Su un applicazione della formula di Eulero della trigonometria sferica nella cinematica dei corpi rigidi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Su un applicazione della formula di Eulero della trigonometria sferica nella cinematica dei corpi rigidi"

Transcript

1 Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Corso di Laurea in Matematica Su un applicazione della formula di Eulero della trigonometria sferica nella cinematica dei corpi rigidi Elena Marongiu 25 Luglio 2018

2 Introduzione Lo scopo di questa tesi è quello di dimostrare le formule che esprimono i coseni direttori dei versori di una terna solidale al corpo rigido (rispetto alla terna fissa) utilizzando la trigonometria sferica. In particolare, la dimostrazione proposta risulta essere una semplice applicazione di uno dei teoremi chiave della trigonometria sferica: il teorema del coseno (o di Eulero). slide 2 di 18

3 Richiami sulla Cinematica dei Corpi Rigidi Definizione: un corpo rigido è un sistema in cui la distanza di una qualunque coppia di punti resta costante nel tempo. Sia S un corpo rigido e siano date due terne levogire: Ωξηζ fissa, con versori e 1, e 2, e 3 ; Oxyz solidale ad S, con versori j 1, j 2, j 3. z S ζ x O y ξ Ω η slide 3 di 18

4 Richiami sulla Cinematica dei Corpi Rigidi Sia P un generico punto del sistema, allora: P Ω = (P O) + (O Ω) z ζ x P O S y ξ Ω η Siano P = (x, y, z), rispetto alla terna solidale, e O = (α, β, γ), rispetto alla terna fissa, allora: P Ω = (xj 1 + yj 2 + zj 3 ) + (αe 1 + βe 2 + γe 3 ) slide 4 di 18

5 Richiami sulla Cinematica dei Corpi Rigidi Da cui si ricavano le equazioni generali del moto di un sistema rigido libero: ξ = α + xα 1 + yα 2 + zα 3 η = β + xβ 1 + yβ 2 + zβ 3 ζ = γ + xγ 1 + yγ 2 + zγ 3 Dove gli α i, β i, γ i con i = 1, 2, 3 sono i coseni direttori di j 1, j 2, j 3 così definiti: e 1 e 2 e 3 j 1 α 1 β 1 γ 1 j 2 α 2 β 2 γ 2 j 3 α 3 β 3 γ 3 slide 5 di 18

6 Richiami sulla Cinematica dei Corpi Rigidi Da cui si ricavano le equazioni generali del moto di un sistema rigido libero: ξ = α + xα 1 + yα 2 + zα 3 η = β + xβ 1 + yβ 2 + zβ 3 ζ = γ + xγ 1 + yγ 2 + zγ 3 Dove gli α i, β i, γ i con i = 1, 2, 3 sono i coseni direttori di j 1, j 2, j 3 così definiti: e 1 e 2 e 3 j 1 α 1 β 1 γ 1 j 2 α 2 β 2 γ 2 j 3 α 3 β 3 γ 3 I coseni direttori non sono tra loro indipendenti: α 2 i + β 2 i + γ 2 i = 1 con i = 1, 2, 3 α i α h + β i β h + γ i γ h = 0 con i h (i, h = 1, 2, 3) Perciò un corpo rigido è individuato da sei gradi di libertà. slide 5 di 18

7 Richiami sulla Cinematica dei Corpi Rigidi Definizione: se i piani [ξη], [xy] sono distinti, allora si intersecano in una retta N detta linea dei nodi. Gli angoli di Eulero sono: θ (0, π), detto angolo di nutazione; ψ [0, 2π), detto angolo di precessione; φ [0, 2π), detto angolo di rotazione propria. ζ Ω η ξ slide 6 di 18

8 Richiami sulla Cinematica dei Corpi Rigidi e3 = j 3 e3 = j 3 e3 ĵ 3 θ ĵ 2 ĵ 3 = j 3 j 2 j 2 ψ θ j2 φ ĵ 2 e2 e1 ψ n = j 1 (a) Prima rotazione e2 e1 n = j 1 = ĵ1 (b) Seconda rotazione j 1 φ e1 n = j 1 = ĵ1 e2 (c) Terza rotazione In forma matriciale: cos ψ sin ψ 0 sin ψ cos ψ cos θ sin θ 0 sin θ cos θ cos φ sin φ 0 sin φ cos φ slide 7 di 18

9 Richiami sulla Cinematica dei Corpi Rigidi Quindi: ξ cos ψ sin ψ 0 η = sin ψ cos ψ cos φ sin φ 0 0 cos θ sin θ sin φ cos φ 0 x y ζ sin θ cos θ z Confrontando questo sistema con il seguente: ξ α 1 α 2 α 3 x η = β 1 β 2 β 3 y ζ γ 1 γ 2 γ 3 z slide 8 di 18

10 Richiami sulla Cinematica dei Corpi Rigidi I coseni direttori sono legati agli angoli di Eulero dalle seguenti espressioni: α 1 = cos φ cos ψ sin φ sin ψ cos θ α 2 = sin φ cos ψ cos φ sin ψ cos θ α 3 = sin ψ sin θ β 1 = cos φ sin ψ + sin φ cos ψ cos θ β 2 = sin φ sin ψ + cos φ cos ψ cos θ β 3 = cos ψ sin θ γ 1 = sin φ sin θ γ 2 = cos φ sin θ γ 3 = cos θ Intendiamo dimostrare queste formule usando un approccio diverso basato sulla trigonometria sferica. Tale approccio si basa su un osservazione che ci è stata fatta notare da prof. Borghero. slide 9 di 18

11 Trigonometria Sferica Definizione: l angolo di due archi di circonferenza, tracciati sopra una sfera di centro O e aventi un estremo A in comune, è l angolo convesso formato dai vettori unitari u, v tangenti agli archi nel punto comune. Proprietà: se gli archi appartengono a circoli massimi, l angolo dei due archi è uguale alla sezione normale del diedro dei semipiani, di origine OA, che li contengono. A v u α O α v u H K A slide 10 di 18

12 Trigonometria Sferica Definizione: si chiama triangolo sferico, la figura formata dai tre archi di circolo massimo, ciascuno minore di una semicirconferenza, che uniscono a due a due tre punti A, B, C di una sfera S, non appartenenti ad uno stesso circolo massimo. I punti A, B, C sono i vertici, gli archi ÂB, ˆBC, ĈA, sono i lati, e gli angoli formati dagli archi che concorrono in un vertice, sono gli angoli del triangolo sferico. A c α b S B β a γ C O slide 11 di 18

13 Il Teorema del Coseno Teorema del Coseno: In un triangolo sferico il coseno di un lato è uguale al prodotto del coseno degli altri due più il prodotto dei loro seni per il coseno dell angolo fra essi compreso. In simboli: cos a = cos b cos c + sin b sin c cos α c u AB α A u AC b u BA B β ubc a u CB γ u CA C slide 12 di 18

14 Espressione dei Coseni Direttori: un altra dimostrazione Consideriamo un sistema rigido e supponiamo che la terna fissa e la terna mobile rispetto ad esso abbiano origine coincidente in O. Dopodichè prendiamo una sfera unitaria S centrata in O. slide 13 di 18

15 Espressione dei Coseni Direttori α 1 = cos φ cos ψ sin φ sin ψ cos θ Per definizione α 1 = j 1 e 1, cioè α 1 = cos xξ. Per il teorema del coseno: cos xξ = cos Nx cos Nξ + sin Nx sin Nξ cos xnξ = = cos φ cos ψ + sin φ sin ψ cos(π θ) slide 14 di 18

16 Espressione dei Coseni Direttori α 1 = cos φ cos ψ sin φ sin ψ cos θ Per definizione α 1 = j 1 e 1, cioè α 1 = cos xξ. Per il teorema del coseno: cos xξ = cos Nx cos Nξ + sin Nx sin Nξ cos xnξ = = cos φ cos ψ + sin φ sin ψ cos(π θ) = α 1 = cos φ cos ψ sin φ sin ψ cos θ slide 14 di 18

17 Espressione dei Coseni Direttori β 1 = cos φ sin ψ + sin φ cos ψ cos θ Per definizione β 1 = j 1 e 2, cioè β 1 = cos xη. Per il teorema del coseno: cos xη = cos Nx cos Nη + sin Nx sin Nη cos xnη = = cos φ cos( π 2 ψ) + sin φ sin(π ψ) cos θ 2 slide 15 di 18

18 Espressione dei Coseni Direttori β 1 = cos φ sin ψ + sin φ cos ψ cos θ Per definizione β 1 = j 1 e 2, cioè β 1 = cos xη. Per il teorema del coseno: cos xη = cos Nx cos Nη + sin Nx sin Nη cos xnη = = cos φ cos( π 2 ψ) + sin φ sin(π ψ) cos θ 2 = β 1 = cos φ sin ψ + sin φ cos ψ cos θ slide 15 di 18

19 Espressione dei Coseni Direttori γ 1 = sin φ sin θ Per definizione γ 1 = j 1 e 3, cioè γ 1 = cos xζ. Per il teorema del coseno: cos xζ = cos Nx cos Nζ + sin Nx sin Nζ cos xnζ = = cos φ cos π 2 + sin φ sin π 2 cos(π 2 θ) slide 16 di 18

20 Espressione dei Coseni Direttori γ 1 = sin φ sin θ Per definizione γ 1 = j 1 e 3, cioè γ 1 = cos xζ. Per il teorema del coseno: cos xζ = cos Nx cos Nζ + sin Nx sin Nζ cos xnζ = = cos φ cos π 2 + sin φ sin π 2 cos(π 2 θ) = γ 1 = sin φ sin θ slide 16 di 18

21 Bibliografia Letteratura: F. Borghero, Sui fondamenti della trigonometria sferica, Archimede, Fase 2-3, 1987; T. Levi Civita e U. Amaldi, Lezioni di meccanica razionale e complementi alle lezioni di meccanica razionale, Volumi 1 e 2 curato da Maschio G., Cirillo N. M., Ruggeri T. Editore: Compomat, Pubblicato a Gennaio 2013 (si tratta della ristampa del celebre trattato precedentemente edito da Zanichelli); P. Biscari, T. Ruggeri, G. Saccomandi, M. Vianello, Meccanica Razionale, Springer, slide 17 di 18

22 GRAZIE PER L ATTENZIONE! slide 18 di 18

Introduzione alla cinematica dei sistemi. Angoli di Eulero

Introduzione alla cinematica dei sistemi. Angoli di Eulero Introduzione alla cinematica dei sistemi. Angoli di Eulero F. Demontis Corsi PAS 204 Cinematica dei sistemi rigidi In questo capitolo studiamo la cinematica dei sistemi rigidi formati da un numero finito

Dettagli

Meccanica. 5. Cinematica del Corpo Rigido. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Cinematica del Corpo Rigido.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Cinematica del Corpo Rigido http://campus.cib.unibo.it/252232/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. 2. 2 Si chiama numero dei gradi di libertà (GdL)

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 5/4/2018 Prova teorica - A Nome... N. Matricola... Ancona, 5 aprile 2018 1. Gradi di libertà di

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF IV Lezione TRIGONOMETRIA Dr. E. Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

IIS A.Moro Dipartimento di Matematica e Fisica

IIS A.Moro Dipartimento di Matematica e Fisica IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi

Dettagli

Meccanica Razionale 1: Primo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma

Meccanica Razionale 1: Primo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 somma Meccanica Razionale 1: Primo parziale 15.04.010 Cognome e nome:....................................matricola:......... es.1 es. es.3 somma 9 1 9 30 1. Consideriamo il seguente moto di un punto P : x =

Dettagli

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali Appunti di geometria analitica dello spazio di Fabio Maria Antoniali versione del 23 maggio 2017 1 Un po di teoria 1.1 Vettori e punti 1.1.1 Componenti cartesiane e vettoriali Fissato nello spazio un riferimento

Dettagli

Capitolo 8: introduzione alla trigonometria

Capitolo 8: introduzione alla trigonometria Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi).

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi). La geometria analitica nello spazio: punti, vettori, rette e piani esercizi 1 prof D Benetti Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi) Esercizio 1 Determina due

Dettagli

es.1 es.2 es.3 es.4 es.5 es. 6 somma Meccanica Razionale 1: Scritto Generale: Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 es. 6 somma Meccanica Razionale 1: Scritto Generale: Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 es. 6 somma 6 6 6 6 6 6 30 Meccanica Razionale 1: Scritto Generale: 07.09.2012 Cognome e nome:....................................matricola:......... Gli studenti che hanno seguito

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Nome... N. Matricola... Ancona, 13 gennaio 2018 1. Un sistema rigido piano è costituito

Dettagli

TRIGONOMETRIA. Ripasso veloce

TRIGONOMETRIA. Ripasso veloce TRIGONOMETRIA Ripasso veloce Definizioni principali Sia u un segmento con un estremo nell origine e l altro sulla circonferenza di centro l origine e raggio (circonferenza goniometrica) che formi un angolo

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Esercitazione di Meccanica Razionale 28 aprile 2011 Laurea in Ingegneria Meccanica Latina

Esercitazione di Meccanica Razionale 28 aprile 2011 Laurea in Ingegneria Meccanica Latina Esercitazione di Meccanica Razionale 28 aprile 2011 Laurea in Ingegneria Meccanica Latina Quesito 1. Siano a, b R. Si consideri la mappa g : R 3 R 3 che alla terna (x 1, x 2, x 3) R 3 associa la terna

Dettagli

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 3 Meccanica Razionale 1: Scritto Generale: 16.9.211 Cognome e nome:....................................matricola:......... 1.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 00/003 Grandezze cinetiche Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Quando si parla di diedro tra due semipiani, si intende. quello convesso (che non contiene il prolungamento. sono paralleli i rispettivi piani

Quando si parla di diedro tra due semipiani, si intende. quello convesso (che non contiene il prolungamento. sono paralleli i rispettivi piani Diedri Siano dati due semipiani nello spazio, α e β, aventi per origine la stessa retta r. Essi dividono lo spazio in due regioni, ciascuna delle quali si chiama diedro. I due semipiani sono le facce del

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angolo è una porzione di piano racchiusa

Dettagli

Goniometria e Trigonometria

Goniometria e Trigonometria Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica

Dettagli

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo Quinto modulo: Funzioni Obiettivi. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo. saper operare con le funzioni esponenziale e logaritmo per risolvere

Dettagli

Principi di trigonometria sferica

Principi di trigonometria sferica Appendice B Principi di trigonometria sferica B.1 La Sfera Celeste Per determinare la posizione di un astro in cielo in un certo istante si ricorre alla proiezione di questo su un ideale Sfera Celeste

Dettagli

FACOLTÀ DI INGEGNERIA

FACOLTÀ DI INGEGNERIA FACOLTÀ DI INGEGNERIA I-II-III ESERCITAZIONE DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 4/10/01-14/11/01-05/1/01 Fig. 1. Sistema di due aste rigide uguali, (lunghezza

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

Istituzioni ed Esercitazioni di Matematica 2

Istituzioni ed Esercitazioni di Matematica 2 Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Corso di Laurea in Chimica Istituzioni ed Esercitazioni di Matematica 2 15 Marzo 2017 Schema Quinta Lezione Comunicazioni Esercitazioni

Dettagli

3 Cinematica relativa

3 Cinematica relativa 3 Cinematica relativa 3.1 Cambiamenti di riferimento e trasformazioni ortogonali. Cominciamo questo paragrafo richiamando alcune definizioni e proprietà ben note dei cambiamenti di riferimento, più che

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

Quaderno delle esercitazioni A.A. 2018/2019 Federico Zullo

Quaderno delle esercitazioni A.A. 2018/2019 Federico Zullo Federico Zullo DICATAM, Università di Brescia Indirizzo: via Valotti 9 (piano terra), 25133 Brescia. Email: federico.zullo@unibs.it federico-zullo.unibs.it NOTA BENE: Il presente materiale è una raccolta

Dettagli

ORDINAMENTO 2003 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2003 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 3 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Nell insieme delle rette dello spazio si consideri la relazione così definita: «due rette si dicono parallele se sono complanari

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Campi conservativi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Campi conservativi Analisi Matematica B 1 / 99 Premessa Riccarda Rossi (Università di

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

MECCANICA RAZIONALE ING. MECCANICA prof. Daniele Andreucci Prova tecnica del 7/6/2016

MECCANICA RAZIONALE ING. MECCANICA prof. Daniele Andreucci Prova tecnica del 7/6/2016 I.1 MECCANICA RAZIONALE ING. MECCANICA prof. Daniele Andreucci Prova tecnica del 7/6/2016 1. Quattro punti materiali A, B, C, D di uguale massa m sono vincolati ad appartenere al piano ruotante Π(t) di

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

QUESTIONARIO FINALE DI AUTOVALUTAZIONE

QUESTIONARIO FINALE DI AUTOVALUTAZIONE QUESTIONARIO FINALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) L equazione 3 sin 2x = 2 ha, in [0,

Dettagli

15 Aprile 2016 Svolgimento della prova scritta (OA + BC)OB 2. 2(4 + k ) 2

15 Aprile 2016 Svolgimento della prova scritta (OA + BC)OB 2. 2(4 + k ) 2 Dipartimento di Matematica e Informatica Anno Accademico 015-016 Corso di Laurea in Informatica (L-1) Prova in itinere di Matematica Discreta (1 CFU) 15 Aprile 016 B1 Compito A Tempo a disposizione 10

Dettagli

Sistemi rigidi. 1. Grado di liberta di un sistema rigido libero

Sistemi rigidi. 1. Grado di liberta di un sistema rigido libero III Sistemi rigidi 1. Grado di liberta di un sistema rigido libero Dare la posizione di un sistema rigido rispetto ad una terna T e equivalente a dare la posizione di una terna T rispetto a T. Infatti

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 novembre 2004

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 9 novembre 2004 Anno Accademico 2004-2005 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 9 novembre 2004 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua (fatta

Dettagli

ELEMENTI DI CALCOLO VETTORIALE

ELEMENTI DI CALCOLO VETTORIALE ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3

Dettagli

Proprietà dei moti finiti. Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa

Proprietà dei moti finiti. Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa Proprietà dei moti finiti Ettore Pennestrì Università di Roma Tor Vergata Dipartimento di Ingegneria dell Impresa Sommario Il presente documento, redatto per gli allievi dei corsi di Prototipazione Virtuale

Dettagli

Appunti di Matematica 1 - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione

Appunti di Matematica 1 - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE IL TEOREMA DEI SENI TEOREMA In un triangolo le misure dei lati sono proporzionali ai seni degli angoli opposti. IL TEOREMA DEI SENI DIMOSTRAZIONE Consideriamo

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005 Anno Accademico 2005-2006 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 4 ottobre 2005 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua, fatta

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018. Corso di Laurea in Ingegneria Meccanica nno ccademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018 Prova teorica - Nome... N. Matricola... ncona, 21 giugno 2018 1. (i) Enunciare e dimostrare

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Meccanica. 5. Moti Relativi. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Moti Relativi.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Moti Relativi http://campus.cib.unibo.it/2423/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Cambiamento del Sistema di Riferimento 2. Trasformazione del Vettore

Dettagli

ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO

ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO).

ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO). ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO). Sviluppo dei calcoli. Si osservi la Fig. 1. La circonferenza di centro O è la traccia della sfera Σ (specchio sferico) sul piano del disegno; TT è la traccia

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Sistemi di coordinate

Sistemi di coordinate Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc)

Calcolo vettoriale. Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia

Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia Geometria piana euclidea Presentazione n. 1 Enti geometrici Prof. Daniele Ippolito Itcs Pacini di Pistoia Il metodo deduttivo in matematica In matematica ci sono dei concetti, detti termini primitivi,

Dettagli

1. Lunedì 1/10/2012, ore: 2(2) Presentazione del corso. Spazio e tempo in meccanica classica.

1. Lunedì 1/10/2012, ore: 2(2) Presentazione del corso. Spazio e tempo in meccanica classica. Registro delle lezioni di MECCANICA 2 Corso di Laurea in Matematica 8 CFU - A.A. 2012/2013 docente: Francesco Demontis ultimo aggiornamento: 20 dicembre 2012 1. Lunedì 1/10/2012, 11 13. ore: 2(2) Presentazione

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2012 2013 Esercizi Omotopia di applicazioni contiue. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Siano x, y punti di uno spazio topologico X. Si dimostri che le applicazioni

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. Si

Dettagli

GONIOMETRIA E TRIGONOMETRIA

GONIOMETRIA E TRIGONOMETRIA Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Istituzioni di Matematiche (CH-CI-MT) I o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) I o foglio di esercizi Istituzioni di Matematiche (CH-CI-MT I o foglio di esercizi ESERCIZIO 1. Si dica per quali x R si ha x 1 x + 1 3x. Svolgimento. La disuguaglianza proposta è equivalente a (3x (x 1(x + 1 (x 1(3x 0, ovvero

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 212/13 FM21 - Fisica Matematica I Soluzioni della Seconda Prova Pre-esonero [9-1-213] Esercizio 2 (a) Osserviamo che il sistema è conservativo e il potenziale

Dettagli

Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina

Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina Esercitazione di Meccanica Razionale 16 novembre 2016 Laurea in Ingegneria Meccanica Latina Quesito 1. Si consideri un cilindro rigido libero in moto rispetto a un osservatore. Sia O il punto occupato

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI Corso di Geometria, a.a. 009-010 Ing. Informatica e Automatica Esercizi VI 5 novembre 009 Leggere i Capitoli 1-18, 0-4 del libro di testo. Tralasciare il Capitolo 19 (Sottospazi affini). 1 Geometria del

Dettagli