Progettazione Analogica e Blocchi Base

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progettazione Analogica e Blocchi Base"

Transcript

1 Progettazione Analogica e Blocchi Base Lucidi del Corso di Microelettronica Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

2 Flusso di Progetto Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

3 Progettazione Analogica La progettazione analogica è quasi interamente full-custom: non esiste niente di analogo alle standard cell digitali anche se è possibile incorporare in un progetto blocchi analogici già pronti (di cui comunque deve essere messo a disposizione l intero layout). Non esistono, in analogico, metodologie di progetto standardizzate e codificate (non esiste, a livello commerciale, l equivalente dei tool di sintesi e dei linguaggi di descrizione dell hardware, anche se esistono versioni i di HDL con estensioni ianalogiche come il Verilog-A utili SOLO per la simulazione di sistema). Il progettista lavora a livello di transistor. Il progetto è completo quando si arriva al layout finale del circuito. La progettazione analogica è ancora in parte artigianale : dipende fortemente dall inventiva e dall esperienza del progettista e da un processo di iterazione (simulazione, modifica dei parametri, simulazione). i 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 3

4 Flusso di Progetto Full-Custom Suddivisione in moduli Simulazione di sistema Realizzazione i dei moduli Simulazione dettagliata DRC Disegno schematico Simulazione spice Disegno layout Estrazione Layout Vs. Schematic Simulazione post-layout 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 4

5 Flusso di Progetto Full-Custom Si parte dalla concezione del dispositivo e della identificazione della opportuna topologia circuitale che implementa le funzionalità richieste. Identificata la topologia (lo schema di interconnessioni) si dimensionano i dispositivi (scelta dei valori di resistenze e capacitori, aspect ratio dei transistor) in modo da soddisfare le specifiche. Si disegna uno schema (schematic) del circuito con un tool apposito (fase di schematic entry) oppure si fornisce una descrizione testuale (netlist) del circuito tramite la sintassi tipica del simulatore spice. Si simula il dispositivo con un tool di simulazione (tipicamente uno dei derivati di spice), se le specifiche non sono soddisfatte può essere necessario modificare il circuito. Si disegna il layout, una volta che il layout non ha errori (DRC: design rules check) si estrae il circuito equivalente (Extraction) e lo si confronta con lo schematico (LVS: Layout versus Schematic) per verificare di avere effettivamente disegnato il circuito che si voleva realizzare. Si risimula il circuito estratto (quindi con tutte le le resistenze e capacità parassite) e si verifica che rispetti ancora i vincoli. In caso negativo può essere necessario rifare il layout (per ridurre i parassiti) o addirittura modificare il circuito (per tenere conto dei parassiti). 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 5

6 Tool e Design Kit Design Kit Design Rules Parametri di processo Modelli spice All interno di un flusso di progetto sono definiti i tool (CAD) per realizzare le varie fasi e le informazioni specifiche del processo necessarie (Design Kit). EDA/CAD Layout Editor (Cadence Virtuoso, Mentor IC) Simulatore spice (Hspice, Pspice, Eldo, Specre) 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 6

7 Blocchi base Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

8 Transistor MOS Il transistor MOS è un dispositivo a 4 terminali (drain, gate, source, body di seguito indicati D, G, S, B) E completamente simmetrico, i terminali di drain e source si possono scambiare ruolo a seconda del funzionamento Il ruolo di source è assunto, convenzionalmente, dal terminale (fra S e D) a potenziale più basso (nel caso del nmos) o più alto (nel caso del pmos) Il quarto terminale (B, body) può essere trascurato solo quando cortocircuitato col source (cosa non sempre, o quasi mai, possibile). Negli altri casi il body del nmos (pmos) deve essere collegato al potenziale più basso (alto) presente nel circuito. La caratteristica del dispositivo dipende da un insieme di parametri di processo (tensione di soglia, mobilità, capacità dell ossido) noti a priori una volta scelta una determinata tecnologia, e da parametri geometrici (W e L) determinabili dal progettista. 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 8

9 Parametri Fisici e di Processo Parametri Fisici e di Processo (non modificabili dal progettista) che determinano le caratteristiche del MOS: k: costante di Boltzmann T: temperatura (in gradi Kelvin) q: carica dell elettrone U T = kt/q (indicata anche come V T ): tensione termica. Dipende solo dalla temperatura. ε OX, ε S : costanti dielettriche dell ossido di gate e del silicio. t OX : Spessore dell ossido di gate C OX =(ε OX /t OX ): capacità (per unità d area) dell ossido di gate N B : drogaggio del substrato n i: densità intrinseca di portatori del silicio µ n, µ p : mobilità di elettroni e lacune V Tn e V Tp : tensioni di soglia dei transistor nmos e pmos 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 9

10 MOS: Simboli Circuitali Simboli circuitali del NMOS Simboli circuitali del PMOS 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 10

11 MOS: equazione caratteristica W L V DS ( ) DS I = µ C V V V = = D k n n OX GS Tn 2 V DS V V Equazione in eff DS 2 regione lineare k 2 ( ) n 2 I = V V = D GS Tn k = n µ n C OX W L k 2 n V eff DS Equazione in regione di saturazione Rapporto di forma: unico parametro modificabile dal progettista t 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 11

12 MOS: Regioni di funzionamento I D = k n ( V ) GS V Tn V DS I D = k 2 n ( ) 2 V GS V Tn I D I D = k n 2 V ( ) DS V V V GS Tn DS 2 Triodo Saturazione a V DS V GS-V Tn = V eff 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 12

13 MOS: saturazione In saturazione il MOS si comporta fondamentalmente come un generatore di corrente: la corrente I DS è fissata (dalla V GS )e non dipende dalla tensione V DS In elettronica analogica il MOS è fondamentalmente t utilizzato t nella regione di saturazione, diversamente dall elettronica digitaleit incui si alterna fra regione di ti triodo e di cutoff 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 13

14 Modulazione Lunghezza di Canale In realtà, anche in condizione di saturazione, all aumentare della tensione di drain si ha un aumento della corrente dovuto all effetto di modulazione della lunghezza di canale. Questo perché aumenta la regione di svuotamento intorno alla diffusione di drain equindi diminuiscei i la lunghezza effettiva del canale (quindi aumenta la corrente). Il transistor non è quindi un generatore di corrente ideale ma ha una resistenza di uscita finita. RCS=Regione Carica Spaziale n + n + Strozzamento (pinch-off) del canale 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 14

15 Modulazione Lunghezza di Canale Anche in saturazione la corrente dipende leggermente dalla tensione di drain. La resistenza di uscita del transistor in saturazione (l inverso di lambda nell equazione) è proporzionale alla lunghezza L. Quindi transistor più lunghi hanno resistenza di uscita maggiore e si comportano meglio da generatori di corrente. µ C I ( ) [ λ( )] n OX V V V V D 2 W L = GS Tn DS eff k k λ = ds = ds 2L V V + φ L V V + φ DG + 2 Tn 0 DS eff 0 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 15

16 Capacità parassite Sovrapposizioni (overlap) fra gate/drain e gate/source: danno origine a 2 capacità proporzionali all area area di sovrapposizione n + n + Capacità di giunzione del diodo PN (due contributi: area e perimetro). Le stesse capacità sono ovviamente associate anche al drain Capacità dell ossido, fra gate e canale (se esiste il canale) altrimenti fra gate e body 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 16

17 Capacità parassite Riassumendo, le capacità parassite di un MOS sono: G C GS C GD S D C SB C GB C DB B 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 17

18 Capacità parassite Cutoff Triodo Saturazione C GB C OX WL 0 0 C GS C OV W C OX WL/2+ C OV W 2/3C OX WL+ C OV W C GD C OV W C OX WL/2+ C OV W C OV W C SB K eq (C J0 A S +C JSW0 P S ) K eq (C J0 A S +C JSW0 P S ) K eq (C J0 A S +C JSW0 P S ) C DB K eq (C J0 A D +C JSW0 P D ) K eq (C J0 A D +C JSW0 P D ) K eq (C J0 A D +C JSW0 P D ) 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 18

19 MOS: Modello a Piccoli Segnali C GD g s = I D V SB G D C GS C DB C SB S g m = V I D GS g ds = I V D DS = 1 r ds 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 19

20 Parametri Modello a Piccoli Segnali I valori dei vari parametri del modello a piccoli segnali cambiano a seconda della regione di funzionamento. In saturazione: g m W 2 I = µ C V = D = 2µ C n OX L eff V n eff g g γ = m 0. g s 2 V + 2φ 2 SB g = λi ds D F OX m W L I D 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 20

21 MOS: Modelli per la Simulazione Le equazioni viste sono solo una approssimazione del comportamento del dispositivo e vanno bene per una prima analisi (manuale) del circuito. Possono dare indicazioni per capire quali sono i punti critici di un circuito. Per simulare il dispositivoiti vengono utilizzate t equazioni i molto più complesse, che coinvolgono molti più parametri. La simulazione avviene tramite software basati su SPICE (spice è il primo simulatore, freeware, di circuiti svilupato all università di Berkeley). Le equazioni utilizzate per descrivere il MOS rappresentano un modello del MOS. I modelli oggi più importanti sono il BSIM3, BSIM4, EKV, MOS9. In questo corso simuleremo i circuiti usando il modello BSIM3v3, per potere utilizzare un certo modello di simulazione bisogna avere un file che descriva i valori tipici dei parametri del modello per la tecnologia utilizzata. 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 21

22 Blocchi Base: Specchio di Corrente Lo specchio di corrente è un blocco elementare utilizzato per copiare una corrente da un punto all altro del circuito (distribuire una corrente di polarizzazione) o come carica attivo di amplificatori. I IN M1 I OUT M2 La corrente in M1 è uguale alla corrente in M2 perché i MOS sono in saturazione ed hanno la stessa tensione di gate. Q2 DEVE essere in saturazione quindi la tensione di uscita (Vout) deve essere: Vout > Veff2 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 22

23 Blocchi Base: Specchi di Corrente Il parametro più importante per giudicare uno specchio è la resistenza di uscita, ossia quanto la corrente d uscita rimane stabile ed uguale a quella di ingresso al variare della tensione di uscita. v gs2 =0 La resistenza d uscita di uno specchio semplice è limitata dall effetto di modulazione della lunghezza di canale. R out =r ds2 dall effetto di 1/g m1 r ds2 La resistenza d uscita coincide con la resistenza r ds di Q2. R out =r ds2 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 23

24 Blocchi Base: Specchio di Corrente Per i discorsi fatti sulle tecniche di layout: se si vogliono ottenere correnti d uscita in un qualsiasi rapporto con la corrente di ingresso: I OUT = K I IN =N/M I IN Si utilizzano N+M transistor tutti uguali e se ne mettono M in parallelo in ingresso e N in parallelo in uscita. Infatti se volessi facessi semplicemente W 2 =NW 1 e L 2 =NL 1 l effetto delle variazioni effettive delle dimensioni (dimensioni efficaci) avrebbe risultati diversi su M1 e M2. W L W = 2 L W L = NW W eff eff 1 1 ML L N W M L 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 24

25 Specchio di corrente: rapporti I IN I OUT =ΣI Oj =N I IN I Oj N N correnti in uscita uguali a quella in ingresso si sommano I IN =ΣI in,j =MI in,j I OUT=I in,j =I IN/M La corrente in I ingresso si divide in in,j M correnti uguali, M una sola di queste è copiata in uscita 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 25

26 Blocchi Base: Specchio di Corrente Per realizzare rapporti molto elevati si possono usare M transistor in serie in ingresso e N in parallelo in uscita, in questo caso: I OUT =N*M I IN Così posso realizzare un rapporto pari a 16 con soli 8 transistor anziché 17. I IN Equivalente ad un solo MOS con L1=ML2 M I Oj I OUT =ΣI Oj =N I Oj =N(M I IN ) 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 26 N

27 Specchio di Corrente Cascode Obiettivo: aumentare la resistenza di uscita dello specchio semplice. Sfrutta il fatto che il transistor Q4 mantiene il drain Q2 ad una tensione poco variabile (isola il drain di Q2 dal nodo di uscita). I IN I OUT M3 M4 Resistenza di uscita: Rout=r ds4 *(1+r ds2 g m4 ) Controindicazione: aumenta la tensione minima che deve essere presente in uscita: M1 M2 Vmin=2(Vgs-V V Tn )+Vtn = 2V eff +V Tn 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 27

28 Amplificatore a Source Comune Amplificatore con guadagno in tensione e carico attivo: M3 M2 V OUT Carico Guadagno: Av= -g m1 (r ds1 //r ds2 ) Resistenza di ingresso infinita V IN M1 Rout= (r ds1 //r ds2 ) Amplificatore 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 28

29 Amplificatore Source Comune Modello a piccoli segnali per il calcolo l del guadagno. 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 29

30 Amplificatore a Drain Comune Guadagno in tensione prossimo all unità (è usato come buffer visto che ha un guadagno in corrente, oppure come level shifter ossia traslatore di livello). E chiamato anche source follower perché riporta sul drain le variazioni di tensione del source. I B M3 V IN Amplificatore M1 Guadagno: M2 V OUT Carico Av=gm1/(gm1+gs1+gds1+gds2) gs1 gds1 gds2) Essendo in genere gds1 e gds2 molto minori di gm1 in pratica l errore nel guadagno (che si vorrebbe unitario) è introdotto da gs1 che modella l effetto body. Si può eliminare mettendo Q1 in una well e cortocircuitando S e B ma ciò è impossibile in un processo nwell. 14 Marzo 2009 UE - Progettazione e blocchi base Massimo Barbaro 30

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì DEIS University of Bologna Italy Progetto di circuiti analogici L-A Luca De Marchi Email: l.demarchi@unibo.it Tel: 051 20 93777 Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì 15.00-17.00 DEIS University

Dettagli

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Tecnologia CMOS Lucidi del Corso di Elettronica Digitale Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Transistor MOS IltransistorMOSèundispositivoa4terminali(drain,gate,source,body

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Simulazione Circuitale SPICE

Simulazione Circuitale SPICE Simulazione Circuitale SPICE Lucidi del Corso di Elettronica Digitale Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Simulazione

Dettagli

Simulazione SPICE. Simulazione Circuitale SPICE. Software commerciali. Design entry. Lucidi del Corso di Elettronica Digitale Modulo 6

Simulazione SPICE. Simulazione Circuitale SPICE. Software commerciali. Design entry. Lucidi del Corso di Elettronica Digitale Modulo 6 Simulazione SPICE Simulazione Circuitale SPICE Lucidi del Corso di Elettronica Digitale Modulo 6 SPICE è un software per la simulazione di circuiti a livello transistor diventato ormai lo standard, sviluppato

Dettagli

Circuiti Integrati Analogici

Circuiti Integrati Analogici Circuiti Integrati Analogici prof.irace a.a.007/008 Circuiti Integrati Analogici Prof. Irace a.a.007/008 1 - Il MOSFET come interruttore In figura è riportato un transistore MOS a canale n Sappiamo che

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n a destra è a base lunga con N D = 10 16 cm 3, S = 10 cm 2. Il diodo p + n a sinistra ha N D

Dettagli

Processo CMOS. Lucidi del Corso di Circuiti Integrati Modulo 1A

Processo CMOS. Lucidi del Corso di Circuiti Integrati Modulo 1A Processo CMOS Lucidi del Corso di Circuiti Integrati Modulo 1A Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Transistor MOS Università di

Dettagli

Inverter CMOS. Inverter CMOS

Inverter CMOS. Inverter CMOS Inverter CMOS Lucidi del Corso di Elettronica Digitale Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Inverter CMOS PMOS V Tensione

Dettagli

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail :

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail : SIMULAZIONE CIRCUITALE CON LTSPICE Ing. Marco Grossi Università di Bologna, DEI e- mail : marco.grossi8@unibo.it Simulazione di circuiti elettronici con SPICE SPICE (Simulation Program with Integrated

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

ESERCIZIO 5 1) VALUTAZIONE DELLE CAPACITÁ PARASSITE DI UN INVERTER CMOS:

ESERCIZIO 5 1) VALUTAZIONE DELLE CAPACITÁ PARASSITE DI UN INVERTER CMOS: ESERIZIO 5 Si valutino le capacità parassite al nodo di uscita dovute ai transistori di un inverter MOS, e si verifichi l accuratezza dei risultati confrontando il ritardo di propagazione teorico e quello

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

Esercitazione III Simulazione PSpice dell invertitore CMOS

Esercitazione III Simulazione PSpice dell invertitore CMOS Esercitazione III Simulazione PSpice dell invertitore CMOS Come è noto, nei circuiti CMOS vengono utilizzati sia dispositivi a canale N sia dispositivi a canale P. La principale differenza fra i due tipi

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 1 Introduzione In questo breve tutorial utilizzeremo il software

Dettagli

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist Simulazione Spice Simulazione Circuitale Spice Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013 DE e DTE: PROVA SCRITTA DEL 7 Gennaio 013 ESERCIZIO 1 (DE,DTE) Un condensatore MOS è realizzato su substrato p, N A = 10 16 cm 3, t ox = 50 nm. A metà dell ossido (a t ox /) viene introdotto uno strato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p =

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 ESERCIZIO 1 (DE,DTE) Un transistore n + pn (N A = N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p = 10 6 s, = 3 µm, S=1 mm 2 ), è polarizzato

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazioe Aalogica e Blocchi Base Lucidi del Corso di Microelettroica Modulo 3 Uiversità di Cagliari ipartimeto di Igegeria Elettrica ed Elettroica Laboratorio di Elettroica (EOLAB) Flusso di Progetto

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

MOS Field-Effect Transistors (MOSFETs)

MOS Field-Effect Transistors (MOSFETs) MOS Field-Effect Transistors (MOSFETs) A. Ranieri Laboratorio di Elettronica A.A. 2009-2010 1 Struttura fisica di un transistore NMOS ad accrescimento. Tipicamente L = 0.1 a 3 m, W = 0.2 a 100 m e lo spessore

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

Dispositivi elettronici. Effect

Dispositivi elettronici. Effect ispositivi elettronici Metal-Oxide-emiconductoremiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

Amplificatori Integrati

Amplificatori Integrati Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB OTA L amplificatore operazionale

Dettagli

Dispositivi elettronici. Transistor (MOSFET)

Dispositivi elettronici. Transistor (MOSFET) ispositivi elettronici Metal-Oxide- emiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve I vs V e

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs,

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs, DE e DTE: PROA SCRITTA DEL 23 Luglio 2015 ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /s, µ p = 200 cm 2 /s, τ n = τ p = 1 µs, N A = 10 19 cm 3, N D = 5 10 15 cm 3, S = 1 mm 2

Dettagli

Tecniche di Layout. Lucidi del Corso di Microelettronica. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Tecniche di Layout. Lucidi del Corso di Microelettronica. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Tecniche di Layout Lucidi del Corso di Microelettronica Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Layout Il Layout è una rappresentazione

Dettagli

Amplificatori Integrati

Amplificatori Integrati Amplificatori Integrati Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) OTA L amplificatore operazionale

Dettagli

Capitolo IV. Transistori ad effetto di campo

Capitolo IV. Transistori ad effetto di campo Capitolo IV Transistori ad effetto di campo In questo capitolo si tratteranno i transistori ad effetto di campo (FET). Come nel caso dei BJT la tensione tra due terminali del FET controlla la corrente

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

Amplificatori Integrati

Amplificatori Integrati Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) OTA L amplificatore operazionale

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Il transistor MOSFET MOSFET enhancement mode Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Semiconductor Field Effect Transistor. La struttura di principio del dispositivo

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n è illuminato alla supercie. La base p + è corta, W p = 5 µm, la base n è lunga. Abbiamo: N A

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0.

Corso di Circuiti Integrati Anno Accademico 2012/2013. Esercitazione 6 Progetto di un amplificatore a Due Stadi (di Miller) in tecnologia CMOS 0. Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica Corso di Circuiti Integrati Anno Accademico 2012/2013 Esercitazione 6 Progetto di un amplificatore

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012 DE e DTE: PROA SCRITTA DEL 8 Febbraio 01 ESERCIZIO 1 (DE,DTE) Una struttura n-mos ( = 10 16 cm 3, t ox = 30 nm) è realizzata con un processo polysilicon gate n +. La struttura è illuminata con luce rossa

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 ESERCIZIO 1 Una giunzione pn, con entrambe le basi lunghe, è caratterizzata da N A = N D = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, µ p = 0.04 m

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0.

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0. DE e DTE: PROVA SCRITTA DEL 6 Giugno 2013 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = 2 10 15, µ n = 0.12 m 2 /Vs, µ p = 0.045 m 2 /Vs, τ n = τ p =

Dettagli

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs,

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, PROVA SCRTTA di DSPOSTV ELETTRONC del 22 Febbraio 2019 ESERCZO 1 n gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s). La parte n è drogata N

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli

canale n canale p depletion enhancement

canale n canale p depletion enhancement FET: Field Effect Transistor FET JFET MOSFET canale n canale p depletion enhancement canale n canale p canale n canale p A.Nigro Laboratorio di Segnali e Sistemi II - FET March 17, 2017 1 / 95 MOSFET Struttura

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 ESERCIZIO 1 In gura è rappresentato un pezzo di silicio, drogato da una parte n + (N D = 10 19 cm 3, µ n+ = 0.015 m 3 ) e dall'altra n (N D

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenuti del corso Parte I: Introduzione e concetti fondamentali richiami di teoria dei circuiti la simulazione circuitale con SPICE elementi di Elettronica dello stato solido Parte II: ispositivi Elettronici

Dettagli

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3,

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3, POVA SCITTA di DISPOSITIVI ELETTONICI del 17 Luglio 017 ESECIZIO 1 Il transistore bipolare in gura è caratterizzato da base = 5 10 15 cm 3, µ n = 0.11 m /Vs, µ p = 0.04 m /Vs, = τ p = 10 6 s, = 3 µm, S

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio 2017 ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = 5 10 15 cm 3, N D = 10 16 cm 3, µ n = 0.10 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p =

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a 32586 - ELETTROTENIA ED ELETTRONIA (.I.) Modulo di Elettronica Lezione 7 a.a. 2010-2011 Bipolar Junction Transistor (BJT) Il BJT è realizzato come una coppia di giunzioni PN affiancate. Esistono due categorie

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Componenti per circuiti logici (Cap. 3, App. A) Dispositivi elettronici per circuiti logici Diodo Transistore bipolare Transistore a effetto di campo Bipoli Componenti a 2 terminali

Dettagli

Tesi di Laurea. Impiego dell Arseniuro di Gallio nelle moderne tecnologie ULSI

Tesi di Laurea. Impiego dell Arseniuro di Gallio nelle moderne tecnologie ULSI Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria Elettronica Impiego dell Arseniuro di Gallio nelle moderne tecnologie ULSI Relatore: Prof. Andrea Cester 25 Novembre

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Elettronica Funzionamento del transistore MOS

Elettronica Funzionamento del transistore MOS Elettroica Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Fisica Uiversità degli Studi di Milao valetio.liberali@uimi.it Elettroica Fuzioameto del trasistore MOS 13 maggio 2015 Valetio Liberali

Dettagli

Il transistore bipolare a giunzione (BJT)

Il transistore bipolare a giunzione (BJT) Il transistore bipolare a giunzione (BJT) Il funzionamento da transistore, cioè l'interazione fra le due giunzioni pn connesse back to back, è dovuto allo spessore ridotto dell'area di base (tipicamente

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

Simulazione elettronica analogica con Spice. Progetto finale: Alimentatori Lineari e Switching

Simulazione elettronica analogica con Spice. Progetto finale: Alimentatori Lineari e Switching STAGE&ESTIVI&RESIDENZIALI&2017 Simulazione elettronica analogica con Spice Progetto finale: Alimentatori Lineari e Switching Alessio Passaquieti - 1 Caratteristiche generali del simulatore: I programmi

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 ESERCIZIO 1 Nel circuito in gura il diodo A è una giunzione Schottky a base corta, substrato n = N D = 10 15 cm 3 e W n = 5 µm. Il metallo

Dettagli

OTA. Amplificatori Integrati. OTA: Resistenza di Uscita. OTA: Considerazioni. Lucidi del Corso di Microelettronica Modulo 4

OTA. Amplificatori Integrati. OTA: Resistenza di Uscita. OTA: Considerazioni. Lucidi del Corso di Microelettronica Modulo 4 Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB OTA L amplificatore operazionale

Dettagli

Bandgap reference ad elevato PSRR

Bandgap reference ad elevato PSRR Bandgap reference ad elevato PSRR Tale lavoro descrive un riferimento di tensione realizzato in tecnologia Cmos a 0.25µm. Il circuito a 27C genera una tensione di riferimento di 1.1143V, ha un coefficiente

Dettagli

Microelettronica Indice generale

Microelettronica Indice generale Microelettronica Indice generale Prefazione Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XV XVII XVIII Capitolo 1 Introduzione all elettronica 1 1.1

Dettagli

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 ESERCIZIO 1 Un transistore npn a base corta è caratterizzato da: N Dem = 10 15 cm 3 (emettitore lungo), N Abase = 10 16 cm 3, N Dcoll = 10 15

Dettagli

Convertitori Digitale-Analogico

Convertitori Digitale-Analogico Convertitori Digitale-Analogico Lucidi del Corso di Microelettronica Parte 7 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori D/A

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Elettromagnetismo e circuiti

Elettromagnetismo e circuiti Elettromagnetismo e circuiti Corso tenuto da: Alessandro D Uffizi Massimiliano Bazzi Andrea Gennusa Emanuele Appolloni Francesco Rigoli Leonardo Marrone Lorenzo Di Bella Matteo Stirpe Stefano Mantini Verdiana

Dettagli

Indice. 1. Fisica dei semiconduttori La giunzione pn...49

Indice. 1. Fisica dei semiconduttori La giunzione pn...49 i Indice 1. Fisica dei semiconduttori...1 1.1 La carica elettrica...1 1.2 Tensione...2 1.3 Corrente...5 1.4 Legge di Ohm...6 1.5 Isolanti e conduttori...12 1.6 Semiconduttori...15 1.7 Elettroni nei semiconduttori...18

Dettagli

Polarizzazione Diretta (1)

Polarizzazione Diretta (1) Polarizzazione Diretta () E Con la polarizzazione diretta della giunzione, la barriera di potenziale si riduce aumenta la mobilità dei portatori maggioritari e si riduce quella dei portatori minoritari

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli