SULLA GEOMETRIA ANALITICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SULLA GEOMETRIA ANALITICA"

Transcript

1 SULLA GEOMETRIA ANALITICA.La rea Nel piano caresiano ad ogni equazione di primo grado,definia a meno di un faore di proporzionalià,del ipo () ab c0 corrisponde una rea,e viceversa. Se a 0, l'equazione () divena b c 0 e rappresena una rea parallela all'asse delle ascisse ( orizzonale ). Analogamene, se b 0, l'equazione () divena a c 0 e rappresena una rea parallela all'asse delle ordinae ( vericale ). Se b 0 si preferisce scrivere l'equazione () in forma esplicia in modo cioè da meerne in evidenza l'aspeo di funzione lineare"; a ale scopo si dividono ui i coefficieni per b e si isola la a primo membro, per cui l'equazione assume la forma: () m n (con m - a/b; n - c/b). Rispeo alla forma (), l'equazione di una rea nella forma () presena il vanaggio di essere univocamene deerminaa, in quano il coefficiene della è sao poso uguale a. Chiaramene le ree "vericali"non si possono scrivere nella forma (). Il numero m si chiama il coefficiene angolare della rea e geomericamene, in un sisema di riferimeno monomerico, rappresena la "pendenza" della rea: al crescere dei valori delle ascisse, ossia immaginando di procedere "da sinisra verso desra", la rea "sale" se m è posiivo, "scende" se m è negaivo. Precisamene, ad ogni sposameno di una unià verso desra corrisponde uno sposameno di m unià verso l'alo o verso il basso. Il ermine n rappresena invece l'ordínaa del puno in cui la rea inerseca l'asse. In paricolare, la rea passa per l'origine delle coordinae se e solo se n 0. - Sulla geomeria analiica -

2 Se a 0,b 0, c 0, ponendo p c e q a c la () si può scrivere nella forma b p q dea equazione segmenaria perché indicai con P e Q i puni in cui la rea inconra rispeivamene l asse e l asse i numeri p e q sono la misura dei segmeni orienai OP e OQ. L'equazione della rea passane per i puni P (; ) e Q (; ) è con la convenzione che se uno dei denominaori è zero l equazione si oiene uguagliando a zero il corrispondene numeraore. Se la rea non è parallela all asse il suo coefficiene angolare è:. Se si pone e si risolve rispeo a ed si ha ( ) ( ) le quali si chiamano equazioni parameriche della rea congiungene i puni P e Q perché al variare del paramero esse danno ui e soli i puni della rea PQ.Per 0 si oiene il puno P, per si oiene il puno Q, per / si oiene il puno di mezzo del segmeno PQ. Si noi che una qualunque coppia di equazioni del ipo h l k m con paramero variabile ed l ed m non enrambi nulli rappresena una rea,precisamene la rea passane per i puni P (h,k) e Q (h l,k m). Le equazioni parameriche hanno una chiara inerpreazione fisica: esse descrivono il moo di un puno che percorre la rea con velocià uniforme: all'isane 0 il puno si rova in P; all'isane si rova in Q. - Sulla geomeria analiica -

3 La forma paramerica, apparenemene più complicaa delle alre, è paricolarmene adaa quando si vuole descrivere solo una pare della rea. Per es. i puni corrispondeni ai valori > 0 formano una semirea; i puni corrispondeni ai valori < 0 formano la semirea opposa della precedene; i puni corrispondeni ai valori 0 < < formano il segmeno PQ. Parallelismo e orogonalià. Per ciascuna delle varie forme (implicia, esplicia, uguaglianza di due rappori, paramerica) in cui si può presenare l equazione di una rea r, diamo l equazione della rea passane per un dao puno P0 (0; 0) e parallela (p) o perpendicolare (n) ad r. Equazione di r a b c 0 a Equazione di p // r e passane per P0 ( ) b( ) b Equazione di n r e passane per P0 ( ) a( ) m p m ( ) 0 0 ( m 0 0 ) l h m k l 0 m 0 m l 0 0 Si ricordi inolre che se P (; ), Q (; ) ed r ha equazione a b c 0 le coordinae del puno medio M del segmeno PQ sono ; la disanza fra i due puni P e Q è d(p,q) ( ) ( ).. la disanza di P da r è d(p,r) a b a b c. - Sulla geomeria analiica - 3

4 Inersezione di due ree. E noo dalla geomeria elemenare che dae due ree r ed s nel piano per la loro inersezione, r s, si possono presenare re casi: r s è cosiuia da un solo puno, ciò vuol dire che le due ree sono incideni; r s è vuoa, ciò vuol dire che le due ree sono parallele e disine; r s coniene infinii puni, ciò vuol dire che le due ree sono coincideni. Algebricamene la ricerca di ale inersezione si raduce in un sisema lineare di due equazioni in due incognie per il quale sono possibili le segueni re alernaive: ammee una sola soluzione; è impossibile; è indeerminao. - Sulla geomeria analiica -

5 .Esercizi proposi. )Per ciascuna delle segueni coppie di puni A e B rovare: a) le coordinae del loro puno di mezzo; b) le coordinae del simmerico di A rispeo a B e quelle del simmerico di B rispeo ad A; c) la loro disanza; d) l equazione, nelle sue varie forme, della rea che li congiunge. A (3;) B (;5) ; A (;) B (;) A (-;3) B (;3) ; A (;) B (;-3) A (0;0) B (-;5). )Trovare la rea passane per A (;-) e parallela alla rea: a)3-0 b) 0 c)7-0 d)70 e)5- f) g) 5 h) 3 3)Trovare la rea passane per A (-;3) e perpendicolare alla rea: - Sulla geomeria analiica - 5

6 - Sulla geomeria analiica - 6 a) 350 b) 3-70 c) 0 d) 3-0 e) -3 f) 7 g) 3 3 h) 3 5 )Deerminare l inersezione fra le due ree r ed s.. r)3-0 s)3-0. r)-0 s)-80 3.r)-3-0 s)-670. r)3-0 s) 3 5.r)-30 s) 3 6. r)-0 s) 7. r) s) 3 8. r) 5 s)

7 3.Le coniche Alle equazioni di secondo grado in e, definie a meno di un faore di proporzionalià, di cui la più generale è del ipo () a a a a3 a3 a33 0 corrispondono nel piano le coniche, e viceversa. Esse si possono oenere come inersezioni di un cono (illimiao) con un piano; al variare dell'inclinazione del piano rispeo al cono, si hanno ellissi (in paricolare circonferenze), parabole e iperboli (in paricolare iperboli equilaere). A quesi re ipi di coniche, per compleezza, vanno aggiune le cosiddee coniche "degeneri", ossia le coniche che si oengono quando il piano passa per il verice del cono, quese non sono alro che coppie di ree (disine o coincideni). Dall'equazione () è possibile, anche se in modo laborioso, desumere la forma della conica corrispondene. Alla conica λ rappresenaa dall equazione () viene associaa la marice quadraa 3 3 simmerica formaa dai coefficieni della (): [aij] i,j,, 3, aij aj,i e poso A de [aij] a a a33 a a3 a3 a3 a a3 - a3 a a3 a a3 a3 a a a33 A33 a a - a si ha: ) A 0 λ irriducibile o non degenere; e inolre essa è una ellisse, una parabola, una iperbole a secondo che sia, rispeivamene, A33 > 0, A33 0 e A33 < 0 ; ) A 0 λ è riducibile o degenere, cioè la conica è spezzaa in due ree disine o coincideni; l equazione () si decompone nel prodoo di due faori lineari disini o coincideni (basa risolvere rispeo a una delle due incognie). - Sulla geomeria analiica - 7

8 Esempi: La conica è una ellisse. 3 Infai avendosi [aij] 5 è A de [aij] per cui essa è una conica non degenere ed essendo A33 5 > 0 è una ellisse. La conica è spezzaa nelle ree 0 e 0 Infai avendosi [aij] è A de [aij] perano è una conica spezzaa; inolre poiché da (7 3) 6 0 risula: (7 3) ± (7 3) 8( 6 ) (7 3) ± (8 90 5) 7 3 ± (9 5) segue ( ) (-)() Sono noe le proprieà geomeriche delle coniche irriducibili, più precisamene: in una ellisse, è cosane la somma delle disanze di un suo qualsiasi puno da due puni assegnai dei fuochi, in una iperbole, è cosane il valore assoluo della differenza delle disanze di un suo qualsiasi puno da due puni assegnai dei fuochi, in una parabola, un suo qualsiasi puno è equidisane da una rea e da un puno assegnai che non si apparengono (la rea e il puno sono dei rispeivamene direrice e fuoco della parabola). - Sulla geomeria analiica - 8

9 Ellissi e iperboli. Ogni ellisse e ogni iperbole ha il puno di coordinae (α,β) soddisfacene il sisema a a α a α a β a β a come cenro di simmeria e due assi di simmeria orogonali i cui coefficieni angolari m sono le soluzioni dell equazione am (a a)m a 0 I puni comuni a λ e agli assi di simmeria si chiamano verici. Si verifica che: l ellisse ha quaro verici che deerminano due assi uno maggiore e uno minore.essa è ua compresa in un reangolo che ha per dimensioni i due assi. Se i due assi sono uguali essa è una circonferenza. l iperbole ha solo due verici che deerminano l asse raverso. Tra le ree passani per il cenro dell iperbole e non aveni alri puni in comune con l iperbole, ne esisono due che godono dell uleriore proprieà di avvicinarsi indefiniamene all iperbole. Quese due ree si chiamano asinoi dell iperbole,e i suoi coefficieni angolari m sono le radici dell equazione: am am a 0. Le ampiezze dei quaro angoli, a due a due uguali, formai dagli asinoi, deerminano la forma dell iperbole, essa è ua conenua in due dei quaro seori angolari, ra loro opposi al verice, formai dagli asinoi. L iperbole è dunque cosiuia da due pezzi saccai, che sono chiamai rami dell ipebole. Parabole. Ogni parabola possiede un asse di simmeria. Il puno in cui esso inconra la parabola, si chiama verice della parabola. Le equazioni di secondo grado del ipo: a b c (a 0) - Sulla geomeria analiica - 9

10 rappresenano geomericamene ue e sole le parabole con asse di simmeria vericale", di equazione: b b menre il verice V ha coordinae a ; con b - ac. a a Se a > 0, la parabola volge la concavià verso l'alo; se a < 0, essa volge la concavià verso il basso. Analogamene le equazioni di secondo grado del ipo: a b c (a 0) rappresenano geomericamene ue e sole le parabole con asse di simmeria orizzonale", di equazione: b b menre il verice V ha coordinae ; a a a con b ac. Se a > 0, la parabola volge la concavià verso la direzione posiiva dell asse ; se a < 0, essa volge la concavià verso direzione negaiva dell asse. Circonferenza. La circonferenza di cenro O e raggio r (> 0) è per definizione il luogo dei puni del piano che hanno disanza r da O, la sua equazione è r Analogamene, l equazione della circonferenza di raggio r (> 0) e cenro in un puno qualunque C di coordinae (α; β) è (*) ( α) ( - β) r che sviluppando i quadrai e facendo le opporune posizioni divena: (**) m n p 0. Il primo membro di ques ulima equazione è un polinomio di secondo grado nelle variabili, mancane del ermine in e in cui i coefficieni di e sono eguali (che essi siamo eguali ad non è essenziale, perché se essi valessero k baserebbe dividere ui i ermini dell equazione per k). Un equazione del ipo (**) rappresena una circonferenza se la si può porre nella forma (*). Per vedere se ciò è possibile aggiungendo e soraendo nella (**) la quanià m n si ha: m m n n m n p ossia m n m n p - Sulla geomeria analiica - 0

11 m n perano la (**) si può porre nella forma (*) se p > 0 ;in al caso essa rappresena m n una circonferenza, il cui cenro C e raggio r sono: C, Tra le proprieà della circonferenza ricordiamo che: m n e r p. per re puni non allineai passa una e una sola circonferenza; la perpendicolare ad una corda nel suo puno di mezzo(l asse della corda) passa per il cenro della circonferenza; la angene ad una circonferenza in un suo puno A è perpendicolare al raggio per A, e quindi la disanza della angene dal cenro della circonferenza è uguale al raggio; per un puno eserno ad una circonferenza passano due e due sole ree angeni ad essa. Iperboli equilaere. Paricolarmene imporani in moli conesi sono le iperboli equilaere, vale a dire le iperboli che hanno gli asinoi ra loro perpendicolari. In al caso si possono assumere proprio gli asinoi come assi coordinai, e allora le equazioni delle iperboli equilaere assumono la forma: k (con k 0) Le sesse equazioni possono essere riscrie anche in forma funzionale, dividendo enrambi i membri per e isolando così la a primo membro: k Più in generale, le equazioni della forma ( a)( b) k o della forma rappresenano iperboli equilaere aveni per asinoi le ree a,b. b k a a b Analogamene le equazioni : con ad bc 0 rappresenano iperboli equilaere c d con asinoi le ree d e c a. c - Sulla geomeria analiica -

12 Inersezioni ra una conica e una rea o ra due coniche. La ricerca dei puni comuni ad una conica e ad una rea si raduce algebricamene in un sisema di secondo grado in ed. Tale sisema ammee in generale due soluzioni (;), (;) che rappresenano le coordinae dei due puni di inersezione. Non è deo però che quesi due puni siano sempre reali e disini. Se il sisema non ammee soluzioni reali ciò significa in ermini geomerici che la rea non inerseca la conica; se invece il sisema ammee due soluzioni reali coincideni, ciò significa che la rea è angene alla conica. Quano alla ricerca dei puni comuni a due coniche, essa si raduce algebricamene in un sisema di quaro grado in ed. - Sulla geomeria analiica -

13 .Esercizi proposi ) Riconoscere la naura delle segueni coniche, deerminando: - gli assi e i verici se raasi di conica non degenere - le ree in cui si spezza se raasi di conica degenere. ) ) ) -30 ) ) 3-0 6) ) 5-0 8) ) ) ) ) 6-0 3) 3690 ) ( ) ( 3) -0 5) 3 0 6) - 0 ) Dai i puni A ( ; -5) e B ( ; ) a)verificare che l origine non è allineao con essi. b)scrivere l equazione della parabola con asse di simmeria vericale (orizzonale) passane per O, A, B deerminandone l asse e il verice. c)scrivere l equazione della circonferenza passane per O, A, B deerminandone il cenro e il raggio. 3) Dai i puni A ( ; ),B ( ; -),C (3 ; ) a)rovare l equazione della parabola con asse di simmeria parallelo all asse passane per i re puni dai e deerminarne l asse e il verice. b)deerminare il cenro e il raggio della circonferenza passane per i re puni dai. - Sulla geomeria analiica - 3

14 ) Trovare l equazione della circonferenza angene alla rea in ( ; ) e avene il cenro sulla rea ) Trovare l equazione della circonferenza di cenro C (-3, ) e angene all asse, (), (30). 6) Trovare l equazione della circonferenza di cenro C (, -5) e che sacca sull asse delle ascisse (ordinae) una corda di lunghezza. 7) Trovare le equazioni delle ree usceni dal puno (, -) che saccano sulla circonferenza -0 corde di lunghezza. 8) Trovare le equazioni delle ree angeni alla circonferenza -0 condoe dal puno A (, 3). 9) Trovare l equazione della angene alla circonferenza in ciascuno dei puni in cui essa inconra l asse. 0) Trovare l equazione della circonferenza (parabola con l asse di simmeria parallelo all asse ) angene nell origine delle cordinae alla rea 3 e passane per il puno A (-, 0). Scrivere l equazione della angene in A. ) Trovare l equazione della parabola con l asse di simmeria parallelo all asse avene il verice in V (-, 0) e passane per il puno A (, ). ) Trovare l equazione delle parabola luogo dei puni equidisani dal puno F (, ) e dalla rea -0. 3) Sudiare, al variare del paramero k, le coniche a) k k 3 0 b) k k k0 - Sulla geomeria analiica -

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO ESERCII CAPIOLO 6. LA GEOMERIA ANALIICA DELLO SPAIO LA EORIA IN SINESI LA GEOMERIA ANALIICA DELLO SPAIO. LE COORDINAE CARESIANE NELLO SPAIO La disana fra due puni A e B è: AB = ( - + ( - + ( -. Le coordinae

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b]

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b] U n i v e r s i à d e g l i S u d i d i C a a n i a - C o r s o d i s u d i o i n I n g e g n e r i a I n f o r m a i c a - D i p a r i m e n o d i F i s i c a e s r o n o m i a MOI OSCILLOI - Moo armonico

Dettagli

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2:

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 8 gennaio 6 Maricola: Anno di corso: x. (6 p) Si consideri il sisema lineare AX = B, dovex = @ z A è i l v e o r e d e l l e incognie, A e

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

VERSO LA SECONDA PROVA DI MATEMATICA 2017

VERSO LA SECONDA PROVA DI MATEMATICA 2017 erso la seconda prova di maemaica 07 - Esercizi ERS L SEN PR I MTEMTI 07 ESERIZI Limii RELTÀ E MELLI Quesione di concenrazione Un farmaco somminisrao per via inramuscolare prima viene inieao nel muscolo

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia.

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia. LE ONDE A ui è capiao di osservare ciò che accade se si lancia un sasso nel mare, oppure si scuoe una corda esa. Il fenomeno che osserviamo è comunemene chiamao ONDA. Che cos è un onda? Un onda è una perurbazione

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

Vector space e misure di similarità 1

Vector space e misure di similarità 1 Vecor space e misure di similarià 1 Per inrodurre il modello del vecor space, un esempio semplicissimo può essere d aiuo. Si immagini di ordinare un insieme di documeni che, in precedenza, sono sai classificai

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

COSTRUZIONE DELLE TAVOLE SELEZIONATE

COSTRUZIONE DELLE TAVOLE SELEZIONATE COSTRUZIONE DELLE TAVOLE SELEZIONATE 1. Inroduzione Ai fini della deerminazione delle presazioni di un conrao assicuraivo sulla via umana, srumeno indispensabile sono le avole demografiche di moralià,

Dettagli

Meccanica Applicata alle Macchine compito del 15/4/99

Meccanica Applicata alle Macchine compito del 15/4/99 Compio 15//99 pagina 1 Meccanica Applicaa alle Macchine compio del 15//99 A) Chi deve sosenere l'esame del I modulo deve svolgere i puni 1 e. B) Chi deve sosenere l'esame compleo deve svolgere i puni 1,

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

Analisi dell onda monodimensionale nello spazio e nel tempo (corda vibrante)

Analisi dell onda monodimensionale nello spazio e nel tempo (corda vibrante) LE ONDE DEFINIZIONE: un onda elasica rappresena la propagazione di una perurbazione che raspora energia ma non maeria. Si possono disinguere onde meccaniche o maeriali, per le quali la propagazione è possibile

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che:

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che: I METODI DI INTEGRAZIONE In queso paragrafo verranno illusrai i vari meodi di inegrazione che, pur non cosiuendo un procedimeno generale per effeuare l'inegrazione indefinia, permeono senz'alro di calcolare

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Equazione implicita della circonferenza. b= 2 c= 2 2 r 2

Equazione implicita della circonferenza. b= 2 c= 2 2 r 2 FORMULARIO DI GEOMETRIA ANALITICA Punto medio tra due punti. Distanza fra due punti. Baricentro di un triangolo. M = 1, y M = y 1 y d= 1 y y 1 0 = 1 3 3, y 0 = y 1 y y 3 3 Retta per due punti. Retta per

Dettagli

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI Lezione del 5-- (IV canale, Do.ssa P. Vicard) ANALISI DEI RESIDUI E RELAZIONI NON LINEARI ESEMPIO: consideriamo il seguene daa se x y xy x y* e 9, 9,,,, 5, 7,,,7, 9 9,5 -,7 9,77 7,9 7,5,7 9,,,5,7,, 9,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

Alcuni strumenti per misure di portata e velocità

Alcuni strumenti per misure di portata e velocità Capiolo 8 lcuni srumeni per misure di poraa e velocià 8. Meodi sperimenali per misure di velocià lcune delle principali ecniche che si uilizzano in fluidodinamica per misure di velocià (o poraa) sono riassune

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0 Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g APPENDICI 465 g Y g g + g M p dove p è il asso di crescia dei prezzi, ovvero il asso di inflazione. Poiché g è cosane, g g è uguale a zero. Quindi: g Y g M p Il asso di crescia della produzione è approssimaivamene

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato.

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato. 3 Cinemaica 3 Cinemaica... 4 3.1 Inroduzione.... 4 3. Moi reilinei.... 44 3.3 Alcuni esempi di grafici orari.... 46 3.4 Moi reilinei: definizione della velocià.... 47 3.5 Regole di derivazione... 53 3.6

Dettagli

4.1 Interpolazione, approssimazione, modellazione

4.1 Interpolazione, approssimazione, modellazione 6 4. Inerpolazione, approssimazione, modellazione Il problema generale è quello di deerminare un espressione analiica o grafica per una funzione f(x) di cui si conoscono un numero finio di puni del grafico

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

278 TRASFORMAZIONI GEOMETRICHE PIANE

278 TRASFORMAZIONI GEOMETRICHE PIANE 78 TRASFORMAZIONI GEOMETRICHE PIANE. COSA SI INTENDE PER TRASFORMAZIONE PIANA Si dice rasformazione geomerica piana, o brevemene rasformazione piana, una corrispondenza biunivoca del piano con sé sesso,

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli