordinaria LS_ORD 7 seconda è pari a sono flessi. Il grafico è soo presenao: y '' ed essa non si annulla mai, per cui non ci Dobbiamo calcolare le angeni nei puni 5,, A 5, B. Le due angeni avranno equazioni s : y f ' 5 5 e : y f ' 5 5 con 5 5, f ' 5 5 f ' per cui le angeni saranno 5 s : y 5 5 e : y 5 5 come soo rappresenao: 5 7

8 Sessione sraordinaria LS_ORD 7 Le due angeni di equazione s : y 5 5 e : y 5 5 si inersecano nel puno 5 *5 D, 5 per cui l area del riangolo ABD sarà: A ABD 5 5. La derivaa prima è y ' g, per cui sudiamo la funzione derivaa prima. Dominio:,,, ; Inersezione asse delle ascisse: g ; Inersezione asse delle ordinae: y ; Evenuali simmerie: la funzione è dispari, infai g ; Posiivià: >,, Asinoi vericali:,, g g ; 8

9 Sessione sraordinaria LS_ORD 7 per cui le ree ± sono asinoi vericali; Asinoi orizzonali : ± per cui la rea y è asinoo orizzonale; Asinoi obliqui: non ce ne sono; infai, se esisessero avrebbero equazione ma nel nosro caso m ; ± ± Crescenza e decrescenza: definizione la funzione è '' y m q, g ' per cui nel dominio di y ' g è sempre decrescene; la derivaa seconda g per cui, è un flesso. Il grafico è di seguio presenao: L area da calcolare è soo rappresenaa con S: 9

10 Sessione sraordinaria LS_ORD 7 Tale area sarà pari a: S ln ln ln d.

11 Sessione sraordinaria LS_ORD 7 Soluzione Il dominio della funzione In realà la funzione in y è dao dalla risoluzione del sisema seguene: > >,,, y è prolungabile per coninuià da desra in e da sinisra : infai,.

12 Sessione sraordinaria LS_ORD 7 Dobbiamo calcolare il ie. Esso può essere risolo sia senza applicare il eorema di De L Hopial ce applicandolo. Risolviamolo in ambo i modi: Senza applicare de L Hopial: poniamo per cui Appliciamo de L Hopial: H Appliciamo la definizione di derivaa nel puno alla funzione f : ' f f f

13 Sessione sraordinaria LS_ORD 7 Per vedere se i calcoli effeuai sono giusi possiamo calcolare la derivaa direamene senza passare per il ie del rapporo incremenale: ' ' f f Si consideri la figura soosane: Calcoliamo i puni C e D dai dall inersezione dell ellisse con la rea di equazione, y : D C y y D C,,, :, ± L area del rapezio isoscele ABCD è : * CH CB AB S dove CH CD AB, 6 6, per cui l area sarà:, * CH CB AB S. Per la massimizzazione dell area calcoliamo la derivaa prima: [ ] ' S Sudiamo la monoonia: sapendo per ipoesi ce allora [ ] ' > > S, per cui va risola quesa disequazione irrazionale >. Tale disequazione a come soluzione l unione delle soluzioni dei due

14 Sessione sraordinaria LS_ORD 7 sisemi segueni: > Quindi il massimo dell area lo si a per e l area vale 9 A. 5 Si consideri la figura soosane: Per il eorema di Piagora si a c b a per cui moliplicando ambo i membri per si a c b a cioè la somma delle aree dei cerci di raggi pari ai caei è pari all area del cercio di raggio pari all ipoenusa. Per cui la proposizione è vera.

15 Sessione sraordinaria LS_ORD 7 6 Si vuole sudiare la coninuià della funzione nel puno. sin f sin Calcoliamo il ie seguene : sin sin sin sin. Ora, essendo la funzione seno iaa ed in paricolare sin, allora per possiamo scrivere sin e passando al ie si a sin sin e per il eorema del confrono o dei sin sin carabinieri si a, per cui sin sin sin sin. Analogamene sin sin 7 Il volume ricieso, per il eorema di Guldino, è: per cui la finzione f è coninua nel puno. V d sin d [ cos ] sin 8 Dobbiamo ricavare i coefficieni a,b in modo ce la funzione rea y. Si deve imporre: a 6 y preseni come asinoo la b Per cui la funzione è delle ascisse in 6, a 6 6 a a m b a b ± ± b b a 6 6 q ± a b a ± a a 6 y. Tale funzione presena come dominio R {}, inerseca l asse ±, quello delle ordinae in,, è posiiva per 6 6 >, a 5

16 Sessione sraordinaria LS_ORD 7 come asinoo vericale la rea, come asinoo obliquo la rea y, a l ascissa del massimo in e l ascissa del minimo in e non presena flessi. Il suo grafico è soo presenao: 9 Il eorema di Lagrange o del valor medio afferma ce se una funzione reale di variabile reale è coninua in un inervallo [a; b] e derivabile in a; b, esise almeno un puno inerno all'inervallo in cui la angene al grafico della funzione è parallela alla rea ce congiunge i puni del grafico corrispondeni agli esremi dell'inervallo [a;b]. Quesa è l inerpreazione geomerica del eorema di Lagrange. In modo più formale: Sia f :[ a, b] R coninua in [a, b] derivabile in a, b ' allora in quese ipoesi c a, b : f c f b f a. b a La funzione y 8, è coninua e derivabile in uo R ed in paricolare nell inervallo [,] per cui ad essa è applicabile il eorema di Lagrange, cioè 6

17 Sessione sraordinaria LS_ORD 7 c ', : f c f f Ora f 8, f, f ' c c per cui si deve risolvere l equazione c c ± di cui solo c è acceabile percé inerno all inervallo [,]. In al caso la angene alla curva 8 9 y 8 all ascissa : y. 9 Lo sesso discorso vale se ci meiamo nell inervallo [-,] in cui il eorema di Lagrange sarà valido per c, acceabile percé inerno all inervallo [-,]. In al caso la angene alla 8 9 curva y 8 all ascissa sarà s : y. 9 sarà In ambo i casi il grafico soo presenao conferma l inerpreazione geomerica del eorema sesso: Calcoliamo l inegrale [ cos cos ] d cos d cos sin d cos d d cos d cos sin d cos cos sin d cos d d sin sin K cos d d d d 7

18 Sessione sraordinaria LS_ORD 7 Quindi i coefficieni riciesi per confrono sono a. b 8

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale)

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Sessione ordinaria LS_ORD 00 America Boreale ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 00 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Il candidato risolva uno dei

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

1), punti (7.5) Sia data la funzione f(x) =

1), punti (7.5) Sia data la funzione f(x) = Analisi II per Ingegneria Eleronica e Telecomunicazioni A.A. /, Terzo scrio, compio A Allegare ui i coni rienui necessari. Risulai senza giusificazione non verranno presi in considerazione Nome(Sampaello)

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

ESAMI DI STATO DI LICEO SCIENTIFICO SPERIMENTAZIONI AUTONOME 1. Tema di MATEMATICA

ESAMI DI STATO DI LICEO SCIENTIFICO SPERIMENTAZIONI AUTONOME 1. Tema di MATEMATICA Sessione suppletiva Sperimentazioni Autonome ESAMI DI STATO DI LICEO SCIENTIFICO SPERIMENTAZIONI AUTONOME SECONDA PROVA SCRITTA Tema di MATEMATICA PROBLEMA Nel piano rierito a coordinate cartesiane ortogonali

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO ESERCII CAPIOLO 6. LA GEOMERIA ANALIICA DELLO SPAIO LA EORIA IN SINESI LA GEOMERIA ANALIICA DELLO SPAIO. LE COORDINAE CARESIANE NELLO SPAIO La disana fra due puni A e B è: AB = ( - + ( - + ( -. Le coordinae

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s Soluzione di De Rosa Nicola Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (AMERICHE) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

8 Simulazione di prova d Esame di Stato

8 Simulazione di prova d Esame di Stato 8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale

Dettagli

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato.

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato. 3 Cinemaica 3 Cinemaica... 4 3.1 Inroduzione.... 4 3. Moi reilinei.... 44 3.3 Alcuni esempi di grafici orari.... 46 3.4 Moi reilinei: definizione della velocià.... 47 3.5 Regole di derivazione... 53 3.6

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione

Università degli Studi di Milano-Bicocca - Facoltà di Economia Matematica Generale Modulo B - 15 Luglio 2003. Soluzione Universià degli Sudi di Milano-Bicocca - Facolà di Economia Maemaica Generale Modulo B - 5 Luglio 00 Eserciio. Dare la definiione di rango di una marice. Enunciare il Teorema di Rouchè-Capelli., verifi-

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Applicazioni dell algebra alla geometria

Applicazioni dell algebra alla geometria Risoluzione guidata Problema. Il triangolo isoscele ABC ha l angolo al vertice Ĉ che misura 120 e la base AB lunga 24 cm. Da un punto P sul lato AC si tracci la parallela al lato CB che incontra AB in

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

A Nome:... Cognome:... Matricola:...

A Nome:... Cognome:... Matricola:... A Nome:................... Cognome:................... Maricola:................... Quando desidera sosenere la prova orale? /2/28 8/2/28 Universià di Milano Bicocca Corso di Laurea di primo livello in

Dettagli

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura Considera il piano cartesiano. Quanti sono i quadrati aventi un vertice in (-1;-1) e tali che uno degli assi coordinati sia asse di simmetria del quadrato stesso? I quadrati sono 5 Esercizio pagina 198

Dettagli

parabola per i tre punti P 0,5 P 5,30 P 10,5 oppure parabola di vertice V 5,30

parabola per i tre punti P 0,5 P 5,30 P 10,5 oppure parabola di vertice V 5,30 Problemi di simulazione della seconda prova di maemaica Esami di sao liceo scienifico 5 febbraio 15 Lo sudene deve svolgere un solo problema a sua scela Tempo massimo assegnao alla prove re ore Problema

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C +

CAMPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } 2 x1,2 C + y = x + 7x + 5 CAPO DI ESISTENZA. Poiché la funzione data è polinomiale, essa risulta definita su tutto l asse reale, cioè: C.E. = {x R: < x < + } INTERSEZIONI CON GLI ASSI. Per determinare l intersezione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 009 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si inscriva in una semisfera di raggio R il tronco di cono di massima superficie laterale, avente la base maggiore coincidente

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

m = y x x S lim y x = dove: t = t t t = dove: x = x x

m = y x x S lim y x = dove: t = t t t = dove: x = x x L uso di derivae, differenziali ed inegrali definii nelle definizioni di grandezze fisiche. Grazie alla scienza, colui che sa scopre ue le verià in una sola, sviluppandone ue le conseguenze. (Ploino Ploino

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Capitolo 1 - Introduzione ai segnali

Capitolo 1 - Introduzione ai segnali Appuni di eoria dei egnali Capiolo - Inroduzione ai segnali egnali coninui... Definizioni inroduive... Esempio: segnale esponenziale...3 Esempio: coseno...3 Osservazione: poenza di un segnale periodico...5

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

5 Simulazione di prova d Esame di Stato

5 Simulazione di prova d Esame di Stato 5 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Tra le parabole di equazione k, individuare la parabola γ tangente alla

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali

Dettagli

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI Lezione del 5-- (IV canale, Do.ssa P. Vicard) ANALISI DEI RESIDUI E RELAZIONI NON LINEARI ESEMPIO: consideriamo il seguene daa se x y xy x y* e 9, 9,,,, 5, 7,,,7, 9 9,5 -,7 9,77 7,9 7,5,7 9,,,5,7,, 9,

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione ordinaria 2012, matematicamente.it PROBLEMA1

Nicola De Rosa, Liceo scientifico di ordinamento sessione ordinaria 2012, matematicamente.it PROBLEMA1 Nicola De Rosa Liceo scientifico di ordinamento sessione ordinaria matematicamente.it PROBLEMA Si considerino le funzioni f e g definite per tutti gli reali da: f 7 e g sin. Qual è il periodo della funzione

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

PROBLEMI PROBLEMI INTORNO A NOI RISOLUZIONE

PROBLEMI PROBLEMI INTORNO A NOI RISOLUZIONE PRBLEMI INTRN NI PRBLEMI INTRN NI Un modello per la secrezione dell insulina Nel corpo umano la concenrazione di lucosio nel sanue, dea licemia, è normalmene compresa fra 60 m/dl e 0 m/dl quando si è a

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicaa (FIS/07) 9CFU Facolà di Ingegneria, Archieura e delle Scienze Moorie 18-marzo-013 Archieura (corso magisrale a ciclo unico quinquennale) Prof. Lanzalone Gaeano Cinemaica del Puno Maeriale

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli