1 Catene di Markov a stati continui

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Catene di Markov a stati continui"

Transcript

1 Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio degli sai sia o, più in generale d. Perché la successione sia una caena di Markov, deve risulare P(X n+ I X n x, X n x n, X n x n,..., X x, X 0 x 0 ) e supporremo che le probabilià di ransizione p(x, I) P(X n+ I X n x) P(X n+ I X n x) () non dipendano dal empo (da n). Dovremo dare anche la disribuzione iniziale (di X 0 ) µ(i) P(X 0 I). Si ha che p () (x, I) P(X n+ I X n x) e, più in generale, induivamene p (k) (x, I) P(X n+k I X n x) p(x, dy) p(y, I) p (k ) (x, dy) p(y, I) p(x, dy) p (k ) (y, I) p (l) (x, dy) p (k l) (y, I) Tra le disribuzioni (di probabilià) iniziali è imporane disinguere la disribuzione invariane (o sazionaria), definia dalla proprieà µ(i) p(x, I) µ(dx).0. Successione di variabili casuali indipendeni ed equidisribuie È una caena di Markov con p(x, I) P(X n+ I X n x) P(X n+ I) π(i), e la disribuzione π è anche la disribuzione sazionaria. Qui π(i) è la disribuzione di ogni X n (equidisribuie). Inolre P(X n+ I X n x) P(X n+ I) discende dall indipendenza.

2 .0. Processo A() (Auoegressive) Daa una successione di variabili casuali indipendeni ed equidisribuie come normali N(0, ) Z, Z, Z 3,..., () ogni variabile casuale X n (della caena di Markov A()) è definia induivamene da X n βx n + σz n (3) e da una scela (a priori come si vuole) della disribuzione iniziale ν(i) P(X 0 I), che sceglieremo indipendene da ua la successione () delle Z. isula da (3) che quindi P(X n I X n x) P(βx + σz n I X n x) P(βx + σz n I) p(x, I) Inolre, induivamene si ricava che I πσ (y βx) e σ dy X n β n X 0 + σ(β n Z + β n Z + + βz n + Z n ) Ma σ(β n Z + β n Z + + βz n + Z n ) è ancora una gaussiana di media zero e varianza la somma delle varianze, cioè σ (β (n ) + β (n ) + β (n 3) + + β + ) σ βn β Se denoiamo con Z n σ(β n Z + β n Z + + βz n + Z n ), possiamo scrivere X n β n X 0 + Z n. Se scegliamo β < abbiamo che la legge di Z n ende (in legge) ad una gaussiana di media zero e varianza v σ β. Scegliamo allora come disribuzione iniziale una gaussiana di media zero e varianza v ; allora anche X n ha una disribuzione gaussiana di media zero e varianza β n v + σ βn β v. Queso significa che la normale N(0, v ) è la disribuzione sazionaria: infai ciò risula anche da x (y βx) e v e σ dx πv πσ y e v πv Infine noiamo che X n ende in legge ad una normale N(0, v ).

3 .0.3 Processo A() Daa una successione di variabili casuali indipendeni ed equidisribuie come normali N(0, ) Z, Z 3, Z 4,..., (4) ogni variabile casuale X n (che non formano una caena di Markov) è definia induivamene da X n β X n + β X n + σz n (5) e da una scela (a priori come si vuole) della disribuzione congiuna di X 0, X, che sceglieremo indipendene da ua la successione (4) delle Z. Supponiamo che esisa una disribuzione sazionaria gaussiana N(0, v ), con v da deerminare. Deve risulare Sviluppando si ha v E(X n) E((β X n + β X n ) ) + σ v β v + β v + β β E(X n X n ) + σ (6) È bene osservare che anche la disribuzione congiuna di X n, X n è invariane con n; allora, moliplicando la (5) per X n e prendendo il valor medio si oiene E(X n X n ) β v + β E(X n X n ) che per l invarianza dei valori di aspeazione si ha con cui dalla (6) possiamo ricavare Deve risulare E(X n X n ) β v β v σ β β β β β β β β β β β β ( + β )(β + β )(β β ) β > 0 Caene di Markov a empi coninui.0.4 Leggi gamma Inroduciamo la legge Gamma di parameri α e λ, come la densià di probabilià λ α Γ(α) xα e λx 3

4 per x > 0, alrimeni 0; qui Γ(α) è la classica funzione gamma definia per α > 0 da Γ(α) 0 e ξ ξ α dξ La funzione caraerisica della disribuzione Gamma di parameri α e λ è daa da ( ) α λ ϕ() λ i dove la radice complessa è presa in modo ale che per valori reali è reale. Subio queso fao ci dice che la somma di due Gamma di parameri rispeivamene α, λ e α, λ ed indipendeni è ancora una disribuzione Gamma di parameri α + α, λ. Per α la disribuzione Gamma si riduce alla disribuzione esponenziale di paramero λ.. Processo di Poisson Sia T, T, T 3,... una successione di variabili casuali indipendeni ed equidisribuie come esponenziali di paramero λ; allora risula che P(T + T + + T k ) λ k 0 Per ogni esise un solo inero X aleaorio ale che s k (k )! e λs ds T + T + + T X < T + T + + T X + T X+ Queso processo X si chiama processo di Poisson. isula λ (λ)k P(X k) P(T + T + + T k < T + T + + T k + T k+ ) e k! Inolre X s e X X s sono indipendeni e λ( s) (λ( s))k P(X X s k) e k!. Ancora sulle leggi esponenziali Siano {T, T, T 3,..., T n } una famiglia di variabili casuali indipendeni e ogni T i con legge esponenziale di paramero λ i. Allora la variabile casuale τ n min{t, T, T 3,..., T n } è ancora una variabile casuale di ipo esponenziale di paramero λ + λ + λ λ n. Dae due variabili casuali indipendeni T, T disribuie in modo esponenziale di parameri rispeivamene λ, λ, calcolare P(T < T min(t, T ) ) 4

5 Possiamo calcolare la probabilià precedene come limie di Ora P(T < T, min(t, T ) + ) P( min(t, T ) + ) + + quindi P(T > s)p(t ds) P(min(T, T ) ds) P(T > s)p(t ds) e λs λ e λs ds P(min(T, T ) ds) (λ + λ )e (λ+λ)s ds p P(T < T min(t, T ) ) λ λ + λ, λ λ + λ q p P(T > T min(t, T ) ) λ λ + λ Un secondo modo di formulare il risulao è di considerare una variabile casuale T disribuia in modo esponenziale di paramero λ ( λ + λ ), e una seconda variabile casuale indipendene dalla prima che assume solo due valori. per esempio + e, con probabilià rispeivamene p e q p. L equivalenza ra le due formulazioni passa araverso la posizione λ pλ e λ qλ..3 Processi di nascia e more Sono processi di Markov a empi coninui e spazio degli sai S {0,,, 3,...}. Tra i vari parameri che deerminano quesi processi ci sono la successione dei assi di nascia (posiivi) {λ 0, λ, λ,...} e la successione dei assi di more {µ, µ, µ 3,...} Il processo X rappresena la popolazione (gli elemeni della popolazione possono essere della naura più varia) al empo. Si può parire da X 0 0 ma non necessariamene. Il passaggio da 0 ad può avvenire per esempio per immigrazione. Supponiamo di parire da una disribuzione iniziale per X 0 uguale per esempio a {π 0, π, π,...}. Il empo T del primo cambiameno (a k o a k + se eravamo in k) è disribuio come un esponenziale, ma non indipendene da X 0 ; infai, sapendo che X 0 k, T ha paramero uguale a (se k 0 allora il paramero è solo λ 0 ) e, all isane T il processo sala in k con probabilià P(X T k X 0 k) µ k 5

6 menre sala in k + con probabilià Nel caso che X 0 0 allora P(X T k + X 0 k) λ k P(X T X 0 0) Dopo il primo salo, supporremo che l evoluzione proceda nello sesso modo; dopo un empo T, relaivo al empo T, avviene un secondo cambiameno (a parire da 0 il empo rascorso è S T + T ): supporremo che T sia indipendene da T ma dipendene da X T. Infai supporremo T abbia disribuzione esponenziale con paramero, sapendo che X T k, uguale a λ k +µ k. All isane S T + T il processo sala con la sessa modalià precedene. Vogliamo deerminare la disribuzione di probabilià di X al empo (deerminisico), che poremo denoare con p() {p 0 (), p (), p (),...} A queso scopo consideriamo quello che può succedere al empo +. Ebbene può non esserci sao nessun cambiameno, oppure solo uno, oppure più di uno. Nel primo caso P(X + k X k) P(T > X k) e (λ k+µ k ) (λ k +µ k ) +o( ); nel secondo P(X + k X k) P(T < T +T X k) µ k +o( ) e P(X + k+ X k) P(T < T +T X k) λ k +o( ); ed infine nel erzo Quindi P(X + j, j k > X k) P(T + T X k) o( ). p k ( + ) P(X + k) P(X + k X k)p k ()+ da cui, per k µ k λ k P(X + k X k )p k ()+ P(X + k X k + )p k+ ()+ P(X + k X j, k j > ) p k() λ k p k () + µ k+ p k+ () ( )p k () 6

7 e p 0() µ p () λ 0 p 0 () Se le p k () sono indipendeni dal empo (misura invariane) uguale a π k, allora abbiamo che 0 λ k π k + µ k+ π k+ ( )π k e da cui 0 µ π λ 0 π 0 π λ 0 µ π 0, π λ 0λ µ µ π 0, π λ 0λ λ µ µ µ 3 π 0,... Deve quindi risulare che la serie + λ 0 µ + λ 0λ µ µ + λ 0λ λ µ µ µ 3 + < Denoando con Π la sua somma oeniamo che la misura invariane è π k λ 0λ λ λ k µ µ µ 3 µ k Π 7

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Esercizi di Analisi Matematica Equazioni differenziali

Esercizi di Analisi Matematica Equazioni differenziali Esercizi di Analisi Maemaica Equazioni differenziali Tommaso Isola 8 gennaio 00 Indice Generalià. Equazioni del primo ordine inegrabili 3. Teoria............................................ 3. Equazioni

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS Teoria dei segnali Unià 4 Teoria dei processi casuali a empo coninuo Teoria dei processi casuali a empo coninuo Medie saisiche Processi sazionari Trasformazioni di processi casuali Ergodicià di processi

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Raggiungibilità e controllabilità (2 )

Raggiungibilità e controllabilità (2 ) eoria dei sisemi - Capiolo 8 Raggiungibilià e conrollabilià ( ) Sisemi empo-coninui lineari empo-invariani... Inroduzione... Deerminazione del soospazio di raggiungibilià e crierio di Kalman... La conrollabilià...6

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5 Esercizio 1 Ricapioliamo i dai a nosra disposizione (o ricavabili da quesi): - asso di domanda aeso: đ = 194 unià/mese - deviazione sandard asso di domanda: σ d = 73 - coso fisso emissione ordine (approvvigionameno):

Dettagli

Elevato debito pubblico

Elevato debito pubblico Lezione 22 (AG cap. 21) Elevao debio pubblico Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 1

Dettagli

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana Esercitazioni di Statistica Matematica A Lezione 2 Variabili con distribuzione gaussiana.) Una bilancia difettosa ha un errore sistematico di 0.g ed un errore casuale che si suppone avere la distribuzione

Dettagli

ELEVATO DEBITO PUBBLICO

ELEVATO DEBITO PUBBLICO 1 ELEVATO DEBITO PUBBLICO IL VINCOLO DI BILANCIO DEL GOVERNO Il disavanzo di bilancio nell anno è la variazione del debio reale in quel deerminao periodo: disavanzo = rb 1 + G T Esso include - Componene

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

ELEVATO DEBITO PUBBLICO

ELEVATO DEBITO PUBBLICO 1 ELEVATO DEBITO PUBBLICO IL VINCOLO DI BILANCIO DEL GOVERNO Il disavanzo di bilancio nell anno è la variazione del debio reale in quel deerminao periodo: disavanzo rb 1 G T Esso include - Componene primaria

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità 7.6 Distribuzione Esponenziale. 111 7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità { λe λx se x, (76) f(x) = se x

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

Dispense di Istituzioni di Probabilità

Dispense di Istituzioni di Probabilità Dispense di Isiuzioni di Probabilià Franco Flandoli 13-14 Indice 1 Inroduzione ai Processi Socasici 7 1.1 Prime definizioni.............................. 7 1.1.1 Processi socasici..........................

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico Capiolo XXII. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = rb 1 + G T B -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Predizione di affidabilità di un sistema elettronico

Predizione di affidabilità di un sistema elettronico Universià degli Sudi di Modena e Reggio Emilia Anno Accademico 2001/2002 Predizione di affidabilià di un sisema eleronico ABANA Suppliers Gruppo 14 Ansaloni M. Bulgarelli A. Neri D. Popovac A. Rocchei

Dettagli

MODELLO DI SOPRAVVIVENZA CONTINUO

MODELLO DI SOPRAVVIVENZA CONTINUO Modello di sopravvivenza coninuo ia Esempi: MODELLO DI ORAVVIVENZA CONINUO n.a. non negaivo che esprime la duraa aleaoria da un isane iniziale fino al verificarsi di un deerminao eveno duraa di funzionameno

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

CONVERTITORI CC / CC

CONVERTITORI CC / CC CONETITOI CC / CC I converiori CC/CC sono dei circuii che, ricevendo in ingresso una ensione coninua, presenano in uscia una ensione ancora coninua ( in realà un valore medio ) ma di valore diverso rispeo

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La v.c. Uniforme Continua Secondo alcuni sondaggi sul sito della Apple (technical support site,

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Tecniche Computazionali Avanzate

Tecniche Computazionali Avanzate Tecniche Compuazionali Avanzae Modelli Probabilisici per le Decisioni A.A. 2008/09 Enza Messina Ragionameno probabilisico nel empo Il compio di prendere una decisione dipende da: Informazioni parziali

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

Tornitura. Tecnologia Meccanica 1

Tornitura. Tecnologia Meccanica 1 Torniura Tenologia Meania 1 Eserizio 1 Un ilindro avene diamero iniziale D 0 = 20 mm e lunghezza iniziale di L 0 = 80 mm deve subire una lavorazione di orniura eserna per oenere araverso due passae, una

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Variabili aleatorie scalari

Variabili aleatorie scalari Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabili aleatorie scalari Sommario della Introduzione CDF e PDF: definizione CDF e PDF: proprietà Distribuzioni uniforme e Gaussiana

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

APPENDICE MATEMATICA VARIAZIONE MEDIA E VARIAZIONE MARGINALE

APPENDICE MATEMATICA VARIAZIONE MEDIA E VARIAZIONE MARGINALE PPENDIE MTEMTI VRIZIONE MEDI E VRIZIONE MRGINLE Problema: come possiamo conoscere, oltre alla direzione della variazione (come, cioè + o -, varia Y al variare di ), anche l entità della variazione (quanto

Dettagli

LASER (Light Amplifier of Stimulated Electromagnetic Radiation)

LASER (Light Amplifier of Stimulated Electromagnetic Radiation) LASER (Ligh Amplifier of Simulaed Elecromagneic Radiaion) Si raa di sudiare il fenomeno della radiazione eleromagneica che araversa la maeria. Lo scopo ulimo è di sudiare una siuazione in cui la radiazione

Dettagli

Inflazione, disoccupazione e moneta

Inflazione, disoccupazione e moneta Macroeconomia (Clamm) - a.a. 2011/2012 Contenuto Curva di Phillips e aspettative 1 Curva di Phillips e aspettative 2 3 4 Curva di Phillips Offerta aggregata: con: P t livello generale dei prezzi; P e t

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio;

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio; TEST DI AUTOVALUTAZIONE - SETTIMANA 3 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Una variabile casuale

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA CI OCCUPEREMO DI 1) Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della produzione dal suo asso naurale

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE PROCESSI DI POISSON Definizione Un processo stocastico che assume valori interi non negativi si dice essere un processo di Poisson con frequenza λ se 1. A(t) è un prosesso di

Dettagli

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza elemeni di segnali elemeni di segnali SEGNALE il segnale segnale e informazione segnale analogico e digiale il segnale digiale il segnale il segnale si può genericamene definire come una grandezza che

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli