Einstein e la meccanica quantistica: Causalità ed azione a distanza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Einstein e la meccanica quantistica: Causalità ed azione a distanza"

Transcript

1 Einstein e la meccanica quantistica: Causalità ed azione a distanza Gennaro Auletta Istituto di Filosofia - URBINO Pontificia Università Gregoriana - ROMA

2 Sommario Breve presentazione dei Principi della meccanica quantistica. Conseguenze. Esperimento mentale di Einstein, Podolsky e Rosen mirante a provare o un'azione a distanza o la fondamentale incompletezza della meccanica quantistica. Il dibattito tra Einstein, Schrödinger e Bohr come paradigma della fisica del XX secolo. Ognuno dei protagonisti fa uso di una specifica forma di ragionamento. Cenno agli esperimenti successivi e lezioni da trarre.

3 Principio di sovrapposizione Se un sistema quantistico può stare in uno stato 1> e in uno stato 2>, può stare anche in uno stato ψ> = 1> + 2> Possiamo rappresentare la cosa con dei vettori

4 Fisica classica In fisica classica tutte le quantità fisiche (energia, velocità, posizione), a parte rare e insignificanti eccezioni, sono continue. Se un corpo si muove lungo una traiettoria, mi aspetto anche che occupi tutte le posizioni intermedie della traiettoria, e conoscendo la posizione e la velocità ai punti A e B, sono anche in grado di ricostruire tutta la traiettoria.

5 Principio di quantizzazione In fisica quantistica qualsiasi quantità fisica può essere discontinua. Questo significa che, in taluni casi, il sistema quantistico può essere nella posizione A oppure nella posizione B ma in nessuna posizione intermedia. In tale caso non posso più ricostruire una traiettoria. Anzi non ho alcuna traiettoria.

6 Principio di indeterminazione Consideriamo le cose da un altro punto di vista: se so con certezza che il sistema è nella posizione A non conosco per nulla la sua velocità in quella posizione e se so con certezza che il sistema è nella posizione B non conosco per nulla la sua velocità in quella posizione. Ma questo significa che non ho traiettoria. Supponiamo invece che conosco perfettamente la velocità del sistema. A questo punto il sistema può essere sia in A, sia in B (ricordate il principio di sovrapposizione!). E di nuovo non c'è traiettoria. Quindi la conoscenza della velocità va a scapito della conoscenza della posizione e viceversa: Principio di indeterminazione.

7 Conseguenze In meccanica quantistica non posso più parlare di causalità perché per farlo devo conoscere le traiettorie delle cose. Esempio di palla che colpisce un piatto in equilibrio verticale.

8 Einstein-Podolsky-Rosen, 1935 Einstein non ha mai accettato queste conclusioni e ha tentato per mezzo di un ragionamento e di un esperimento mentale di smentire tali conseguenze.

9 Deduzione REGOLA Se posso prevedere con certezza delle proprietà di un sistema fisico e lo posso fare senza perturbarlo, questa proprietà è oggettiva e reale (Principio di realtà). CASO Se su un sistema distante non sono in grado di fare previsioni di questo tipo, ciò è dovuto ad un'azione a distanza che effettuo mentre cerco di accertarne le proprietà (Principio di separabilità). RISULTATO Perciò sistemi che non sono perturbati da tali azioni a distanza possono essere concepiti come collezioni di proprietà oggettive (non dipendenti dalle nostre azioni) e reali.

10 Esperimento mentale 1: misuriamo la posizione Ora EPR riuscivano a provare che prendendo due particelle a e b quantistiche separate da grande distanza, e supponendo che esse possano occupare soltanto le posizioni corrispondenti agli stati 1> e 2>, se misuro su a la posizione e la trovo nello stato 1>, b deve essere nello stato 2>. Qui posso prevedere con certezza che b deve essere nello stato 2> (me lo dice la MQ), e soddisfo il Principio di realtà, ma non ho perturbato in alcun modo la b, e qui soddisfo il Principio di separabilità. Quindi il fatto che la b sia nello stato 2> è una proprietà oggettiva e reale della particella b.

11 Esperimento mentale 2: misuriamo la velocità Ma se avessi misurato la velocità di a e avessi riscontrato che è in quiete, per le leggi della MQ potrei inferire che anche b è in quiete (Principio di realtà). Anche in questo caso ho raggiunto tale risultato senza perturbare b (Principio di separabilità). E quindi che la b sia in quiete è una proprietà oggettiva e reale.

12 Conclusione dell esperimento mentale Ma a questo punto la particella b avrebbe SIA una posizione, SIA una velocità perfettamente determinate e questo contraddice il principio di indeterminazione. Per cui la conclusione di EPR è che la MQ non è in grado di descrivere tutte le situazioni fisiche possibili: è incompleta.

13 Esperimento mentale per fisici Abbiamo due sistemi distanti, 1 e 2, che sono descritti dallo stato entangled + Ψ(x 1, x 2 ) = dpψ p (x 2 )ϕ p (x 1 ), ψ p ( x 2 ) e ϕ p ( x 1 ) dove denotano rispettivamente l'autofunzione dell'impulso nella rappresentazione della posizione per il sistema 2 e per il sistema 1, e x 2 e x 1 sono le posizioni di questi due sistemi

14 Misurazione dell impulso (a) Supponiamo di misurare l'impulso sul sistema 1 e di trovare l'autovalore p'. (b) Perciò tutti gli stati descritti dalla sovrapposizione si annichilano, a parte uno soltanto, cioè ψ p ' (x 2 )ϕ p ' (x 1 ) (c) E' evidente allora che si può predire con assoluta certezza che il sistema 2 sarà nello stato ψ p ' (x 2 ) (d) Ma questo è stato previsto senza in alcun modo disturbare il sistema, in conformità con l'assunzione di separabilità. (e) Quindi, come conseguenza di (c) e (d) e del principio di realtà, il sistema 2 sarà oggettivamente in queso stato indipendentemente dalla nostra misurazione sul sistema 1.

15 Nuova espansione Ora effettuiamo il secondo protocollo. Come sappiamo dalla discussione del paragrafo precedente, uno stato entangled può essere espanso anche in un'altra base. Per cui, se decidiamo di utilizzare questa volta le autofunzioni della posizione sempre nella rappresentazione della posizione, possiamo scrivere + Ψ(x 1, x 2 ) = dxψ x (x 2 )ϕ x (x 1 ), ove le autofunzioni ψ x (x 2 ) = x 2 ψ e ϕ x (x 1 ) = x 1 ϕ sono le funzioni d'onda del sistema 2 e 1, rispettivamente.

16 Misurazione della posizione (a') Supponiamo di misurare la posizione sul sistema 1 e di trovare l'autovalore x'. (b') Perciò tutti gli stati descritti dalla sovrapposizione si annichilano a parte uno soltanto, cioè ψ x ' (x 2 )ϕ x ' (x 1 ) (c') E' evidente allora che si può predire con assoluta certezza che il sistema 2 si trova nello stato ψ x ' (x 2 ) (d') Ma questo è stato previsto senza in alcun modo disturbare il sistema 2, soddisfacendo perciò l'assunzione di separabilità. (e') Quindi, come conseguenza di (c') e (d') e del principio di realtà, il sistema 2 sarà nello stato indipendentemente dalla nostra misurazione sul sistema 1.

17 Conclusione E' evidente che le conclusioni (e) e (e') dei due protocolli sperimentali (sia pure ideali) sono incompatibili con il principio di indeterminazione, perché il sistema 2 si troverebbe contemporaneamente in un autostato dell'impulso e in un autostato della posizione. Pertanto o la meccanica quantistica fornisce previsioni contraddittorie oppure non concerne proprietà individuali dei sistemi e, in quanto teoria statistica, è incompleta.

18 Induzione NEGAZIONE DEL RISULTATO Ci sono sistemi che non sono perturbati da un'azione a distanza e che non sono collezioni di proprietà indipendenti da noi e reali. CASO Se su un sistema distante non sono in grado di fare previsioni di questo tipo, ciò è dovuto ad un'azione a distanza che effettuo mentre cerco di accertarne le proprietà (Principio di separabilità). NEGAZIONE DELLA REGOLA Predizioni di questo tipo non implicano in genere alcuna forma di realtà.

19 Abduzione REGOLA Se posso prevedere con certezza delle proprietà di un sistema fisico e lo posso fare senza perturbarlo, questa proprietà è oggettiva e reale (Principio di realtà). NEGAZIONE DEL RISULTATO Ci sono sistemi che non sono perturbati da un'azione a distanza e che non sono collezioni di proprietà indipendenti da noi e reali NEGAZIONE DEL CASO L'esistenza di sistemi non perturbati non permette predizioni del tipo EPR.

20 Conclusioni Tutti gli esperimenti hanno confermato le conclusioni di Schrödinger (e di Bohr). In meccanica quantistica non si può parlare di proprietà reali senza considerare le interazioni di un sistema quantistico con altri sistemi e non si può parlare di causalità. Einstein ha avuto torto.

21 Ma Sull'articolo di Einstein sono stati scritti qualcosa come 4 milioni di articoli, è stata trovata una nuova proprietà (l'entanglement), ne sono state viste decine di conseguenze anche tecnologiche (come il teletrasporto), e si sono inventati nuovi esperimenti. In scienza e in filosofia non è sempre necessario avere ragione. Errori intelligenti aiutano spesso di più di risultati veri. E' questo che fa di un Einstein Einstein.

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

I principi della meccanica quantistica nella scuola secondaria Un contributo

I principi della meccanica quantistica nella scuola secondaria Un contributo I principi della meccanica quantistica nella scuola secondaria Un contributo Paolo Cavallo 10 marzo 2004 Sommario Si riassume una strategia per la presentazione dei principi della meccanica quantistica

Dettagli

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp.

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. RECENSIONI&REPORTS recensione Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. 154, 12 «Il vasto e importante e molto

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno Fisica quantistica Introduzione alla polarizzazione e altri sistemi a due livelli Christian Ferrari Liceo di Locarno Sommario La polarizzazione della luce e del fotone Altri sistemi a due livelli L evoluzione

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI

LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.6 ENERGIE DI IONIZZAZIONE E DISTRIBUZIONE DEGLI ELETTRONI 4.C OBIETTIVI LA STRUTTURA DELL ATOMO 4.A PRE-REQUISITI 4.B PRE-TEST 4.C OBIETTIVI 4.1 UNO SGUARDO ALLA STORIA 4.2 L ATOMO DI BOHR (1913) 4.5.2 PRINCIPIO DELLA MASSIMA MOLTEPLICITA (REGOLA DI HUND) 4.5.3 ESERCIZI SVOLTI

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

questa scienza? La sua natura e i suoi metodi

questa scienza? La sua natura e i suoi metodi Che cos è questa scienza? La sua natura e i suoi metodi di Alan F Chalmers Marisa Michelini Storia per la didattica scientifica Itinerario storico nella didattica Argomentazione critica di ipotesi alternative

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora,

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, ma la natura produce di continuo energie superiori nelle

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine

Il fotone. Emanuele Pugliese, Lorenzo Santi URDF Udine Il fotone Emanuele Pugliese, Lorenzo Santi URDF Udine Interpretazione di Einstein dell effetto fotoelettrico Esistono «particelle»* di luce: i fotoni! La luce è composta da quantità indivisibili di energia

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

FONDAMENTI DI MECCANICA QUANTISTICA

FONDAMENTI DI MECCANICA QUANTISTICA FONDAMENTI DI MECCANICA QUANTISTICA Appunti raccolti nel Dipartimento di Fisica dell Università La Sapienza di Roma a cura di Stefano Patrì. Indirizzo e-mail dell autore: seriegeo@yahoo.it 5 ottobre 008

Dettagli

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Fisica delle Particelle: esperimenti Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Il processo scientifico di conoscenza Esperimento Osservazione quantitativa di fenomeni riguardanti alcune particelle

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

Il giardino nella macchina

Il giardino nella macchina Idee per una rilettura Il giardino nella macchina La nuova scienza della vita artificiale Claus Emmeche Bollati Boringhieri, 1996 È possibile la vita artificiale? In che modo gli strumenti offerti dalla

Dettagli

2. Fabula e intreccio

2. Fabula e intreccio 2. Fabula e intreccio Abbiamo detto che un testo narrativo racconta una storia. Ora dobbiamo però precisare, all interno della storia, ciò che viene narrato e il modo in cui viene narrato. Bisogna infatti

Dettagli

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 1 1 Il sistema massa-molla: Apprendimento dei concetti relativi alle misure dirette, indirette

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Corso ECM di formazione per gli operatori addetti alla gestione del Sistema Informativo sulle Malattie Professionali (Malprof )

Corso ECM di formazione per gli operatori addetti alla gestione del Sistema Informativo sulle Malattie Professionali (Malprof ) Centro nazionale per r la Prevenzione e il Controllo delle Malattie Conferenza dei Presidenti delle Regioni e delle Province Autonome Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro Dipartimento

Dettagli

Filomena Maggino, L analisi dei dati nell indagine statistica. Volume 1: la realizzazione dell indagine e l analisi preliminare dei dati, ISBN:

Filomena Maggino, L analisi dei dati nell indagine statistica. Volume 1: la realizzazione dell indagine e l analisi preliminare dei dati, ISBN: Filomena Maggino, L analisi dei dati nell indagine statistica. Volume 1: la realizzazione dell indagine e l analisi preliminare dei dati, ISBN: 88-8453-208-6 (print) ISBN: 88-8453-207-8 (online), Firenze

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura.

Descrizione matematica della propagazione Consideriamo una funzione ξ = f(x) rappresenatata in figura. ONDE Quando suoniamo un campanello oppure accendiamo la radio, il suono è sentito in punti distanti. Il suono si trasmette attraverso l aria. Se siamo sulla spiaggia e una barca veloce passa ad una distanza

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Il Principio di non Contraddizione

Il Principio di non Contraddizione Formulazione Il Principio di non Contraddizione Nel libro IV della Metafisica, Aristotele prende in esame quello che lui stesso chiama il principio più saldo di tutti (bebaiotáte archè), intorno a cui

Dettagli

0.1 Balistica. Figure 1:

0.1 Balistica. Figure 1: Fiure 1: 0.1 Balistica Triste ma vero: un forte impulso alla nascita della fisica moderna venne dal bisono di sapere dove accidenti finissero le palle sparate dai cannoni... 0.1.1 Bersalio fisso Abbiamo

Dettagli

LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE

LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE LA COMUNICAZIONE La comunicazione è una condizione essenziale della vita umana e dell ordinamento sociale, poiché

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

La realtà non è come ci appare. carlo rovelli

La realtà non è come ci appare. carlo rovelli La realtà non è come ci appare carlo rovelli 450 a.e.v. Anassimandro cielo terra Anassimandro ridisegna la struttura del mondo Modifica il quadro concettuale in termine del quali comprendiamo i fenomeni

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

2. La struttura formale del problema dell essere.

2. La struttura formale del problema dell essere. Indice Introduzione... 7 2. La struttura formale del problema dell essere.... 9 7. Il metodo fenomenologico della ricerca.... 14 7(c). Il concetto preliminare di fenomenologia... 16 8. Schema dell opera...

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

DIDATTICA DELLA CHIMICA

DIDATTICA DELLA CHIMICA DIDATTICA DELLA CHIMICA LEZIONE INTRODUTTIVA: Concetto di modello LEZIONE N 1 Domanda problema : se consideriamo un pezzo di legno, un mucchietto di sabbia, che aspetto hanno questi 2 tipi di materia?

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN)

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN) SUPERCONDUTTIVITÀ A cura di: Andrea Sosso I.N.RI.M. (IEN) Il fenomeno della superconduttività è stato osservato per la prima volta nel 1911 dal fisico olandese Heike Kamerlingh Onnes dell'università de

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2

UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2 Lezione 14 LE APERTURE A LIVELLO 2 UN NUOVO ASSETTO DELLE APERTURE A LIVELLO 2 Tutto parte da una considerazione statistica: 4 aperture (da a ) per descrivere mani di 21+ Punti rappresenta uno spreco in

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009 RICERCA-AZIONE ovvero l insegnamento riflessivo Gli insegnanti sono progettisti.. riflettono sul contesto nel quale devono lavorare sugli obiettivi che vogliono raggiungere decidono quali contenuti trattare

Dettagli

Passo N 1 dell argomento.!

Passo N 1 dell argomento.! Un diagramma Venn per aiutarvi a trarre le vostre proprie conclusioni Passo N 1 dell argomento. Nel diagramma Venn qui sotto, il cerchio contrassegnato denota l insieme di tutte le cose che in qualsiasi

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

IL SENSO DELLA CARITATIVA

IL SENSO DELLA CARITATIVA IL SENSO DELLA CARITATIVA SCOPO I Innanzitutto la natura nostra ci dà l'esigenza di interessarci degli altri. Quando c'è qualcosa di bello in noi, noi ci sentiamo spinti a comunicarlo agli altri. Quando

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Il paracadute di Leonardo

Il paracadute di Leonardo Davide Russo Il paracadute di Leonardo Il sogno del volo dell'uomo si perde nella notte dei tempi. La storia è piena di miti e leggende di uomini che hanno sognato di librarsi nel cielo imitando il volo

Dettagli

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio?

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Carlo Cosmelli, Dipartimento di Fisica, Sapienza Università di Roma Abbiamo un problema, un grosso

Dettagli

E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem

E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem Comunicazione E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem Lucia Bacci * lucia.bacci@unifi.it Come sostiene Rosaria Egidi in Wittgenstein e il problema

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust)

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) IL TEMPO DI MENTINA Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) E tempo di occuparci di Mentina, la mia cuginetta che mi somiglia tantissimo; l unica differenza sta nella

Dettagli

Costruire una pila in classe

Costruire una pila in classe Costruire una pila in classe Angela Turricchia, Grazia Zini e Leopoldo Benacchio Considerazioni iniziali Attualmente, numerosi giocattoli utilizzano delle pile. I bambini hanno l abitudine di acquistarle,

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là,

Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là, Un uomo che dorme Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là, dove la memoria identifica senza sforzo

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Recensione MIND TIME. IL FATTORE TEMPORALE NELLA COSCIENZA.

Recensione MIND TIME. IL FATTORE TEMPORALE NELLA COSCIENZA. Recensione MIND TIME. IL FATTORE TEMPORALE NELLA COSCIENZA. Raffello Cortina, Milano 2007 Benjamin Libet Il libro di Benjamin Libet ruota intorno alla problematica della relazione fra cervello ed esperienza

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso.

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso. 2. I difetti nei cristalli In un cristallo perfetto (o ideale) tutti gli atomi occuperebbero le corrette posizioni reticolari nella struttura cristallina. Un tale cristallo perfetto potrebbe esistere,

Dettagli

Paolo Ferrario, Dispensa didattica n. 2: SCHEMI DI ANALISI DELLE POLITICHE SOCIALI: IL MODELLO STATO E MERCATO 15 marzo 2011

Paolo Ferrario, Dispensa didattica n. 2: SCHEMI DI ANALISI DELLE POLITICHE SOCIALI: IL MODELLO STATO E MERCATO 15 marzo 2011 MODELLO STATO E MERCATO, 15 Marzo 2011 1/12 Paolo Ferrario, Dispensa didattica n. 2: SCHEMI DI ANALISI DELLE POLITICHE SOCIALI: IL MODELLO STATO E MERCATO 15 marzo 2011 FATTORI (O VARIABILI, O COMPONENTI

Dettagli

Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti,

Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti, Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti, si è conclusa con una lezione aperta per i genitori.

Dettagli

Capitolo 7: Simmetrie e Numeri Quantici

Capitolo 7: Simmetrie e Numeri Quantici Capitolo 7: Simmetrie e Numeri Quantici Corso di Fisica Nucleare e Subnucleare I Professor Carlo Dionisi A.A. 2004-2005 1 Simmetrie Invarianza Leggi di Conservazione 1) Principi di Invarianza e leggi di

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

POLITICHE PER LA BILANCIA DEI PAGAMENTI

POLITICHE PER LA BILANCIA DEI PAGAMENTI capitolo 15-1 POLITICHE PER LA BILANCIA DEI PAGAMENTI OBIETTIVO: EQUILIBRIO (ANCHE SE NEL LUNGO PERIODO) DISAVANZI: IMPLICANO PERDITE DI RISERVE VALUTARIE AVANZI: DANNEGGIANO ALTRI PAESI E CONDUCONO A

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

VALIA ALLORI Rutgers, Department of Philosophy

VALIA ALLORI Rutgers, Department of Philosophy VALIA ALLORI Rutgers, Department of Philosophy La storia del gatto che era sia morto che vivo Questa è la breve storia, forse un poco romanzata, del gatto che, se non forse il più citato, è di sicuro il

Dettagli

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città 1 Ciao!! Quando guardi il cielo ogni volta che si fa buio, se è sereno, vedi tanti piccoli punti luminosi distribuiti nel cielo notturno: le stelle. Oggi si apre l immaginario Osservatorio per guardare...

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

L attività di ricerca e sviluppo nell organizzazione aziendale

L attività di ricerca e sviluppo nell organizzazione aziendale CAPITOLO PRIMO L attività di ricerca e sviluppo nell organizzazione aziendale SOMMARIO * : 1. Il ruolo dell innovazione tecnologica 2. L attività di ricerca e sviluppo: contenuti 3. L area funzionale della

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Progetto di collaborazione Scuola Elementare di Piangipane con JAJO Sport Associazione Dilettantistica 2014-2015

Progetto di collaborazione Scuola Elementare di Piangipane con JAJO Sport Associazione Dilettantistica 2014-2015 Con la collaborazione di: EDUCAZIONE ATTRAVERSO IL MOVIMENTO Le abilità di movimento sono conquiste tangibili che contribuiscono alla formazione di un immagine di sé positiva. Progetto di collaborazione

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli