1 (HIGH) 0 (LOW) V (volt)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 (HIGH) 0 (LOW) V (volt)"

Transcript

1

2

3 3

4 A Z 4

5 OH IH IL OL (volt) 1 (HIGH) 0 (LOW) Logica positiva: tensioni alte (HIGH) rappresentano il valore 1, tensioni basse (LOW) rappresentano lo 0 Logica negativa: tensioni basse rappresentano il valore 1, tensioni alte lo 0 In pratica, viene utilizzata solo la logica positiva 5

6 6

7 out OH TC (oltage-transfer Characteristic) OL in 7

8 out Pendenza -1 OH OL IL IH in 8

9 1 0 1 I1 I2 9

10 out1 = in2 in1 I1 I2 out2 < IL - OL 10

11 (volt) NM H = OH - IH OH 1 (HIGH) Per massimizzare NM H, IH deve diminuire IH Compromesso: IL = IH = DD /2 IL NM L = IL - OL 0 (LOW) Per massimizzare NM L, IL deve aumentare OL 11

12 12

13 out Gate rigenerativo out Gate non rigenerativo OH OH in in OL IL IH OL IL IH 13

14 Y X I1 Y I2 Z Z=Y =(X ) =X OH OL XZ 14

15 Y,Z X Y Z I1 I2 OH 3 Z=Y =(X ) =X 6 4 Attraverso I1 (da X a Y) Attraverso I2 (da Y a Z) OL 7 8 Z (0 pulito) X (0 sporco) X,Y 15

16 Y X I1 Y I2 Z Z=Y =(X ) =X OH OL XZ 16

17 OH Y,Z X I1 Y I2 Z Z=Y =(X ) =X Attraverso I1 (da X a Y) Attraverso I2 (da Y a Z) OL X (0 pulito) 1 8 Z (0 sporco) X,Y 17

18 out Guadagno << 1 OH Guadagno >> 1 in OL IL IH 18

19 out Retta a pendenza unitaria OH M in OL M 19

20 OH Y,Z 4 3 Retta a pendenza unitaria X I1 Y I2 Z Z=Y =(X ) =X OL M Ciò che è a sinistra di M diventerà 0 2 X,Y Attraverso I1 (da X a Y) Attraverso I2 (da Y a Z) 20

21 21

22 N M Fan-In N Fan-Out M 22

23 23

24 in 50% t t phl t plh out 90% 50% 10% t t f t r 24

25 P av = 1 T T i dt = sup ply sup ply 0 sup ply T T 0 i sup ply dt 25

26

27 DD PMOS in out Tensione di uscita Tensione di ingresso NMOS 27

28 GS > Tn R ON G S GS < Tn Circuito aperto 28

29 S SG > Tp R ON G SG < Tp Circuito aperto 29

30 DD in =0 = DD out in out out= DD out =0 in = DD = out 30

31 in =0 DD out out2 31

32 32

33 DD SGp = DD - in I Dp in out SDp= DD - out I Dn I Dn=I Dp GSn = in DSn = out 33

34 I Dn, I Dp in =0 in =0.125 PMOS NMOS in =1 in =0.875 in =0.250 in =0.750 in =0.375 in =0.625 in =0.500 out 34

35 (a) (b) pmos triodo pmos saturazione La TC è quella desiderata, ossia una TC che gode della proprietà rigenerativa out (c) nmos off ( IN < Tn ) pmos off ( IN > DD - Tp ) nmos saturazione Tn nmos triodo (d) (e) in 35

36 36

37

38 38

39 GS = in = M SG = DD - in = DD - M k n DSATn M Tn DSATn 2 = k p DSATp DD M Tp DSATp 2 con M = n Tn + DSATn DSATn 2 + n r 1+ r DD k pdsatp pdsatpw pln r = = = k W L DSATn n Tp p v v DSATp 2 satp satn W W p n 39

40 40 n OX n n n n L W C L W k k = = ' ( ) ( ) = 2 ' 2 ' / / DSATp Tp M DD DSATp p DSATn Tn M DSATn n n p k k L W L W p OX p p p p L W C L W k k = = '

41 41

42 out OH M Pendenza molto elevata pari a: g OL in IL IH M 42

43 IH IL = = M M g + M DD g M DD M M - IL IH - M 43

44 I DSATn ( ) ( 1+ ) = I 1+ ( ) n OUT DSATp p DD OUT I = DSATn I IN DSATp IN ( 1+ ) n OUT + n OUT IN DSATn ( ( )) OUT 1+ p DD OUT p I DSATp I = IN 44

45 45 ( ) ( ) ) ( 2 1 ) ( 1 / p n DSATn Tn M p n DSATn n n DSATn OX n r I r L W C g + + = = + + λ λ

46 46

47 47

48 48

49

50 in out C L 50

51 R eq out C L DD DD /2 out out ( t) = DD e t R eq C L t t phl 51

52 ( t ) = DD out phl 2 out ( t phl ) = DD e t RC phl DD 2 = DD e t phl RC t = ln( 2) R C = 0. 69R phl eq L eq C L 52

53 53

54 out in Carico 54

55 C GSp +C GBp M p C DBp C Gp2 M p2 in out C GDp +C GDn C GSn +C GBn M n C DBn C W C Gn2 M n2 55

56 56

57 1 Y Y eq1 =Y(1-A) Y eq2 =Y(1-1/A) 57

58 C alore C GDp 2C O W p C GDn 2C O W n C DBp K eq (C J0 A Dp +C JSW0 P Dp ) C DBn K eq (C J0 A Dn +C JSW0 P Dn ) C Gp2 C OX W p L p C Gn2 C OX W n L n 58

59 out (t) R eq C L I D (t) 59

60 1 R 2 = d eq I( )

61 LIN elocity-saturated SAT Commutazione Classico LIN Commutazione SAT DSATn DD /2 DD /2 GS - TH 61

62 62 d I d I R DD DD DD DD DD DSATn DSATn DD DD eq + = 2 / 2 / ) (1 2 ) (1 2 / 1 = DD DSATn DD eq I R x x

63 t p = ( ) t + t phl 2 plh = 0.69C L R eqn + 2 R eqp 63

64 λ t phl 0.69C L 3 4 I DD DSATn = 0.52 k' n ( W / L) ( / 2) n DSATn C L DD DD Tn DSATn 64

65 λ 65

66 66

67 β W L p = W L n β β C C dp1 dn1 R = p = C = C gp2 gn2 R eqp Sostituendo Cdn [( )( ) dn1 gdn1 gn2 W ] + Cdp 1 + 2Cgdn 1 + Cgdp 1 + Cgn2 + Cgp + CW = 1+ C + 2C + C + C = 67

68 phl ( 1+ )( C ) dn1 + 2Cgdn 1 + Cgn + CW Reqn t =.69[ ] plh 0 2 ( 1+ )( C ) dn1 + 2Cgdn 1 + Cgn + CW Reqp t =.69[ ] 0 2 t p t phl + t plh = = ( 1+ )( C + 2C + C ) dn1 gdn1 gn2 + C W R eqn + 2 R eqp 68

69 t p = = ( 1 + )( C + 2C + C ) + C ( )( ) r' 1 + C + 2C + C + C R 1 + dn1 dn1 gdn1 gdn1 gn2 gn2 W W R eqn eqn 1 + R R eqp eqn 1 = R R eqp eqn I = I = DSATn DSATp I I DD DSATp DD DSATn n p = DSATn DSATp = r' β ( + B + C) 1 r' + t B = C 2 dn + C 1 2 p 1 gdn + C gn = A B A = R eqn C = C W 69

70 70 Derivando: = ' gn gdn dn W opt C C C C r ( ) 0 ' ' 2 = = C B B A r B r B A t p ( ) 0 ' 2 = + opt C B r B + = B C r opt 1 ' 2

71 β 71

72 72

73

74 74

75 75

76 in =0 i DD ( t) = C L d out dt ( t) out C L E DD = i ( t) dt 0 DD DD E CL = i ( t) ( t) dt 0 DD out 76

77 E DD = C L DD 0 d dt out dt = = C L DD DD 0 d out = C L DD 2 77

78 E CL = C L 0 d dt out out dt = = C L DD 0 out d out = C L 2 DD 2 78

79 79

80 80

81 81

82 in I Short 82

83 in I peak I short t f t r E dp = DD I peak (t r +t f )/2 P dp =E dp f 0 1 = f 0 1 DD I peak (t r +t f )/2 83

84 n+ n+ 84

85 I D I S I leakage =I S +I D P stat =I leakage DD 85

86 86

87 87

88 88

89 89

Inverter CMOS. Lucidi del Corso di Circuiti Integrati

Inverter CMOS. Lucidi del Corso di Circuiti Integrati Inverter CMOS Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Porte Logiche Lucidi del Corso di Circuiti

Dettagli

Inverter CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Inverter CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Inverter CMOS Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Inverter CMOS PMOS DD Tensione

Dettagli

Inverter CMOS. Inverter CMOS

Inverter CMOS. Inverter CMOS Inverter CMOS Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Inverter CMOS PMOS Tensione

Dettagli

Corso di Circuiti Integrati Anno Accademico 2018/2019

Corso di Circuiti Integrati Anno Accademico 2018/2019 Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica EOLAB - Laboratorio di Microelettronica Corso di Circuiti Integrati Anno Accademico 2018/2019 ESERCITAZIONE 1 Dato

Dettagli

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Porte logiche Una porta logica

Dettagli

Inverter CMOS. Inverter CMOS

Inverter CMOS. Inverter CMOS Inverter CMOS Lucidi del Corso di Elettronica Digitale Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Inverter CMOS PMOS V Tensione

Dettagli

(HIGH) 0 (LOW) Porte logiche. Porte Logiche. L inverter. Rappresentazione dei segnali

(HIGH) 0 (LOW) Porte logiche. Porte Logiche. L inverter. Rappresentazione dei segnali Porte logiche Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Una porta logica

Dettagli

Porte Logiche. Modulo 3

Porte Logiche. Modulo 3 Porte Logiche Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Porte logiche Una porta logica (gate) è un circuito

Dettagli

L INVERTER CMOS. Courtesy of Massimo Barbaro

L INVERTER CMOS. Courtesy of Massimo Barbaro L INVERTER CMOS Inverter: VTC Se il comportamento di massima è giustamente quello di un inverter come è la VTC? E necessario costruirla per punti conoscendo le curve caratteristiche dei due MOS al variare

Dettagli

I circuiti logici NMOS. A.Carini Elettronica digitale

I circuiti logici NMOS. A.Carini Elettronica digitale I circuiti logici NMOS A.Carini Elettronica digitale Invertitore NMOS Analisi per via analitica I f (, ) D GS DS R I D DS Analisi per via grafica Calcolo di min I I D D N K per ( GS T ) DS DS DS GS K N

Dettagli

(HIGH) 0 (LOW) Porte logiche. Porte Logiche. L inverter. Rappresentazione dei segnali

(HIGH) 0 (LOW) Porte logiche. Porte Logiche. L inverter. Rappresentazione dei segnali Porte logiche Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Una porta logica

Dettagli

Sviluppo tecnologico dell elettronica digitale:

Sviluppo tecnologico dell elettronica digitale: Sviluppo tecnologico dell elettronica digitale: Prestazioni e problemi: Famiglia logica: Insieme di gates che svolgono le funzioni logiche elementari basata su prefissati livelli logici (tensione/corrente),

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Inver&tore CMOS. V DD > 0 l altra alimentazione è a massa (0 V) 0 V O V DD

Inver&tore CMOS. V DD > 0 l altra alimentazione è a massa (0 V) 0 V O V DD Inver&tore CMOS S p > 0 l altra alimentazione è a massa (0 V) - = V GSp G n = G p VDSp = - D n = D p 0 Il potenziale più basso nel circuito coincide con la massa il Source del nmos coincide con la massa

Dettagli

Esercitazione del 27 Maggio 2009

Esercitazione del 27 Maggio 2009 Esercitazione del 7 Maggio 009 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

I circuiti digitali. Dispense del corso Elettronica L

I circuiti digitali. Dispense del corso Elettronica L I circuiti digitali Dispense del corso Elettronica L Gli Obiettivi - Comprendere il funzionamento del più elementare dei circuiti digitali - Invertitore o NOT - Introdurre definizioni e grandezze caratteristiche

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Porte logiche a rapporto e a pass transistor Andrea Bevilacqua UNIVERSITÀ DI PADOVA a.a 2008/09 Elettronica digitale p. 1/22 Introduzione In questa lezione analizzeremo modalità di

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Esercitazione III Simulazione PSpice dell invertitore CMOS

Esercitazione III Simulazione PSpice dell invertitore CMOS Esercitazione III Simulazione PSpice dell invertitore CMOS Come è noto, nei circuiti CMOS vengono utilizzati sia dispositivi a canale N sia dispositivi a canale P. La principale differenza fra i due tipi

Dettagli

Preparazione all'esame di Stato di Ingegneria Elettronica

Preparazione all'esame di Stato di Ingegneria Elettronica Preparazione all'esame di Stato di Ingegneria Elettronica Tema di Elettronica Digitale Vecchio Ordinamento I sessione 005 Tarin Gamberini Sommario In questo breve articolo sono ricavate, in una forma più

Dettagli

ESERCIZIO Punto di riposo

ESERCIZIO Punto di riposo 1/8 ESERCIZIO 1 1.1 - Punto di riposo Selatensioned uscita ènulla, ènullaanchelacorrentenellaresistenza dicaricor L edunque le correnti di canale dei transistor sono uguali tra loro; pertanto, nell ipotesi

Dettagli

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1 Invertitore logico (NOT) La caratteristica di trasferimento in tensione (VTC) Per un ingresso logico 0, cioè v I V IL l'uscita logica è 1, cioè v O V OH ; per ingresso 1 cioè v I V IH uscita 0, cioè v

Dettagli

in ogni istante di tempo, l'uscita dipende esclusivamente dalla combinazione (funzione logica) degli ingressi in quel istante

in ogni istante di tempo, l'uscita dipende esclusivamente dalla combinazione (funzione logica) degli ingressi in quel istante in ogni istante di tempo, l'uscita dipende esclusivamente dalla combinazione (funzione logica) degli ingressi in quel istante ircuiti combinatori (sequenziali) = circuiti non rigenerativi(rigenerativi)

Dettagli

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL)

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) INERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) FIG. 1. Resistor-Transistor Logic (RTL) inverter. ediamo un esempio di realizzazione di un invertitore (Figura 1). Assumiamo inizialmente che il fan-out dell

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 7 - B - 3: Esempi di circuiti logici

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 7 - B - 3: Esempi di circuiti logici ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Gruppo B: Famiglie logiche Lezione n. 7 - B - 3: Esempi di circuiti logici Elettronica II - Dante Del Corso - Gruppo B - 7 n. 1-01/11/97 Metodo

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Tecnologia CMOS. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Tecnologia CMOS Lucidi del Corso di Elettronica Digitale Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Transistor MOS IltransistorMOSèundispositivoa4terminali(drain,gate,source,body

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Prova scritta del 17 Giugno 2009 (primo appello)

Prova scritta del 17 Giugno 2009 (primo appello) A.A. 28-29 - Corso di Teoria dei Circuiti Digitali Docente: Prof. Simone Buso Prova scritta del 17 Giugno 29 (primo appello) Cognome e nome: Matricola: Risolvere i seguenti problemi, indicando le risposte

Dettagli

Esercitazione del 13 Maggio 2009

Esercitazione del 13 Maggio 2009 Esercitazione del 3 Maggio 2009 Calcolo dei tempi di propagazione - riepilogo. Ipotesi semplificative: commutazione ingressi con fronti istantanei capacità di carico costante rispetto alla polarizzazione

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 18/07/2014

Esame Elettronica T-1 Prof. Elena Gnani 18/07/2014 Esercizio 1: Con riferimento al circuito illustrato in Fig. 1(a) e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema L 1 = 3mm; L 2= 2mm; L 3 = 1mm; R WIRE = 0.25

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/200 Filtri Filtri del primo ordine Passa basso R 2 C 2 R H(s) = R 2 H(0) = R 2 R sr 2 C 2 R f p = φ = 0 90 2πR

Dettagli

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS Esercizio Grandezze tipiche delle caratteristiche dei MOS Supponiamo di avere una tecnologia MOS con: ensione di alimentazione, dd 5 ensione di soglia, t Dimensione minima minlminfµm. I file di tecnologia

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 9 - B - 5:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 9 - B - 5: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Gruppo B: Famiglie logiche Lezione n. 9 - B - 5: Comportamento dinamico dei circuiti logici Elettronica II - Dante Del Corso - Gruppo B - 7

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Esercitazione sui gate complessi CMOS

Esercitazione sui gate complessi CMOS Esercitazione sui gate complessi CMOS Esercizio N1: Testo V DD PU X PD O Si assuma la capacità di ingresso dell invertitore C INV =1pF: Si realizzino le reti PU e PD in modo che la funzione di uscita sia

Dettagli

Esercitazione del 29 Aprile 2009

Esercitazione del 29 Aprile 2009 Esercitazione del 29 Aprile 2009 Invertitore Resistor-Transistor Logic (RTL) V out a) Parametri BJT Altri V out β F = 70 = 5V Q 1 I B V V CE V on = 0.7V = 0.8V = 10kΩ = 1kΩ b) CE = 0.1V Figura 1: Porta

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Famiglie logiche in tecnologia planare

Famiglie logiche in tecnologia planare Famiglie logiche in tecnologia planare NMOS (Transistori MOS a canale n) MOS (Transistori MOS a canale n e p) ipolare (JT e iodi) imos (JT, MOS a canale n e p) Operazioni ooleane Operazione NOT O AN NO

Dettagli

Logica Combinatoria. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Logica Combinatoria. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Logica Combinatoria Lucidi del Corso di Elettronica Digitale Modulo 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Logica combinatoria Un

Dettagli

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail :

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail : SIMULAZIONE CIRCUITALE CON LTSPICE Ing. Marco Grossi Università di Bologna, DEI e- mail : marco.grossi8@unibo.it Simulazione di circuiti elettronici con SPICE SPICE (Simulation Program with Integrated

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/2010 Filtri Filtri del secondo ordine In generale la funzione di trasferimento è: H(s) = a 2 s 2 + a 1 s + a 0

Dettagli

Tecnologie per l'elettronica digitale. Parametri Componenti elettronici Porte a diodi RTL, TTL CMOS

Tecnologie per l'elettronica digitale. Parametri Componenti elettronici Porte a diodi RTL, TTL CMOS Tecnologie per l'elettronica digitale Parametri Componenti elettronici Porte a diodi RTL, TTL CMOS Codifica digitale dell informazione Superare l effetto del rumore Non eliminabile dai circuiti analogici

Dettagli

Esercitazione dell 11 Giugno 2008

Esercitazione dell 11 Giugno 2008 Esercitazione dell 11 Giugno 2008 Es. 1 - Progetto memoria ROM 1) Progettare una memoria ROM a NOR (ad esclusione dei decoder di riga) che memorizzi le seguenti quattro parole di quattro bit: W 0 0 1 0

Dettagli

ITS Einaudi Appunti T.D.P. ITS Einaudi ITS EINAUDI. Elettronica e Telecomunicazioni. Tecnologia e Disegno per la Progettazione Elettronica

ITS Einaudi Appunti T.D.P. ITS Einaudi ITS EINAUDI. Elettronica e Telecomunicazioni. Tecnologia e Disegno per la Progettazione Elettronica ITS EINAUDI Elettronica e Telecomunicazioni Tecnologia e Disegno per la Progettazione Elettronica Porte Logiche PORTE LOGICHE - i parametri dei fogli tecnici Valori Massimi Assoluti Vcc max, Vin max, T

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

Circuiti Integrati Analogici

Circuiti Integrati Analogici Circuiti Integrati Analogici prof.irace a.a.007/008 Circuiti Integrati Analogici Prof. Irace a.a.007/008 1 - Il MOSFET come interruttore In figura è riportato un transistore MOS a canale n Sappiamo che

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di tensione Uscita

Dettagli

Circuiti con diodi e resistenze: Analisi e Progetto

Circuiti con diodi e resistenze: Analisi e Progetto Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014 Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;

Dettagli

Elettronica Digitale (6 CFU)

Elettronica Digitale (6 CFU) Elettronica Digitale (6 CFU) Prof. G.V. Persiano Tipologia di esame Orale Programma Fondamenti di circuiti logici Dispositivi e tecnologie CMOS Invertitore e porte logiche elementari CMOS Circuiti combinatori

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Logica Sequenziale. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Logica Sequenziale. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Logica Sequenziale Lucidi del Corso di Elettronica Digitale Modulo 9 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Logica sequenziale Un

Dettagli

canale n canale p depletion enhancement

canale n canale p depletion enhancement FET: Field Effect Transistor FET JFET MOSFET canale n canale p depletion enhancement canale n canale p canale n canale p A.Nigro Laboratorio di Segnali e Sistemi II - FET March 17, 2017 1 / 95 MOSFET Struttura

Dettagli

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03 Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 0/ 03 Alfredo Caferra 58/463 OGGETTO DELL ELABORATO Per una SRAM con celle di memoria NMOS a 4 transistori con bit lines

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Microelettronica Modulo 3 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Flusso

Dettagli

Struttura di un circuito dinamico

Struttura di un circuito dinamico - valori logici si basano sull'immagazzinamento temporaneo della carica sulle capacità di nodi ad alta impedenza del circuito - porte logiche più semplici e veloci di quelle di tipo statico - progetto

Dettagli

Compito di Elettronica I 23/01/2002

Compito di Elettronica I 23/01/2002 Compito di Elettronica I 23/01/2002 VC VC R C C3 v s + > R E vo r i ut V C =3 V V C =5 V =100 KΩ =200 KΩ =300 KΩ R C =2.5 KΩ R E =1.3 KΩ =2.5 KΩ β=100 C π =10 pf C µ =1 pf ==C3=1 µf!"il punto di lavoro

Dettagli

Logica Combinatoria. Lucidi del Corso di Circuiti Integrati

Logica Combinatoria. Lucidi del Corso di Circuiti Integrati Logica Combinatoria Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Logica combinatoria Un blocco di

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Semicustom Design Flow

Semicustom Design Flow Semicustom Design Flow 1 System specification Design Iteration Pre-Layout Simulation Post-Layout Simulation RTL (HDL es: VHDL) Logic Synthesis Floorplanning Placement Libreria di celle Circuit Extraction

Dettagli

Consumo di Potenza nell inverter CMOS. Courtesy of Massimo Barbaro

Consumo di Potenza nell inverter CMOS. Courtesy of Massimo Barbaro Consumo di Potenza nell inverter CMOS Potenza dissipata Le componenti del consumo di potenza sono 3: Potenza statica: è quella dissipata quando l inverter ha ingresso costante, in condizioni di stabilità

Dettagli

ELETTRONICA II. Prof. Pierluigi Civera - Politecnico di Torino. Gruppo C: Circuiti combinatori e sequenziali Lezione n.

ELETTRONICA II. Prof. Pierluigi Civera - Politecnico di Torino. Gruppo C: Circuiti combinatori e sequenziali Lezione n. ELETTRONICA II Prof. Pierluigi Civera - Politecnico di Torino Gruppo C: Circuiti combinatori e sequenziali Lezione n. 10 - C - 1: Circuiti combinatori reali Gruppo B: Circuiti combinatori e sequenziali

Dettagli

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI

COMPITO DI ELETTRONICA I ELETTRONICI INFORMATICI ELETTRICI 18-01-2003 Q3 Q4 v out Q2 M1 v s i s Dz =3 V V Z =2 V Diodo zener ideale =1 kω =1.5 kω =250 Ω =1 kω β=100 K n =µ n C ox /2=50 µa/v 2 W/L=16/0.8 V Tn = 1 V C π = C gs =10 pf C µ = C gd =1 pf C1=C2=C3=1

Dettagli

ELETTRONICA DEI SISTEMI DIGITALI 1 PRIMA PROVA IN ITINERE A.A. 2003/ Novembre 2003

ELETTRONICA DEI SISTEMI DIGITALI 1 PRIMA PROVA IN ITINERE A.A. 2003/ Novembre 2003 ELETTRONICA DEI SISTEMI DIGITALI 1 PRIMA PROVA IN ITINERE A.A. 2003/2004 11 Novembre 2003 COGNOME: NOME: MATRICOLA: ORDINAMENTO (VO/NO): Regole: 1) Non è consentito portare vicino al posto nulla che non

Dettagli

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì

Tel: Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì DEIS University of Bologna Italy Progetto di circuiti analogici L-A Luca De Marchi Email: l.demarchi@unibo.it Tel: 051 20 93777 Laboratorio Micro (Ex Aula 3.2) Ricevimento: Giovedì 15.00-17.00 DEIS University

Dettagli

Laboratorio II, modulo Elettronica digitale (2 a parte) (cfr.

Laboratorio II, modulo Elettronica digitale (2 a parte) (cfr. Laboratorio II, modulo 2 2016-2017 Elettronica digitale (2 a parte) (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Esempio (reale) di comparatore + V V in + R V out V ref - V out V ref V

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N Demettitore = N Abase = 10 16 cm 3, N Dcollettore = 5 10 15 cm 3, µ n = 0.1 m 2 /Vs, τ n = τ p = 10 6, µ

Dettagli

Le porte logiche. Elettronica L Dispense del corso

Le porte logiche. Elettronica L Dispense del corso Le porte logiche Elettronica L Dispense del corso Gli Obiettivi Introdurre il concetto di funzione logica. Dare una corrispondenza tra funzioni logiche e strutture di gate elementari. Introdurre l algebra

Dettagli

V DD R D. 15. Concetti di base sui circuiti digitali

V DD R D. 15. Concetti di base sui circuiti digitali + Xtf=12.85 tf=10).end È stato inserito anche il modello del C109C, a scopo esemplificativo. Di solito non è necessario inserire il modello nella netlist, perché questo è già contenuto in una library fornita

Dettagli

LSS Reti Logiche: multivibratori e T555

LSS Reti Logiche: multivibratori e T555 LSS 2016-17 Reti Logiche: multivibratori e T555 Piero Vicini A.A. 2016-2017 Multivibratori Un multivibratore e un circuito che presenta per l uscita solo due stati stabili e/o metastabili. Il circuito

Dettagli

MEMORIA SRAM. Marco Robutti. June 28, La figure 1 mostra una tipica cella di memoria statica realizzata con la tecnologia CMOS.

MEMORIA SRAM. Marco Robutti. June 28, La figure 1 mostra una tipica cella di memoria statica realizzata con la tecnologia CMOS. MEMORIA SRAM Marco Robutti June 28, 204 Operazione di lettura a figure mostra una tipica cella di memoria statica realizzata con la tecnologia CMOS. Figure : Una cella di memoria SRAM realizzata con tecnologia

Dettagli

Logica combinatoria. Logica Combinatoria. Stili di progetto. Logica combinatoria

Logica combinatoria. Logica Combinatoria. Stili di progetto. Logica combinatoria Logica combinatoria Logica ombinatoria Lucidi del orso di Elettronica igitale Modulo 5 Un blocco di logica puramente combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono

Dettagli

Logica Combinatoria. Logica combinatoria

Logica Combinatoria. Logica combinatoria Logica Combinatoria Lucidi del Corso di Elettronica Digitale Modulo 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOL) Logica combinatoria Un

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

Processo CMOS. Lucidi del Corso di Circuiti Integrati Modulo 1A

Processo CMOS. Lucidi del Corso di Circuiti Integrati Modulo 1A Processo CMOS Lucidi del Corso di Circuiti Integrati Modulo 1A Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Transistor MOS Università di

Dettagli

COMPITO DI ELETTRONICA I

COMPITO DI ELETTRONICA I 22-01-2007 V DD M3 M4 R 2 C1 Q2 < C2 v O > r i Q1 R 3 r o R L i s + R 1 V DD =3 V R 1 =3 kω R 2 =2 MΩ R 3 = 15 kω R L =1 kω β=100 K p ==µ p C ox /2=20 µa/v 2 W/L=40/2 V Tp =-1 V C π = C GS =10 pf C µ =

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali Moduli logici Moduli logici Interfacciamento di dispositivi logici Circuiti logici combinatori Circuiti logici sequenziali Registri, contatori e circuiti sequenziali Esempi e misure su circuiti digitali

Dettagli

Esercitazione II Uso del simulatore PSpice per l analisi dei circuiti digitali.

Esercitazione II Uso del simulatore PSpice per l analisi dei circuiti digitali. Esercitazione II Uso del simulatore Spice per l analisi dei circuiti digitali. I parametri del circuito In Fig. 1 è mostrato lo schema elettrico di un invertitore realizzato in tecnologia NMOS con carico

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

Note sul dimensionamento delle porte CML ed ECL.

Note sul dimensionamento delle porte CML ed ECL. Note sul dimensionamento delle porte ML ed L. imensionamento delle porte ML. La più semplice porta logica in tecnologia bipolare non saturata, è il circuito pilotato in corrente (ML o current-mode logic),

Dettagli

Cella di memoria SRAM a 6T

Cella di memoria SRAM a 6T - memorie volatili - in base al meccanismo di scrittura RAM statiche (SRAM) o dinamiche (DRAM) - scrittura del dato tramite reazione positiva o carica su di una capacità - configurazioni tipo a 6 MOS/cella

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

ELETTRONICA II. Prof. Dante Del Corso Prof. Pierluigi Civera Esercitazioni e laboratorio: Ing. Claudio Sansoe. Politecnico di Torino

ELETTRONICA II. Prof. Dante Del Corso Prof. Pierluigi Civera Esercitazioni e laboratorio: Ing. Claudio Sansoe. Politecnico di Torino ELETTRONICA II Lezioni: Prof. Dante Del Corso Prof. Pierluigi Civera Esercitazioni e laboratorio: Ing. Claudio Sansoe Politecnico di Torino Lezioni Gruppo B rev 7 Elettronica II - Dante Del Corso - Gruppo

Dettagli