LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 2018"

Transcript

1 LABORATORIO DI FISICA Ⅰ ESPERIENZA N 3 13 DICEMBRE 018 Gruppo N 5: Salvatore Mantia, Rosario Lo Varco, Antonio Lo Varco, Silvia Tomasi, Alfredo Scelsa, Gianluca Pusateri, Alessandro Sanseverino. MISURA DEL PERIODO DI OSCILLAZIONE E DELLA COSTANTE ELASTICA DELLA MOLLA DI UN OSCILLATORE ARMONICO SEMPLICE

2 Indice 1.Introduzione all esperienza. Strumenti utilizzati.1 Cronometro digitale. Molla elicoidale.3 Pesetti 3. Analisi procedurale 3.1 Parte I 3. Parte II

3 1.INTRODUZIONE ALL ESPERIENZA L obiettivo di questa esperienza di laboratorio di fisica 1 è stato quello di misurare il periodo di oscillazione di un oscillatore armonico semplice e di determinare la costante elastica della molla elicoidale. Per la schematizzazione dei dati abbiamo usato il foglio di calcolo Microsoft Office Excel oltre alla classica strumentazione cartacea; per l analisi della costruzione grafica è stato usato il programma di rendimento grafico SciDAVis, consigliatoci dal nostro professore di Laboratorio di Fisica I Agliolo Gallitto Aurelio.. STRUMENTI UTILIZZATI.1 CRONOMETRO DIGITALE - Il cronometro è uno strumento digitale con un errore strumentale δ x = 0.01 [s].. MOLLA ELICOIDALE - La molla è un corpo capace di allungarsi se gli viene applicata una determinata forza e in seguito tornare alla propria forma naturale..3 PESETTI - Sono stati utilizzati pesi di massa differente (da 5 a 0g). 3. ANALISI PROCEDURALE Parte I Procediamo agganciando una combinazione di pesi dalla massa complessiva di 50g alla molla fissata su un supporto verticale. Ognuno dei 7 componenti del gruppo misura, servendosi del cronometro digitale, il tempo corrispondente a dieci oscillazioni e ripete l operazione per n = 0 volte, ottenendo così un totale di N = 140 misurazioni.

4 Riportiamo i dati ottenuti da ciascun operatore in un istogramma e ne calcoliamo graficamente il valore medio e la deviazione standard confrontandoli poi con i rispettivi valori calcolati analiticamente. Gli istogrammi sono stati costruiti attraverso il programma SciDAVis con la stessa scala e la stessa dimensione per rendere possibile il confronto diretto. Per scegliere la stessa scala abbiamo considerato i valori massimo e minimo tra tutti i set di dati e diviso la differenza tra questi due valori per il numero di intervalli, posto arbitrariamente a 5 per ottenere una lunghezza degli intervalli di dispersione multiplo di 5: Val. Max Val. Min Intervallo di dispersione = = = 0.05 secondi Numero di intervalli 5 Per il calcolo grafico del valore medio prendiamo il valore che sull istogramma lascia a destra e sinistra il 50% delle misure. Per il calcolo grafico della deviazione standard tracciamo una retta orizzontale a metà del valore più frequente, l intervallo intercettato corrisponde a due volte l errore di precisione. Per i calcoli analitici utilizzeremo le seguenti formule applicate sui dati inseriti nel foglio di calcolo Excel: per il valore medio: x = 1 n n i=1 0 x i = 1 0 dove a n abbiamo sostituito il numero di ripetizioni; per il calcolo analitico della deviazione standard utilizziamo invece la formula: i=1 σ x = n i=1 (x i x ) (n 1) x i

5 Set 1) Graficamente Valore medio: 6,65 s Deviazione standard: 6,70 6,55 = 0,075 s 0.08 s Analiticamente Valore medio: 6.64 s Deviazione standard: 0.05 s

6 Set ) Graficamente Valore medio: 6,65 s Deviazione standard: 6,70 6,65 = 0,05 s 0.03 s Analiticamente Valore medio: 6.64 s Deviazione standard: 0.05 s

7 Set 3) Graficamente Valore medio: 6,65 s Deviazione standard: 6,70 6,60 = 0,05 s Analiticamente Valore medio: 6.64 s Deviazione standard: 0.04 s

8 Set 4) Graficamente Valore medio: 6,60 s Deviazione standard: 6,60 6,50 = 0,05 s Analiticamente Valore medio: 6.57 s Deviazione standard: 0.05 s

9 Set 5) Graficamente Valore medio: 6,65 s Deviazione standard: 6,65 6,60 = 0,05 s 0.03 s Analiticamente Valore medio: 6.63 s Deviazione standard: 0.04 s

10 Set 6) Graficamente Valore medio: 6,60 s Deviazione standard: 6,60 6,55 = 0,05 s 0.03s Analiticamente Valore medio: 6.58 s Deviazione standard: 0.04 s

11 Set 7) Graficamente Valore medio: 6,65 s Deviazione standard: 6,70 6,55 = 0,075 s 0.08 s Analiticamente Valore medio: 6.6 s Deviazione standard: 0.05 s Confrontando i risultati ottenuti analiticamente con quelli estrapolati graficamente, verifichiamo che sono consistenti. Possiamo osservare che scegliendo un numero maggiore di intervalli di dispersione i risultati ottenuti graficamente sarebbero stati più vicini a quelli determinati analiticamente.

12 Osservando l istogramma dei dati complessivi, osserviamo che il valore medio ottenuto graficamente di 6,65 s combacia con il valore medio delle misurazioni di 5 operatori su 7. La deviazione standard calcolata graficamente ha un valore di 6,70 6,55 = 0,075 s 0.08 s come su 7 valori di deviazione standard calcolata sugli istogrammi degli operatori. In ogni caso gli intervalli di dispersione in cui ricadono più misure negli istogrammi relativi a ciascun operatore sono 3, [6.55; 6.60[, [6.60; 6.65[, [6.65; 6.70[ e sono gli stessi tre intervalli che nell istogramma dei dati complessivi contengono più del 50% delle misure totali. Analiticamente per tutti i valori complessivi il valore medio risulta 6.6 s, mentre la deviazione standard è 0.05 s in linea con i risultati determinati sui diversi set. Riportiamo i risultati dell analisi dei singoli istogrammi fatta in precedenza: Valore medio T 10 Deviazione standard σ T10 1 Set-Alessandro 6,635 0,050 Set-Alfredo 6,64 0,049 3 Set-Antonio 6,64 0,040 4 Set-Gianluca 6,574 0,045 5 Set-Rosario 6,66 0,036 6 Set-Salvatore 6,580 0,04 7 Set-Silvia 6,616 0,051

13 Inseriamo di seguito la tabella con i set di misurazioni effettuate da ciascun operatore: 1 - Alessandro - Alfredo 3 - Antonio 4 - Gianluca 5 - Rosario 6 - Salvatore 7 - Silvia 1 6,59 6,63 6,66 6,6 6,56 6,66 6,59 6,66 6,66 6,66 6,6 6,6 6,53 6,50 3 6,66 6,63 6,69 6,53 6,63 6,56 6,57 4 6,60 6,57 6,60 6,57 6,60 6,57 6,53 5 6,69 6,57 6,60 6,53 6,69 6,59 6,56 6 6,6 6,57 6,65 6,50 6,60 6,60 6,66 7 6,59 6,6 6,60 6,59 6,69 6,56 6,59 8 6,59 6,69 6,66 6,56 6,63 6,66 6,6 9 6,65 6,66 6,60 6,6 6,63 6,63 6, ,63 6,66 6,60 6,69 6,63 6,60 6, ,57 6,7 6,54 6,59 6,59 6,59 6,6 1 6,66 6,66 6,66 6,54 6,63 6,50 6,6 13 6,59 6,57 6,65 6,50 6,69 6,56 6, ,54 6,66 6,63 6,60 6,65 6,56 6, ,68 6,66 6,70 6,56 6,6 6,53 6, ,65 6,75 6,66 6,56 6,60 6,59 6,6 17 6,66 6,66 6,66 6,56 6,66 6,53 6, ,63 6,65 6,66 6,59 6,59 6,59 6, ,75 6,65 6,69 6,59 6,6 6,6 6,66 0 6,69 6,60 6,66 6,56 6,59 6,56 6,66 Consideriamo il periodo di oscillazione T del sistema massa-molla il valore medio T10 di tutte le misurazioni effettuate diviso 10: questo valore andrà approssimato secondo il suo l errore assoluto δt. Iniziamo determinando l errore assoluto delle 10 oscillazioni δt10 secondo la formula: δ T10 = deviazione standard della media + errore strumentale = σ T 10 N L errore introdotto dalla deviazione standard della media non può essere inferiore all errore strumentale, dato che nel calcolo complessivo dei 140 valori la deviazione standard della media è pari a 0,004 s, essa risulta minore dell errore strumentale, per tanto la considereremo uguale all errore strumentale: δ T10 = = 0.0 s Avremo per le dieci oscillazioni un periodo T 10 = (6,6 ± 0.0) s L errore assoluto δ T = δ T10 = δ T T10 1 = 0.00 s T Di conseguenza il valore del periodo di una singola oscillazione è: T = T ± δ T = (0.66 ± 0.00) s

14 Parte II Procediamo agganciando 5 masse differenti e ripetiamo le operazioni di 0 misure del periodo di 10 oscillazioni per ognuna delle 5 masse. E calcoliamo il valore medio e la deviazione standard della media di ogni serie di misurazioni utilizzando le stesse formule della parte I. Valore medio: Deviazione standard della media: x = 1 n n i=1 0 x i = 1 0 i=1 x i δ x = n i=1 (x i x ) n(n 1) Riportiamo misurazioni e risultati nella seguente tabella; Set 0 g (Antonio) Set 40 g (Rosario) Set 60 g (Antonio) Set 80 g (Rosario) Set 100 g (Rosario) 3,78 5,94 7,18 8,46 9, 3,78 5,94 7,8 8,44 9,38 3,69 5,94 7,15 8,8 9,8 3,60 6,03 7, 8,41 9, 3,71 6,03 7,16 8,8 9,5 3,60 6,06 7,15 8,40 9,31 3,80 5,97 7,15 8,35 9,5 3,75 5,94 7,16 8,41 9,5 3,7 6,00 7,14 8,41 9,8 3,6 5,94 7,0 8,38 9, 3,75 5,94 7,15 8,31 9,8 3,78 6,00 7,0 8,35 9,5 3,80 6,00 7, 8,41 9,5 3,65 5,97 7,5 8,8 9,34 3,80 5,94 7,15 8,35 9,8 3,6 6,60 7,0 8,34 9,5 3,6 5,97 7,19 8,8 9,8 3,71 5,97 7,0 8,34 9,38 3,60 5,88 7,16 8,38 9,31 T 10 3,63 6,10 7,18 8,34 9,8 T 10 Medio 3,70 6,01 7,18 8,36 9,8 Dev. ST. σ T10 0,08 0,15 0,04 0,06 0,05 Dev. ST. Media 0,0 0,03 0,01 0,01 0,01

15 Err. Ass. δ T10 0,03 0,04 0,0 0,0 0,0 Infine riportiamo i valori riferiti alle singole oscillazioni in cui abbiamo aggiunto anche i risultati delle misurazioni della parte I: n T best [s] Errore assoluto δt [s] m [g] 1 0,370 0, ,601 0, ,66 0, ,7185 0, ,836 0, ,98 0, Calcoliamo I valori della frequenza angolare come segue; ω = π T best Dove Tbest è il valore medio del periodo riferito ad una singola oscillazione. I risultati sono: m [g] ω [1/s] δ ω [1/s] ,98 0, ,46 0, ,49 0, ,75 0, ,5 0, ,77 0,015 L errore assoluto di omega è stato calcolato seguendo le regole di propagazione degli errori come di seguito; δ ω = ε ω ω = ε 1 ω = ε T ω = δ T ω T best T best Utilizzando il programma SciDAVis tracciamo il grafico in scala log-log della frequenza angolare in funzione della massa, e con il metodo della massima e minima pendenza verifichiamo che la loro relazione funzionale sia r = 1 = 0.5 come nella formula ω = k m Troviamo i valori delle pendenze delle rette di massima e di minima pendenza, da cui ricavare il valore best di r best e l errore δ r ad esso associato con il seguente procedimento:

16 r best = r max + r min { δ r = r max r min x Scegliamo quindi due punti appartenenti a ciascuna retta di coordinate (x 1; y 1 ) e (x ; y ) e si calcola il rapporto r = ln y y y = 1 x ln x x 1 Tracciando le due rette, abbiamo escluso il primo punto perché si trova di molto fuori dalla retta che congiunge gli altri punti. Il punto e le misure relative al primo set di misurazioni(0g) verranno escluse per tutta la seguente trattazione in quanto appare evidente che siano stati introdotti errori in fase di misurazione del periodo in laboratorio.

17 Pertanto, con l ausilio del programma SciDAVis determiniamo i punti P 1 (19; 14.6) e P (105; 6.7) per il calcolo del coefficiente angolare della retta di massima pendenza. Per la retta di minima pendenza determiniamo invece i punti Q 1 (19; 15.4) ed il punto Q (105; 6.6). I valori che si ottengono dall analisi grafica sono; r max = log 6.7 log 14.6 log 105 log 19 = [ 1 g s ] r { min = Sostituendo i valori trovati possiamo calcolare: { log 6.6 log 15.4 log 105 log 19 = [ 1 g s ] r best = δ k = = [ 1 g s ] = 0.0 [ 1 g s ] Essendo r = ( 0.48 ± 0.0) [ 1 ] abbiamo verificato che il valore della relazione funzionale g s tra frequenza angolare e massa che abbiamo calcolato e quello che ci aspettavamo sono consistenti.

18 Per determinare il valore di K tracciamo le rette di massima e minima intercetta assumendo che la pendenza sia -0.5 operazione giustificata dal risultato precedente. Sapendo che il valore della frequenza angolare ω letto per m=100 equivale a ω = k 10, otteniamo k = 100ω Per la retta di massima intercetta k max = 100ω = 4761 [ g s ] Per la retta di minima intercetta k min = 100ω = 45 [ g s ] Per determinare la migliore stima del valore di k usiamo la semisomma dei due valori, e gli associamo un incertezza definita dalla semidispersione: k = k max + k min δ k = k max k min Per cui: k = (4500 ± 300) [ g s ] = = = 4493 [ g s ] = [ g s ]

19 Adesso, applicando la procedura di linearizzazione e utilizzando SciDAVis tracciamo il grafico lineare da cui ricaviamo alternativamente il valore della costante elastica k e la sua indeterminazione per poi confrontare i risultati con il metodo appena utilizzato. Procedura di linearizzazione: ω = k m ω = k m 4π T = k m k = m z Dove abbiamo posto z = T 4π. Calcoliamo anche l errore assoluto δz come segue: δ z = ε z z = ε T z = δ T T z Ottenendo i seguenti dati in tabella: n m[g] Coefficiente z[s ] Errore assoluto δz[s ] 1 0 0, , , , , , , , , , ,0180 0,00010

20 Il coefficiente di proporzionalità rappresenta la costante k. Graficamente il valore di k corrisponde alla pendenza della retta di best fit, che determiniamo con il metodo delle rette di massima e minima pendenza utilizzato in precedenza sul grafico in scala log-log ma seguendo il procedimento lineare: k best = k max + k min { δ k = k max k min Prendiamo due punti appartenenti a ciascuna retta di coordinate (x 1 ;y 1 ) e (x ; y ) e si calcola il rapporto k = y x = y y 1 x x 1 Determiniamo con l ausilio di SciDAVis i punti P 1 (0; -5) e P (0.05; 117) per la retta di massima pendenza ed i punti Q 1 (0;0) e Q (0.05; 113) per la retta di minima pendenza.

21 I valori che otteniamo sono; k max = 117 ( 5) = 4880 [ g s ] { k min = = 450 [ g s ] Calcolando semisomma e semidispersione otteniamo: k best = = 4700 [ g { s ] δ k = = [ g s ] Il risultato è: k = (4700 ± 00) [ g s ] Confrontando il risultato appena ottenuto con quello ottenuto attraverso la scala log-log: k = (4500 ± 300) [ g s ] verifichiamo che i due valori sono consistenti tra loro. Gli errori assoluti dei due valori sono anch essi dello stesso ordine di grandezza, benché la loro differenza in percentuale è maggiore.

TARATURA DI UNA BILANCIA DINAMOMETRICA

TARATURA DI UNA BILANCIA DINAMOMETRICA LABORATORIO DI FISICA Ⅰ ESPERIENZA N 9 Novembre 018 Gruppo N 5: Salvatore Mantia, Rosario Lo Varco, Antonio Lo Varco, Silvia Tomasi, Alfredo Scelsa, Gianluca Pusateri, Alessandro Sanseverino. TARATURA

Dettagli

Laboratorio di Fisica I Anno Accademico

Laboratorio di Fisica I Anno Accademico Laboratorio di Fisica I Anno Accademico 018-019 Relazione terza esperienza di Laboratorio Giorgio Campione Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico

Dettagli

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice.

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice. Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice. Esperienza n.3 13 Dicembre 2018 Gruppo 9: Gucciardo Gloria; Mazzola Luca Rosario; Nolfo Gloria;

Dettagli

RELAZIONE DI LABORATORIO DI FISICA

RELAZIONE DI LABORATORIO DI FISICA RELAZIONE DI LABORATORIO DI FISICA ANNO ACCADEMICO 2017/2018 Esperienza di laboratorio n 3 20/11/17 Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Dettagli

RELAZIONE DI LABORATORIO DI FISICA

RELAZIONE DI LABORATORIO DI FISICA RELAZIONE DI LABORATORIO DI FISICA ANNO ACCADEMICO 2017/2018 Esperienza di laboratorio n 3 20/11/17 Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Dettagli

LABORATORIO DI FISICA I

LABORATORIO DI FISICA I UNIVERSITA DEGLI STUDI DI PALERMO CORSO DI LAUREA IN SCIENZE FISICHE A.A. 2018/2019 13 Dicembre 2018 LABORATORIO DI FISICA I RELAZIONE TERZA ESPERIENZA DI LABORATORIO GRUPPO 1 Nigrelli Giulia Valenti Giuseppe

Dettagli

1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL DICEMBRE 2017 GRUPPO N.3

1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL DICEMBRE 2017 GRUPPO N.3 1 RELAZIONE DELL ESPERIENZA DI LABORATORIO N.3 DEL 14-18 DICEMBRE 2017 GRUPPO N.3 COMPONENTI DEL GRUPPO: 1. Castronovo Pietro 2. Giuffrè Jasmine 3. Nicoletti Gabriele 4. Palladino Pietro 5. Pellicane Francesco

Dettagli

Laboratorio di Fisica I - A.A. 2017/2018. Relazione dell esperienza N. 3

Laboratorio di Fisica I - A.A. 2017/2018. Relazione dell esperienza N. 3 Laboratorio di Fisica I - A.A. 2017/2018 Relazione dell esperienza N. 3 Titolo Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Gruppo 9 Faddetta

Dettagli

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Crisafulli Paride Curseri Federica Raia Salvatore Torregrossa M. Roberto Valerio Alessia Zarcone

Dettagli

Laboratorio di Fisica I A.A. 2018/ /12/2018

Laboratorio di Fisica I A.A. 2018/ /12/2018 Laboratorio di Fisica I A.A. 2018/2019 13/12/2018 Esperienza N.3 Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Gruppo n.2 Bozzotta Riccardo

Dettagli

MISURA DEL PERIODO DI OSCILLAZIONE E DELLA COSTANTE ELASTICA DELLA MOLLA DI UN OSCILLATORE ARMONICO SEMPLICE PRIMA PARTE

MISURA DEL PERIODO DI OSCILLAZIONE E DELLA COSTANTE ELASTICA DELLA MOLLA DI UN OSCILLATORE ARMONICO SEMPLICE PRIMA PARTE Esperienza n.3 MISURA DEL PERIODO DI OSCILLAZIONE E DELLA COSTANTE ELASTICA DELLA MOLLA DI UN OSCILLATORE ARMONICO SEMPLICE PRIMA PARTE Gruppo 4: Vittoria Ciraulo, Carlotta Miceli, Federico Billeci, Anna

Dettagli

Gruppo 13 ~INDICE~ Di Benedetto Enrico, Franzella Elia, Guttilla Mattia, Nicoletti Gabriele, Tumbiolo Emanuele

Gruppo 13 ~INDICE~ Di Benedetto Enrico, Franzella Elia, Guttilla Mattia, Nicoletti Gabriele, Tumbiolo Emanuele RELAZIONE LABORATORIO ESPERIENZA III ~MISURA DEL PERIODO DI OSCILLAZIONE E DELLA COSTANTE ELASTICA DELLA MOLLA DI UN OSCILLATORE ARMONICO SEMPLICE~ ANNO ACCADEMICO 2018-2019 Gruppo 13 Di Benedetto Enrico,

Dettagli

(ANDREA PIPITONE, BENEDETTO LUCIANO, DAVIDE LUCIANO, ALEX FRUSTERI) ESPERIENZA III: Misura del periodo di oscillazione e della costante elastica

(ANDREA PIPITONE, BENEDETTO LUCIANO, DAVIDE LUCIANO, ALEX FRUSTERI) ESPERIENZA III: Misura del periodo di oscillazione e della costante elastica GRUPPO 2 (ANDREA PIPITONE, BENEDETTO LUCIANO, DAVIDE LUCIANO, ALEX FRUSTERI) ESPERIENZA III: Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Dettagli

Taratura di una bilancia dinamometrica

Taratura di una bilancia dinamometrica Laboratorio di Fisica 1 Modulo 1 Anno Accademico 2018/2019 Esperienza di laboratorio n 2 Taratura di una bilancia dinamometrica GRUPPO 10 Alfano Roberto Broccolo Rita Di Gregorio Giusy Adriana Ingrasciotta

Dettagli

Relazione di laboratorio: Esperienza III. Gruppo 11 A.A. 2017/2018

Relazione di laboratorio: Esperienza III. Gruppo 11 A.A. 2017/2018 Relazione di laboratorio: Esperienza III Roberto Battaglia Fabio Tortora Eugenio Sapia Sebastiano Mirabile Alberto Ferrara Gruppo 11 A.A. 2017/2018 1 Introduzione L'esperienza condotta prevedeva lo studio

Dettagli

Elaborazione dei dati sperimentali. Problemi di Fisica

Elaborazione dei dati sperimentali. Problemi di Fisica Problemi di Fisica Elaborazione dei dati sperimentali Nella seguente tabella riportiamo alcune regole per esprimere ualunue numero mediante una potenza di 0: 00000000 = 0 9 456789 = 45,6789 0 4 3, = 0,3

Dettagli

Taratura di una bilancia dinamometrica

Taratura di una bilancia dinamometrica Taratura di una bilancia dinamometrica Relazione dell esperienza di laboratorio n del 03/1/018 GRUPPO n 9 Componenti del gruppo: Gucciardo Gloria Mazzola Luca Rosario Nolfo Gloria Scordato Iacopo Treppiedi

Dettagli

Laboratorio di Fisica I A.A. 2018/2019

Laboratorio di Fisica I A.A. 2018/2019 Laboratorio di Fisica I A.A. 2018/2019 29/11/2018 Esperienza N.2 Taratura di una bilancia dinamometrica Gruppo n.2 Bozzotta Riccardo Di Paola Guido Greco Federico Marino Francesco Pennino Pietro Sacco

Dettagli

Taratura di una bilancia dinamometrica

Taratura di una bilancia dinamometrica Taratura di una bilancia dinamometrica Crisafulli Paride Curseri Federica Raia Salvatore Torregrossa M. Roberto Valerio Alessia Zarcone Dario 30 Novembre 2017 Indice 1 Scopo 1 2 Strumentazione 2 3 Analisi

Dettagli

Relazione di Laboratorio di Fisica I Anno Accademico 2018/2019

Relazione di Laboratorio di Fisica I Anno Accademico 2018/2019 Valutazione: A Relazione di Laboratorio di Fisica I Anno Accademico 018/019 Esperienza di laboratorio n 9 Novembre 018 Taratura di una bilancia dinamometrica Gruppo n 8 Giuseppe A. Motisi Salvatore Muratore

Dettagli

Laboratorio di fisica I

Laboratorio di fisica I Laboratorio di fisica I Relazione esperienza n.1 MISURAZIONE DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE 13/11/2018 Bozzotta Riccardo Di Paola Guido Greco Federico Marino Francesco Pennino Pietro

Dettagli

RELAZIONE DI LABORATORIO DI FISICA

RELAZIONE DI LABORATORIO DI FISICA RELAZIONE DI LABORATORIO DI FISICA ANNO ACCADEMICO 017/018 Esperienza di laboratorio n 1 0/11/17 Misura della densità di solidi omogenei di forma regolare GRUPPO N 10 Componenti del gruppo: Cirincione

Dettagli

Esperienza n 1. Misura della densità di cilindri cavi

Esperienza n 1. Misura della densità di cilindri cavi Gruppo n 5: Domenico Sabato, Giorgia Di Vara, Vito Vetrano, Luigi Galuffo, Alessandro Crapa. Esperienza n 1 Misura della densità di cilindri cavi Obiettivo dell esperienza - Determinare la densità di cilindri

Dettagli

Misura della densità di solidi omogenei di forma regolare.

Misura della densità di solidi omogenei di forma regolare. Misura della densità di solidi omogenei di forma regolare. Esperienza n. 1 -- 19 Novembre 018 Gruppo 9: Gucciardo Gloria; Mazzola Luca Rosario; Nolfo Gloria; Scordato Iacopo Rosario; Treppiedi Vincenzo.

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I MISURA DELLA COSTANTE ELASTICA DI UNA MOLLA E VERIFICA DELLA LEGGE DI HOOKE Scopo dell esperienza Misura

Dettagli

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.2 DEL 04 DICEMBRE 2017 GRUPPO N.3

RELAZIONE DELL ESPERIENZA DI LABORATORIO N.2 DEL 04 DICEMBRE 2017 GRUPPO N.3 RELAZIONE DELL ESPERIENZA DI LABORATORIO N. DEL 04 DICEMBRE 017 GRUPPO N.3 COMPONENTI DEL GRUPPO: 1. Castronovo Pietro. Giuffrè Jasmine 3. Nicoletti Gabriele 4. Palladino Pietro 5. Pellicane Francesco

Dettagli

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Gruppo 6: Favitta, Ferrara, Morvillo, Tortorici, Vitale Svolta il 19/12/17 e il 21/12/17 Parte

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 014/15 3B Appunti sulla Rappresentazione grafica ed Elaborazione dei Dati Sperimentali Riccardo Fabbri 1 (Dispense ed esercizi su

Dettagli

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE

MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE MISURA DELLA DENSITA DI SOLIDI OMOGENEI DI FORMA REGOLARE Esperienza di laboratorio di Fisica n 1 GRUPPO n 1 Umberto La Mantia Loredana Alicata Alessio Ilari Alessia La Barbiera Andrea Gambino 0/11/017

Dettagli

LABORATORIO DI FISICA I A.A ESPERIENZA II 30/11/2017 GRUPPO 11. Taratura di una bilancia dinamometrica

LABORATORIO DI FISICA I A.A ESPERIENZA II 30/11/2017 GRUPPO 11. Taratura di una bilancia dinamometrica LABORATORIO DI FISICA I A.A. 2017-2018 ESPERIENZA II 30/11/2017 GRUPPO 11 Taratura di una bilancia dinamometrica Fabio Tortora Sebastiano Mirabile Eugenio Sapia Alberto Ferrara 1. Obiettivo dell'esperienza

Dettagli

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g.

Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Studio delle oscillazioni del pendolo semplice e misura dell accelerazione di gravita g. Abstract (Descrivere brevemente lo scopo dell esperienza) In questa esperienza vengono studiate le proprieta del

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I MISURA DEL PERIODO DI OSCILLAZIONE DI UN PENDOLO SEMPLICE E STIMA DEL VALORE DI g Scopo dell esperienza

Dettagli

Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione

Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione Statistica Esercitazione alessandro polli facoltà di scienze politiche, sociologia, comunicazione Obiettivo Esercizio 1. Questo e alcuni degli esercizi che proporremo nei prossimi giorni si basano sul

Dettagli

Lezione 6. Tabelle funzionali. Utilizziamo il nostro sistema a portata di mano e ben controllabile

Lezione 6. Tabelle funzionali. Utilizziamo il nostro sistema a portata di mano e ben controllabile Tabelle funzionali Riguardano dati in cui si vuole verificare una relazione tra più grandezze. Si organizzano le tabelle delle migliori stime delle coppie di grandezze e delle rispettive incertezze totali.

Dettagli

Misura della costante elastica di una molla

Misura della costante elastica di una molla 1 Misura della costante elastica di una molla Premessa Se si applica una forza F ad una molla inizialmente a riposo, essa si estende, o si comprime, di una lunghezza l fino a raggiungere una nuova posizione

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

RELAZIONE LABORATORIO ESPERIENZA II ~TARATURA DI UNA BILANCIA DINAMOMETRICA~ ANNO ACCADEMICO

RELAZIONE LABORATORIO ESPERIENZA II ~TARATURA DI UNA BILANCIA DINAMOMETRICA~ ANNO ACCADEMICO RELAZONE LABORATORO ESPERENZA ~TARATURA D UNA BLANCA DNAMOMETRCA~ ANNO ACCADEMCO 2018-2019 Gruppo 13 Di Benedetto Enrico, Franzella Elia, Guttilla Mattia, Nicoletti Gabriele, Tumbiolo Emanuele ~NDCE~ 1.

Dettagli

Metodo dei Minimi Quadrati. Dott. Claudio Verona

Metodo dei Minimi Quadrati. Dott. Claudio Verona Metodo dei Minimi Quadrati Dott. Claudio Verona E in generale interessante studiare l andamento di una variabile in funzione di un altra e capire se c è una funzione matematica che le lega. Viceversa è

Dettagli

LABORATORIO DI FISICA I A.A ESPERIENZA 1 21/11/2017

LABORATORIO DI FISICA I A.A ESPERIENZA 1 21/11/2017 LABORATORIO DI FISICA I A.A. 2017-2018 ESPERIENZA 1 21/11/2017 Misura della densità di solidi omogenei di forma regolare Sebastiano Mirabile Eugenio Sapia Fabio Tortora Alberto Ferrara introduzione L'esperimento

Dettagli

Relazione di Laboratorio di Fisica

Relazione di Laboratorio di Fisica 1 UNIVERSITÀ DEGLI STUDI DI PALERMO Relazione di Laboratorio di Fisica 5 Esperienza di laboratorio 3: 13/12/18 Gruppo 4: Christian Chiappara Antonio Martino Gabriele Pecoraro Alessandro Roancino 10 1.

Dettagli

Andrea Gambino Loredana Alicata Umberto La Mantia Alessia La Barbiera Alesso Ilari

Andrea Gambino Loredana Alicata Umberto La Mantia Alessia La Barbiera Alesso Ilari ESPERIENZA DI LABORATORIO N 2 Taratura di una bilancia dinamometrica Gruppo n 1 Andrea Gambino Loredana Alicata Umberto La Mantia Alessia La Barbiera Alesso Ilari Introduzione ed obiettivo : L esperimento

Dettagli

x + 2y = 3 3x + 4y = 7 ; v 2 = Determinare x ed y in modo tale che si abbia x v 1 + y v 2 = v 3. (c) Sia A la matrice ( 1

x + 2y = 3 3x + 4y = 7 ; v 2 = Determinare x ed y in modo tale che si abbia x v 1 + y v 2 = v 3. (c) Sia A la matrice ( 1 . (a) Risolvere il sistema lineare x + 2y x + 4y 7 (b) Siano v, v 2 e v i vettori v ( ) ; v 2 ( ( 2 ; v 4) 7) Determinare x ed y in modo tale che si abbia x v + y v 2 v. (c) Sia A la matrice ( ) 2 4 e

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Le forze. Problemi di Fisica

Le forze. Problemi di Fisica Problemi di Fisica Riconosci quali delle seguenti tabelle rappresentano grandezze direttamente proporzionali e quali no. X 2 4 6 8 Y 1/2 1 3/2 2 X 2 4 8 16 Y 3 6 9 16 X 0,1 0,2 0,3 0,4 Y 1/2 1 3/2 2 Due

Dettagli

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata.

LEGGE DI HOOKE. Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. LEGGE DI HOOKE Obiettivi: 1. Calcolare in che modo varia l allungamento di una molla elicoidale in funzione della massa applicata. 2. Individuare la costante di rigidità della molla k. 3. Applicare ai

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Appunti di statistica ed analisi dei dati

Appunti di statistica ed analisi dei dati Appunti di statistica ed analisi dei dati Indice generale Appunti di statistica ed analisi dei dati...1 Analisi dei dati...1 Calcolo della miglior stima di una serie di misure...3 Come si calcola μ...3

Dettagli

ESERCITAZIONE SULLE RETTE CON DERIVE

ESERCITAZIONE SULLE RETTE CON DERIVE ESERCITAZIONE SULLE RETTE CON DERIVE Dati i punti : A (,) B (6,-) C (-3,-3) determinare:. il perimetro del triangolo avente come vertici i punti A,B,C. l area del triangolo avente come vertici i punti

Dettagli

Introduzione all esperienza

Introduzione all esperienza Misura della densità di solidi omogenei di forma regolare Gruppo 6: Favitta, Ferrara, Morvillo, Tortorici, Vitale Svolta il 21/11/17 Part I Introduzione all esperienza Fra le tante esperienze che uno studente

Dettagli

UNIVERSITÀ DEL SALENTO

UNIVERSITÀ DEL SALENTO UNIVERSITÀ DEL SALENTO FACOLTÀ DI SCIENZE MMFFNN Corso di Laurea in Fisica CORSO DI LABORATORIO I VERIFICA DELLE LEGGI DEL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Scopo dell esperienza Analisi del moto

Dettagli

Osservazioni e Misura. Teoria degli errori

Osservazioni e Misura. Teoria degli errori Osservazioni e Misura ella misura di una grandezza fisica gli errori sono inevitabili. Una misura non ha significato se non viene stimato l errore. Teoria degli errori La teoria degli errori cerca di trovare

Dettagli

S± S [cm 2 ] h± h [cm] 79±3 12,7±0,2 201±5 5,0±0,2 314±6 3,2±0,2 452±8 2,2±0,2

S± S [cm 2 ] h± h [cm] 79±3 12,7±0,2 201±5 5,0±0,2 314±6 3,2±0,2 452±8 2,2±0,2 SOLUZIONI VERIFICA A CLASSI I^L I^F- I^D TESTO Supponiamo di avere svolto il seguente esperimento: si sono presi 4 cilindri di vetro di diametro diverso e si è versato in ciascuno di essi SEMPRE 1 LITRO

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2016-17 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Nomi degli studenti:......... Data:... Introduzione L'obiettivo

Dettagli

Con l Europa, investiamo nel vostro futuro LICEO CLASSICO R. BONGHI (SEZIONE SCIENTIFICA ANNESSA)

Con l Europa, investiamo nel vostro futuro LICEO CLASSICO R. BONGHI (SEZIONE SCIENTIFICA ANNESSA) Unione Europea Fondo Sociale Europeo P.O.N. Competenze per lo sviluppo Ministero della Pubblica Istruzione Dipartimento per la Programmazione Direzione Generale per gli Affari Internazionali Ufficio V

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Note su esperienza di misura della densita di un solido

Note su esperienza di misura della densita di un solido Note su esperienza di misura della densita di un solido 1 Distribuzione di GAUSS Distribuzione Piatta D P(entro ± s G ) = 68% 2 Parallelepipedo Spigoli: a, b, c Volume = V = a b c Massa = M Densità = r

Dettagli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli 3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli Esercizio 1: Si intende misurare la densità di un fluido tramite misure di massa e di volume. Lo si

Dettagli

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON "Competenze per lo sviluppo" Bando 2373

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON Competenze per lo sviluppo Bando 2373 CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione 2007-2013 FSE PON "Competenze per lo sviluppo" Bando 2373 26/02/2013 Piano integrato 2013 Codice progetto: C-2-FSE-2013-313

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Laboratorio di Fisica per Chimici

Laboratorio di Fisica per Chimici Laboratorio di Fisica per Chimici 13 marzo 2015 Dott. Marco Felici Ufficio: Vecchio Edificio di Fisica (Ed. Marconi)-Stanza 349 (3 piano); e-mail: marco.felici@roma1.infn.it. Telefono: 06-49914382; Sito

Dettagli

Analisi statistica delle incertezze casuali. Dott. Claudio Verona

Analisi statistica delle incertezze casuali. Dott. Claudio Verona Analisi statistica delle incertezze casuali Dott. Claudio Verona Errori casuali Errori casuali e sistematici Un errore si dice casuale se viene commesso per semplice casualità (esso può essere trattato

Dettagli

3. rappresentare mediante i grafici ritenuti più idonei le distribuzioni di frequenze assolute dei diversi caratteri;

3. rappresentare mediante i grafici ritenuti più idonei le distribuzioni di frequenze assolute dei diversi caratteri; Esercizio 1 Il corso di Statistica è frequentato da 10 studenti che presentano le seguenti caratteristiche Studente Sesso Colore Occhi Voto Soddisfazione Età Stefano M Nero 18 Per niente 21 Francesca F

Dettagli

Il sistema massa-molla

Il sistema massa-molla Esperimento 2 Il stema massa-molla idoro.sciarratta@alice.it! www.webalice.it/idoro.sciarratta in sintesi 1.Verifica della legge dell allungamento della molla; determinare, quindi, k mediante la retta

Dettagli

Misure di velocità con la guidovia a cuscino d aria (1)

Misure di velocità con la guidovia a cuscino d aria (1) Misure di velocità con la guidovia a cuscino d aria (1) Obiettivo: Riprodurre un moto con velocità costante utilizzando la guidovia a cuscino d aria. Ricavare la tabella oraria e il grafico orario (grafico

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Matematica Lezione 22

Matematica Lezione 22 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 22 Sonia Cannas 14/12/2018 Indici di posizione Indici di posizione Gli indici di posizione, detti anche misure di tendenza centrale,

Dettagli

Scappatoie. Indicherò le scappatoie per le scuole superiori, con l intestazione scappatoie in sfondo celestino. Consideriamo la regressione lineare

Scappatoie. Indicherò le scappatoie per le scuole superiori, con l intestazione scappatoie in sfondo celestino. Consideriamo la regressione lineare Scappatoie Indicherò le scappatoie per le scuole superiori, con l intestazione scappatoie in sfondo celestino. e rigore. Segnalerò con e rigore a sfondo rosso la trattazione corretta. E indicherò le parti

Dettagli

Calcolo applicato alla Statistica Maximum Likelihood

Calcolo applicato alla Statistica Maximum Likelihood Calcolo applicato alla Statistica Maximum Likelihood Problema fisico 1/2 Consideriamo un esperimento consistente nella misura, per un tempo T fissato, delle trasmutazioni nucleari (spontanee o indotte)

Dettagli

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A

Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A Alessia Bonazza Paolo Martinis Trieste, 7 aprile 004 Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. 003-004 Esercitazione 4 Per due circonferenze lungo

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

Nona lezione : Risposta : 3 ; 5 ; 3 ; 3 ( vedi Severi, cap.ii, 6 )

Nona lezione : Risposta : 3 ; 5 ; 3 ; 3 ( vedi Severi, cap.ii, 6 ) Nona lezione : Il miglior modo di riprendere i concetti espressi al primo semestre è quello di esaminare e rispondere alle domande della prova intercorso 2012-2013. Esercizio 1 : Scrivere il numero di

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

Acquisizione, rappresentazione e analisi di dati sperimentali

Acquisizione, rappresentazione e analisi di dati sperimentali Acquisizione, rappresentazione e analisi di dati sperimentali Aurelio Agliolo Gallitto Dipartimento di Fisica, Università di Palermo Introduzione Esperimenti illustrativi, per visualizzare un determinato

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

Geometria Analitica Piana.

Geometria Analitica Piana. 8 novembre 201 Geometria Analitica Piana 1 Geometria Analitica Piana. Applicazione: problema sul Parallelogramma. Quesito sulla costruzione della figura. Testo: Sono date le equazioni 3x y + = 0 e 4x +

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

francesca fattori speranza bozza gennaio 2018

francesca fattori speranza bozza gennaio 2018 DERIVATE APPLICATE ALLO STUDIO DI FUNZIONE. OM Le derivate servono a trovare eventuali massimi e minimi delle funzioni. Ho pensato questo modulo in questo modo: concetto di derivata; calcolo di una derivata

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE

STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE STATISTICA esercizi svolti su: INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 2 1 INTERPOLAZIONE PONDERATA, REGRESSIONE E CORRELAZIONE 1.1

Dettagli

TRE Università degli Studi

TRE Università degli Studi Si consideri uno specchio convesso con focale f pari a 15 cm. Si pone un oggetto verticale dritto alto 1.5 cm di fronte allo specchio. Determinare graficamente la posizione immagine dell oggetto, la sua

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

1 Rappresentazione grafica delle relazioni fra grandezze fisiche

1 Rappresentazione grafica delle relazioni fra grandezze fisiche 1 Rappresentazione grafica delle relazioni fra grandezze fisiche L indagine quantitativa di un fenomeno naturale si realizza attraverso la misura delle grandezze fisiche che lo caratterizzano; la comprensione

Dettagli

Valutazione della capacità dissipativa di un sistema strutturale

Valutazione della capacità dissipativa di un sistema strutturale Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

ESPERIENZA DI LABORATORIO N 1. 1) Misura diretta mediante tester della resistenza elettrica dei resistori R1, R2, R3 e calcolo degli errori di misura.

ESPERIENZA DI LABORATORIO N 1. 1) Misura diretta mediante tester della resistenza elettrica dei resistori R1, R2, R3 e calcolo degli errori di misura. ESPERIENZA DI LABORATORIO N. ) Misura diretta mediante tester della resistenza elettrica dei resistori R, R, R3 e calcolo degli errori di misura. Dalla misurazione diretta delle singole resistenze abbiamo

Dettagli

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi: ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente

Dettagli

STATISTICHE DESCRITTIVE Parte II

STATISTICHE DESCRITTIVE Parte II STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

Per rispondere al primo quesito è necessario avere una stima de volume della stanza, la cui base è la regione rappresentata in figura 1

Per rispondere al primo quesito è necessario avere una stima de volume della stanza, la cui base è la regione rappresentata in figura 1 Problema1 Suppletiva 2016 Soluzione 1. Per rispondere al primo quesito è necessario avere una stima de volume della stanza, la cui base è la regione rappresentata in figura 1 La regione ha un contorno

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli