INFINITO & CARDINALITÀ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INFINITO & CARDINALITÀ"

Transcript

1 SAPIENZA - UNIVERSITÀ DI ROMA TFA-A059 Didattica della Matematica II INFINITO & CARDINALITÀ A cura di: Andrei Catalioto Docente: Prof. Paolo Piccinni ANNO ACCADEMICO

2 Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. David Hilbert ( ) La storia che raccontiamo narra del viaggio di Ion il Tranquillo, protagonista dell avventura nello spazio

3

4

5 Ion il Tranquillo cercava una camera. Pensò di trovarla all Hotel Infinito, noto per avere infinite stanze. Ion non ebbe fortuna perché l hotel ospitava i delegati del congresso di zoologia cosmica. Siccome gli zoologi cosmici venivano da tutte le galassie, e di galassie ne esiste un numero infinito, tutte le stanze erano occupate.

6 Soluzione del problema Il direttore decide di spostare lo zoologo della stanza 1 nella 2, quello della 2 nella 3 e così via così può mettere Ion nella stanza 1! In generale, viene spostato lo zoologo della stanza «n» nella stanza «n+1»

7 Il problema si complicò perché arrivò un rappresentante dei filatelici per ogni galassia per partecipare al congresso interstellare dei filatelici

8 Il direttore, come soluzione al problema, decise di spostare l ospite della 1 nella 2, quello della 2 nella 4, quello della 3 nella 6 e così via In generale mettere l ospite della stanza «n» nella stanza «2n» Così, gli zoologi occuparono l insieme delle stanze dei numeri pari e i filatelici occuparono l insieme delle stanze dei numeri dispari, visto che il filatelico n-esimo nella coda ottenne il numero di stanza «2n-1»

9 Povero lui, che dovrà arrivare alla stanza !

10 Il congresso degli zoologi terminò, e gli ospiti andarono via, lasciando vuote infinite stanze. Per lo stupore di Ion, il direttore si preoccupò perché non sarebbe più riuscito a raggiungere il preventivo di bilancio. Ion non capiva di che preventivo si parlasse, visto che i filatelici erano infiniti e quindi al direttore venivano pagate infinite stanze! Alla fine il direttore decise di lasciar stare l ospite della stanza numero 1 nella sua stanza e di spostare l ospite della stanza numero 3 nella stanza numero 2, l ospite della numero 5 nella 3 e così via Così l hotel risultò di nuovo pieno!

11 I costruttori dell Hotel Cosmos avevano smantellato tantissime galassie per costruire infiniti hotel con infinite stanze. Furono costretti, però, a rimettere tutto in ordine e a chiudere tutti gli hotel, eccetto l Hotel Cosmos

12 Quindi venne chiesto al direttore di mettere le infinite persone di infiniti hotel nel suo hotel, già pieno. COME FARE?

13 Un apprendista cuoco avanzò una proposta: Lasciare stare l ospite della stanza numero 1 nella sua stanza, spostare l ospite della stanza numero 2 nella stanza numero 1001, l ospite della stanza numero 3 nella stanza numero 2001 e così via. Fatto ciò mettere gli ospiti del secondo hotel nelle stanze 2, 1002, 2002 e così via. Gli ospiti del terzo hotel nelle stanze 3, 1003, 2003 e così via. Questa idea non risultò essere utile perché non ci sarebbero state stanze per gli ospiti degli hotel 1001 e seguenti.

14 Quindi un contabile propose di usare una delle proprietà delle progressioni geometriche: Mettere gli ospiti del primo hotel nelle stanze 2, 4, 8, 16, 32 e così via. Gli ospiti del secondo hotel andavano messi nelle stanze 3, 9, 27, 81 e così via. Ma arrivati al numero 4, questa proposta risultò irrealizzabile perché nella stanza numero 4 c era già un ospite

15 Ion propose di usare solo le progressioni dei numeri primi poiché se si prendono due numeri primi, nessuna delle potenze intere positive di uno può equivalere a quelle dell altro.

16 In questo modo nessuna stanza avrebbe avuto due occupanti!

17

18 Tutti gli insiemi hanno sottoinsiemi, formati da elementi dell insieme stesso. Consideriamo il caso di due insiemi con un numero finito di elementi: A= 1,2,3,4,5,6,7,8,9,10 B = 6,7,8,9,10 B è un sottoinsieme di A B è una parte PROPRIA di A, cioè in B ci sono SOLO ALCUNI elementi di A. Quindi il numero di elementi di B è minore del numero di elementi di A, cioè la cardinalità di B è minore della cardinalità di A [ B (=5)< A (=10) ]

19 Questo concetto diventa più complesso quando operiamo con gli insiemi infiniti. Prendiamo il caso degli insiemi numerici che abbiamo studiato. Consideriamo l insieme N dei numeri naturali e l insieme P dei numeri pari. N = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;.. L insieme dei numeri pari P è un sottoinsieme proprio dell insieme dei numeri naturali N? N P È vero che P è sottoinsieme proprio di N perché in P ci sono SOLO alcuni elementi di N.

20 Quale insieme ha più elementi? N o P? La corrispondenza è biunivoca: ad ogni elemento di N possiamo associare uno e un solo elemento di P n 2 n

21 Il primo a comprendere ciò è stato il matematico tedesco Georg Cantor ( ), che ha introdotto il concetto di EQUIPOTENZA Se due insiemi sono in corrispondenza biunivoca, questi si dicono equipotenti. In tal caso si dice che gli insiemi hanno la stessa cardinalità o la stessa potenza. Quindi possiamo dedurre che in un insieme infinito "una parte può essere equivalente al tutto". Questa teoria è in contrasto con l assioma di Antonio De Zolt (1881) sul confronto delle aree, che, riprendendo quanto già affermato da Euclide negli Elementi (300 a.c. circa) dice: «Il tutto non equivale (è maggiore ) a una (della) sua parte". Nel caso dell esempio dei numeri pari, abbiamo visto che P è una parte di N però i due insiemi sono equivalenti: ma N e P sono EQUIPOTENTI!

22 Prendendo in considerazione il postulato di De Zolt, cioè «Il tutto non può essere "uguale" a una sua parte» e operando con insiemi infiniti, si generano dei paradossi, che iniziarono a tormentare già Galileo Galilei nel XVI secolo. George Cantor capì l origine dei paradossi dell infinito Egli si chiese UGUALE RISPETTO A COSA? 1 SIGNIFICATO (ARISTOTELE) La parte non è uguale-identica al tutto che la contiene. LA PARTE È CONTENUTA PROPRIAMENTE NEL TUTTO 2 SIGNIFICATO (CANTOR) La parte può essere uguale PER NUMERO al tutto. LA PARTE PUÒ ESSERE EQUIPOTENTE AL TUTTO

23 Alla luce di queste considerazioni, il matematico tedesco Richard Dedekind nel 1874 introdusse la seguente definizione: un insieme S si dice infinito, se è equipotente a una sua parte; nel caso opposto si chiama finito. L infinito che abbiamo introdotto con il racconto dell Hotel Infinito è la cardinalità di N. Cantor denominò la cardinalità di N con il simbolo 0 (la lettera ebraica ALEF con pedice lo zero)

24 Dal racconto dell Hotel Infinito possiamo dedurre che l infinito si comporta in modo particolare con l addizione.. +1= +n= + = =

25 A Cantor sorse un dubbio: CI SONO VARI GRADI DI INFINITO?

26 Ad esempio l insieme N (interi positivi) è una parte propria dell insieme Z (interi positivi e negativi), allora a Z dovrebbe corrispondere un infinito più grande di N? Ragionando sulla soluzione, Cantor ebbe un intuizione geniale: Mise in corrispondenza biunivoca N e Z, dimostrando che la cardinalità di uno è uguale alla cardinalità dell altro. Se N ha cardinalità 0, allora anche Z avrà cardinalità 0 cioè hanno la stessa numerosità. 0 si dice POTENZA DEL NUMERABILE!

27 Ma Cantor non si è fermato a Z, si è interrogato anche sulla numerosità dell insieme dei numeri razionali Q, che è un insieme più fitto di Z dovendo contenere anche numeri con la virgola. Egli è riuscito a dimostrare che c è una corrispondenza biunivoca anche tra N e Q e di conseguenza la cardinalità di uno è uguale alla cardinalità dell altro. Siccome Z e Q si possono mettere in corrispondenza biunivoca con N, questi si dicono numerabili.

28 1 PROCEDIMENTO (O ARGOMENTO) DIAGONALE DI CANTOR

29 E cosa succede se consideriamo l insieme dei numeri reali R? E anch esso numerabile? Cantor, ha dimostrato che R non è numerabile e che quindi la cardinalità di R non è 0. Egli indicò con "c" la cardinalità di R! c si dice POTENZA DEL CONTINUO!

30 2 PROCEDIMENTO (O ARGOMENTO) DIAGONALE DI CANTOR

31 TEOREMA DI CANTOR A ( A) Cantor, dato un generico (vuoto o non) insieme A, costruì l insieme P(A) come l insieme di tutti i possibili sottoinsiemi di A che chiamò insieme delle parti o insieme potenza di A e che indicò in simboli con P(A) X : X A dimostrò che esso non risulta essere mai equipotente ad A stesso costruendo un opportuna funzione iniettiva da A a P(A) che non fosse suriettiva (quest ultimo fatto lo provò per assurdo!) Anzi, provò qualcosa di più interessante Cioè ( A) 2 A

32 IL TEOREMA DI CANTOR DI LEGAME TRA LA CARDINALITA DEL CONTINUO E DEL NUMERABILE c Il famoso matematico tedesco Georg Cantor ( ) introdusse il concetto di cardinalità per confrontare le dimensioni di insiemi infiniti. Egli dimostrò infatti, che l insieme R dei numeri reali è non numerabile (in particolare ha la cosiddetta potenza del continuo indicata con c), cioè che la sua cardinalità è maggiore della cardinalità dell insieme N dei numeri naturali, indicata con 0 (alefzero) e detta del numerabile. Ciò, di fatto asserisce che non esiste alcuna funzione biunivoca tra l insieme dei numeri reali e l insieme dei numeri naturali. Si desume invece dal Teorema di Cantor-Schröder-Bernstein relazione fra le due cardinalità esposta come incipit.

33 CARDINALITÀ DEGLI INSIEMI NUMERI FONDAMENTALI 0 c 2 0

34 CENNI DI ARITMETICA CARDINALE TRANSFINITA PROPRIETÀ DI 0 E c n ( ) n c c max(, c) c c 0 0 c c c c c 2 0

35 Cantor dimostrò anche che la potenza del numerabile è la minima cardinalità degli insiemi infiniti; esistono insiemi infiniti aventi una cardinalità superiore al numerabile e alla potenza del continuo (numeri transfiniti 0, 1, 2, ). Tuttavia ipotizzò che non esistono insiemi infiniti con cardinalità intermedia tra 0 e c, cioè il grado di infinito successivo al numerabile è il continuo. Ainsieme : A c c Questa ipotesi prende il nome di IPOTESI DEL CONTINUO (CH)!

36 Nel 1940 il matematico americano di origine austriaca KURT GÖDEL dimostrò che non si può dimostrare né che l ipotesi del continuo sia vera né che l ipotesi del continuo sia falsa. ( incompletezza di CH) In realtà nel 1963 il matematico americano PAUL COHEN dimostrò che esistono teorie matematiche in cui si accetta che l ipotesi sia vera e altre teorie in cui si accetta che l ipotesi sia falsa. ( indipendenza di CH)

37

38

Il fascino dell Infinito

Il fascino dell Infinito Il fascino dell Infinito Infinito e cardinalità. Simbolo del nodo d amore, Wallis 1655 Prof. Resta Lorenza Faenza, mercoledì 14 Marzo Alcuni termini Insiemi equipotenti Insieme infinito ed insieme finito

Dettagli

L insieme N dei numeri naturali è infinito?

L insieme N dei numeri naturali è infinito? L insieme N dei numeri naturali è infinito? L infinito! Nessun altro problema ha mai scosso così profondamente lo spirito umano; nessuna altra idea ha stimolato così proficuamente il suo intelletto; e

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

ci sono più problemi che programmi esiste un problema che non si può risolvere con un programma

ci sono più problemi che programmi esiste un problema che non si può risolvere con un programma Calcolabilità problemi facili trovare la media di due numeri stampare le linee di un file che contengono una parola problemi difficili trovare il circuito minimo data una tabella determinare la migliore

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Corso di Analisi Matematica Serie numeriche

Corso di Analisi Matematica Serie numeriche Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 25 1 Definizione e primi esempi 2 Serie a

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Pitagora e la scoperta delle grandezze incommensurabili

Pitagora e la scoperta delle grandezze incommensurabili Pitagora e la scoperta delle grandezze incommensurabili Periodo della scoperta: V sec. a.c. Autore della scoperta: Pitagora? Pitagora iniziò la trattazione delle grandezze irrazionali (Proclo). Ippaso

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi Scuola Pitagoric a Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi della geometria; in seguito si reca a

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

1.300 2.500 10.000 5.000

1.300 2.500 10.000 5.000 ORDINE DEI PREZZI RITAGLIA I CARTELLINI DEI PREZZI E INCOLLALI NEL QUADERNO METTENDO I NUMERI IN ORDINE DAL PIÙ PICCOLO AL PIÙ GRANDE. SPIEGA COME HAI FATTO A DECIDERE QUALE NUMERO ANDAVA PRIMA E QUALE

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Infinito, scienza, e paradosso. G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine

Infinito, scienza, e paradosso. G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine Infinito, scienza, e paradosso G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine L infinito nell antichità L infinito fa irruzione prepotentemente con

Dettagli

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità Appunti: Tecniche di rilevazione e correzione degli errori 1 Tecniche di correzione degli errori Le tecniche di correzione degli errori sono catalogabili in: metodi per il rilevamento degli errori; metodi

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Rappresentare i nessi logici con gli insiemi

Rappresentare i nessi logici con gli insiemi Rappresentare i nessi logici con gli insiemi È un operazione molto utile in quesiti come quello nell Esempio 1, in cui gruppi di persone o cose vengono distinti in base a delle loro proprietà. Un elemento

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

IMMAGINANDO QUELLO CHE NON SI VEDE

IMMAGINANDO QUELLO CHE NON SI VEDE Laboratorio in classe: tra forme e numeri GRUPPO FRAZIONI - CLASSI SECONDE DELLA SCUOLA PRIMARIA Docenti: Lidia Abate, Anna Maria Radaelli, Loredana Raffa. IMMAGINANDO QUELLO CHE NON SI VEDE 1. UNA FIABA

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Questionario per casa 6 Febbraio 2012

Questionario per casa 6 Febbraio 2012 1 Il numero 4 2004 + 2 4008 è uguale a a) 4 4012 b) 4 4008 c) 4 2004 d) 2 4009 e) 2 2012 Questionario per casa 6 Febbraio 2012 2 La statura media dei 20 studenti di una certa classe è 163,5 cm. Se ciascuno

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

Anno 1. Definizione di Logica e operazioni logiche

Anno 1. Definizione di Logica e operazioni logiche Anno 1 Definizione di Logica e operazioni logiche 1 Introduzione In questa lezione ci occuperemo di descrivere la definizione di logica matematica e di operazioni logiche. Che cos è la logica matematica?

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton L infinito nell aritmetica Edward Nelson Dipartimento di matematica Università di Princeton Poi lo condusse fuori e gli disse: . E soggiunse:

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Cartella: L esperienza del contare. Attività: CONTIAMO I FAGIOLI

Cartella: L esperienza del contare. Attività: CONTIAMO I FAGIOLI Cartella: L esperienza del contare Attività: CONTIAMO I FAGIOLI www.quadernoaquadretti.it Attività testata da Martina Carola (Gruppo di ricerca sulla scuola primaria del Seminario di Didattica della Matematica

Dettagli

FINESTRE INTERCULTURALI

FINESTRE INTERCULTURALI Scuola Classe 1C FINESTRE INTERCULTURALI DIARIO DI BORDO 2013 / 2014 IC Gandhi - Secondaria di primo grado Paolo Uccello Insegnante / materia Anelia Cassai/lettere Data Febbraio Durata 4h TITOLO DELLA

Dettagli

ASSOCIAZIONE ANFFAS ONLUS UDINE. presenta LA NOSTRA VISION. Questo documento è in versione facile da leggere

ASSOCIAZIONE ANFFAS ONLUS UDINE. presenta LA NOSTRA VISION. Questo documento è in versione facile da leggere ASSOCIAZIONE ANFFAS ONLUS UDINE presenta LA NOSTRA VISION Questo documento è in versione facile da leggere - Michele Bertotti - Chiara Billo - Elena Casarsa - Anna Latargia - Lucrezia Pittolo - Erika Pontelli

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Anno 3. Classificazione delle funzioni

Anno 3. Classificazione delle funzioni nno 3 Classificazione delle funzioni 1 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse.

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Ancora sugli insiemi. Simbologia

Ancora sugli insiemi. Simbologia ncora sugli insiemi Un insieme può essere specificato in vari modi; il più semplice è fare un elenco dei suoi elementi. d esempio l insieme delle nostre lauree triennali è { EOOM, EON, EOMM, EOMK EOTU}

Dettagli

Lezione 10 Funzione di produzione ed

Lezione 10 Funzione di produzione ed Corso di Economica Politica prof. S. Papa Lezione 10 Funzione di produzione ed efficienza economica Facoltà di Economia Università di Roma La Sapienza Costi e produzione 102 Da che dipendono i costi? Dipendono

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Più processori uguale più velocità?

Più processori uguale più velocità? Più processori uguale più velocità? e un processore impiega per eseguire un programma un tempo T, un sistema formato da P processori dello stesso tipo esegue lo stesso programma in un tempo TP T / P? In

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Centro di Documentazione per l Integrazione

Centro di Documentazione per l Integrazione Centro di Documentazione per l Integrazione I.C. Crespellano -Scuola Primaria Gabriella Degli Esposti Calcara, Valsamoggia (BO) Classe 4^ primaria Operatori: Andrea Maffia e Luisa Zaghi Periodo: Gennaio-Marzo

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

La verità sulle immissioni in ruolo del Ministro Moratti

La verità sulle immissioni in ruolo del Ministro Moratti La verità sulle immissioni in ruolo del Ministro Moratti Il Ministro ha ripetutamente affermato di: avere effettuato oltre 150.000 immissioni in ruolo nella scuola avere provveduto ad un numero di assunzioni

Dettagli

*UDQGH]]HUDSSRUWLPLVXUH

*UDQGH]]HUDSSRUWLPLVXUH $OHVVDQGUR&RUGHOOL *UDQGH]]HJHRPHWULFKH I concetti di grandezza e di misura appartengono all esperienza quotidiana. Detto in termini molto semplici, misurare una grandezza significa andare a vedere quante

Dettagli

LA MOLTIPLICAZIONE IN CLASSE SECONDA

LA MOLTIPLICAZIONE IN CLASSE SECONDA LA MOLTIPLICAZIONE IN CLASSE SECONDA Rossana Nencini, 2013 Le fasi del lavoro: 1. Proponiamo ai bambini una situazione reale di moltiplicazione: portiamo a scuola una scatola di biscotti (. ) e diamo la

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Autismo e teoria della mente

Autismo e teoria della mente Spiegare l autismo Università degli Studi di Milano Autismo e teoria della mente Sandro Zucchi All inizio degli anni 80, Baron-Cohen, Leslie e Frith hanno condotto un esperimento per determinare il meccanismo

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

FINESTRE INTERCULTURALI

FINESTRE INTERCULTURALI Scuola Classe 1C FINESTRE INTERCULTURALI DIARIO DI BORDO 2013 / 2014 IC Gandhi - Secondaria di primo grado Paolo Uccello Insegnante / materia lettere Data Febbraio Durata 4h TITOLO DELLA FINESTRA INTERCULTURALE

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

Equilibrio bayesiano perfetto. Giochi di segnalazione

Equilibrio bayesiano perfetto. Giochi di segnalazione Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 Teoria dei Giochi Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 1 Concetti risolutivi per i giochi in forma normale I

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only. In un mercato del lavoro competitivo esistono due tipi di lavoratori, quelli con alta produttività L A, che producono per 30 $ l'ora, e quelli con bassa produttività, L B, che producono per 5 $ l'ora.

Dettagli

Corso di Sistemi di Gestione di Basi di Dati. Esercitazione sul controllo di concorrenza 12/02/2004

Corso di Sistemi di Gestione di Basi di Dati. Esercitazione sul controllo di concorrenza 12/02/2004 Corso di Sistemi di Gestione di Basi di Dati Esercitazione sul controllo di concorrenza 12/02/2004 Dott.ssa Antonella Poggi Dipartimento di Informatica e Sistemistica Antonio Ruberti Università di Roma

Dettagli

I sottoinsiemi di un insieme e il triangolo di Tartaglia

I sottoinsiemi di un insieme e il triangolo di Tartaglia I sottoinsiemi di un insieme e il triangolo di Tartaglia 20 febbraio 205 Introduzione Consideriamo l insieme Luca Goldoni PhD Università di Trento Dipartimento di Informatica Università di Modena Dipartimento

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Progetto Lauree Scientifiche - Matematica

Progetto Lauree Scientifiche - Matematica Progetto Lauree Scientifiche - Matematica p. 1/1 Progetto Lauree Scientifiche - Matematica Università degli Studi di Perugia Liceo Donatelli - Terni Quarto Incontro 7 marzo 2007 Progetto Lauree Scientifiche

Dettagli

I colloqui scuola-famiglia: le basi per una comunicazione efficace Dott.ssa Claudia Trombetta Psicologa e psicoterapeuta claudia.trombetta@email.

I colloqui scuola-famiglia: le basi per una comunicazione efficace Dott.ssa Claudia Trombetta Psicologa e psicoterapeuta claudia.trombetta@email. I colloqui scuola-famiglia: le basi per una comunicazione efficace Dott.ssa Claudia Trombetta Psicologa e psicoterapeuta claudia.trombetta@email.it CTI Monza, 20 Novembre 2015 Prima parte: comprendere

Dettagli

Fisica Medica x OPD. Angelo Scribano (ottobre 2006) Le scienze e il metodo scientifico Fisica Medica. A. Scribano 10-06. pag.1

Fisica Medica x OPD. Angelo Scribano (ottobre 2006) Le scienze e il metodo scientifico Fisica Medica. A. Scribano 10-06. pag.1 x OPD Le trasparenze qui presentate sono in gran parte originariamente state create e utilizzate dal prof. Domenico Scannicchio nella sua lunga esperienza didattica in presso l'università di Pavia. Sono

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli