I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I VETTORI. Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori. Vettori. pag."

Transcript

1 I VETTORI Definizione Sistemi di riferimento Componenti e modulo Somma e differenza Prodotto scalare Prodotto vettoriale Versori pag.1

2 Grandezze scalari e vettoriali Per una descrizione completa del fenomeno sono necessari e sufficienti Grandezze scalari 1 informazione: modulo = numero (risultato misura) Massa = 10 kg modulo direzione v verso punto di applicazione Es. Grandezze vettoriali 4 informazioni: modulo = numero (risultato misura) direzione verso punto di applicazione Spostamento = 10 km in direzione nord-sud verso nord partendo da Siena Es. pag.2

3 Sistemi di riferimento Criterio generale: semplicità (= minor complicazione possibile!) Sistemi cartesiani: assi x,y,z tra loro perpendicolari cartesiano non cartesiano (inutile?...) Quale sistema di riferimento usare? Dipende dalle caratteristiche geometriche e di simmetria del problema. automobile, bicicletta } peso che cade scatola cubica fascio raggi X... ruota, palla } giostra coord. Terra, Sole, pianeti onde elettromagnetiche atomi, cellule... tubi, impianti idraulici condotti elettrici vasi sanguigni bottiglie, bombole siringhe, fiale, flebo } coord.es. cartesiane sferiche } coord. cilindriche pag.3

4 Sistemi di riferimento a 2 e 3 dimensioni y P(x 1,y 1 ) y P(x 1,y 1,z 1 ) y 1 r r y 1 O θ x 1 x Ogni punto è univocamente determinato da: in 2 dim 2 coordinate P(x,y) o P(r,θ) z O φ θ z 1 x 1 x in 3 dim 3 coordinate P(x,y,z) o P(r,θ,φ) pag.4

5 : componenti e modulo Un vettore è univocamente descritto nel piano 2dim dalle sue 2 componenti nello spazio 3dim dalle sue 3 componenti v y y v v x = v cos(α) v y = v sen(α) O α v x x v 2 = v x2 + v y 2 modulo = v 2 [sen 2 (α) + cos 2 (α)] = v 2 1 pag.5

6 pag.6

7 Somma di vettori y v 3y v 3 v 3 = + y y y x O x x v 3x Metodo grafico: diagonale del parallelogrammo costruito sui vettori di partenza Componenti: somma delle componenti dei vettori di partenza v 3x = x + x v 3y = y + y pag.7

8 Differenza di vettori y v 3 = - v 3y v 3 v 3x y y O x x = v 3 + x Metodo grafico: altra diagonale del parallelogrammo costruito sui vettori di partenza Componenti: differenza delle componenti dei vettori di partenza v 3x = x - x v 3y = y - y pag.8

9 Moltiplicazioni di vettori Oltre alla somma e alla differenza si possono definire 2 altre operazioni tra vettori chiamate prodotti, ma non corrispondono alla consueta idea di moltiplicazione. Prodotto scalare di 2 vettori: il risultato è uno scalare, non più un vettore Prodotto vettoriale di 2 vettori: il risultato è ancora un vettore Inciso: Un vettore può anche essere moltiplicato per uno scalare. Il vettore risultante ha stessa direzione; modulo pari al prodotto dei moduli dello scalare e del vettore di partenza; il verso dipende dal segno dello scalare: stesso (opposto) se positivo (negativo). pag.9

10 Prodotto scalare φ = cos φ = x x + y y v 1 φ = 0 = cos φ = φ = 180 = cos φ = +1 φ = 90 = cos φ = pag.10

11 v 3 φ Prodotto vettoriale φ = sen φ direzione ai 2 vettori verso di avanzamento di una vite sovrapponendo a (e non viceversa!) v 3 (pollice mano destra) 0 φ = 0 = sen φ = 0 v 3 φ = 90 = sen φ = φ = 180 = sen φ = pag.11

12 Versori n = v v modulo = 1 direzione v verso v F n n ϑ F Def. di pressione: componente di una forza perpendicolare a una superficie Es. S F n = F cosϑ = F n (prodotto scalare) E un metodo comodo per tener conto di una direzione precisa senza alterare grazie al modulo unitario del versore il valore numerico della grandezza in esame. Es.: vettore velocità nel moto circolare uniforme. pag.12

13 Esercizi E1) Dati i tre vettori a = (0, 3.5, 0.7) m, b = (1.2, -5, -4) m, c = (4, 3, 1) m, trovare il loro vettore somma d = a + b + c e il vettore e = a c. E2) Trovare l angolo compreso tra i vettori a = (0, 3,4) e b = (1, 6, 3). E3) Dato il vettore a = (5, 2, 1) e un vettore b = (3, 4, z) con terza componente z incognita, trovare il valore di z affinché il prodotto scalare c = a b sia uguale a 25. E4) Dati due vettori a e b di modulo a = 4 e b = 7, quale è l angolo che devono formare perché il loro prodotto scalare sia a b = 5? - Esercizi pag.13

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

Problemi di Fisica I Vettori

Problemi di Fisica I Vettori Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

MATEMATICA LIGHT. P.Montagna essenziali che. Corso propedeutico di Matematica ti e Fisicai non puoi non sapere! per i corsi di laurea Equazioni

MATEMATICA LIGHT. P.Montagna essenziali che. Corso propedeutico di Matematica ti e Fisicai non puoi non sapere! per i corsi di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica ti e Fisicai non puoi non sapere! per i corsi di laurea Equazioni nelle Professioni Sanitarie Tecniche Proporzioni Potenze

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Le grandezze vettoriali e le Forze

Le grandezze vettoriali e le Forze Fisica: lezioni e problemi Le grandezze vettoriali e le Forze 1. Gli spostamenti e i vettori 2. La scomposizione di un vettore 3. Le forze 4. Gli allungamenti elastici 5. Le operazioni sulle forze 6. Le

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro

Energia e Lavoro. Energia, Energia potenziale, Energia cine2ca Definizione di lavoro Energia e Lavoro Energia, Energia potenziale, Energia cineca Definizione di lavoro Conce7o di Energia Nella meccanica classica l energia è definita come quella grandezza fisica che può venire "consumata"

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Massa 8 giugno 2016 Gli alunni. L insegnante

Massa 8 giugno 2016 Gli alunni. L insegnante Programma di fisica classe 1^F a.s. 2015-16 Cap. 1 Paragrafo 3, le grandezze fisiche e la loro misura. Paragrafo 5, le grandezze derivate, area e volume e densità. Cap. 2 Paragrafo 1, gli strumenti di

Dettagli

Richiamo trigonometria

Richiamo trigonometria ESERCIZI Richiamo trigonometria 2 sin Sin, Cos, Tan a y R P α s R R a y P P (x P,y P ) s x P cos a x R P tan a y x P P Richiamo trigonometria 3 c a 2 b 2 a c cosa b b c a sina tana b a sina cosa tana cos

Dettagli

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni in Infermieristica sede di Lodi Proporzioni Potenze Notazione

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico

COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO. CLASSE 1 BL3 Anno scolastico COMPITI PER LE VACANZE ESTIVE E LA PREPARAZIONE PER LA VERIFICA DELLA SOSPENSIONE DEL GIUDIZIO DOCENTE: Galizia Rocco MATERIA: Fisica CONTENUTI Teoria CLASSE 1 BL3 Anno scolastico 2015-2016 INTRODUZIONE

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

Verifica sommativa di Fisica Cognome...Nome... Data

Verifica sommativa di Fisica Cognome...Nome... Data ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede Associata Liceo "B.Russell" Verifica sommativa di Fisica Cognome........Nome..... Data Classe 4B Questionario a risposta multipla Prova di uscita di

Dettagli

IIS Francesco Algarotti Anno Scolastico 2015/2016 Programma svolto Modulo 1: Le grandezze fisiche e la loro misurazione

IIS Francesco Algarotti Anno Scolastico 2015/2016 Programma svolto Modulo 1: Le grandezze fisiche e la loro misurazione Disciplina: Fisica Classe 1^I Testo di riferimento: Conoscere la materia - Bagatti, Corradi, Desco, Ropa Ed Zanichelli. Modulo 1: Le grandezze fisiche e la loro misurazione Cos'è la fisica. La fisica prima

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

FISICA: Le Forze. Giancarlo Zancanella (2014)

FISICA: Le Forze. Giancarlo Zancanella (2014) FISICA: Le Forze Giancarlo Zancanella (2014) 1 Cos è una forza 2 Il Principio D inerzia Un corpo mantiene inalterato il suo stato di quiete o di moto fino a quando non si gli applica una forza che ne cambia

Dettagli

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota: Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata

Dettagli

Test di Matematica di base e Logica

Test di Matematica di base e Logica Università degli Studi di Perugia. Facoltà di Scienze MM.FF.NN. Test di Autovalutazione per l accesso al corso di laurea triennale in chimica 1 ottobre 2010 Test di Matematica di base e Logica 1) Un triangolo

Dettagli

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU)

Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Corso di Fisica per il corso di laurea in Scienze Biologiche - CTF (6 CFU) Docente: Daniele Chiriu Ricevimento: Mar e Mer 14:30-16:30 email: daniele.chiriu@dsf.unica.it Stanza MC5 Dipartimento di Fisica

Dettagli

Liceo Scientifico Mariano IV d'arborea Oristano. Anno Scolastico Classe 1^B sportivo. Programma svolto di MATEMATICA

Liceo Scientifico Mariano IV d'arborea Oristano. Anno Scolastico Classe 1^B sportivo. Programma svolto di MATEMATICA Liceo Scientifico Mariano IV d'arborea Oristano Anno Scolastico 2015-16 Classe 1^B sportivo Programma svolto di MATEMATICA insegnante: Paolo Marongiu ALGEBRA Insiemi numerici I numeri naturali. Operazioni

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

How to compute the sun vector for path planning

How to compute the sun vector for path planning How to compute the sun vector for path planning 1 Calcolo dell illuminazione delle celle solari Si consideri la Fig. 1. Il rover si sposta sulla mappa, variando nel tempo la sua posizione p = ( x y z )

Dettagli

ALCUNI RICHIAMI GENERALI

ALCUNI RICHIAMI GENERALI ALCUNI RICHIAMI GENERALI 0.1 SUL CONCETTO DI VETTORE La direzione Data una linea retta, è possibile muoversi su questa in due versi opposti: si possono distinguere assegnando a ciascuno di essi un segno

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Corso di Fisica CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it

Dettagli

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - Dr. Marco Tadini meteorologo U.M.A. Home Page - Ufficio Meteorologico Aeroportuale www.ufficiometeo ufficiometeo.itit PREMESSE Leggi di Newton (Principi

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA ALGEBRA RICHIAMI SU EQUAZIONI DI II GRADO (COMPLETE ED INCOMPLETE) E SULLE PRINCIPALI OPERAZIONI CON I RADICALI RICHIAMI SU DISEQUAZIONI

Dettagli

Il segno del momento è positivo perché il corpo ruota in senso antiorario.

Il segno del momento è positivo perché il corpo ruota in senso antiorario. MOMENTO DI UNA FORZA E DI UNA COPPIA DI FORZE Esercizi Esempio 1 Calcola il momento della forza con cui si apre una porta, ruotando in verso antiorario, nell'ipotesi che l'intensità della forza applicata

Dettagli

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Ripasso: le equazioni lineari. Ripasso: i prodotti notevoli. Ripasso: i sistemi lineari e il metodo della sostituzione. Ripasso: le

Dettagli

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI

Dinamica. Prof. Paolo Biondi Dipartimento GEMINI Dinamica Prof. Paolo Biondi Dipartimento GEMINI Dinamica: studio delle cause che determinano il moto dei corpi Forza = massa per accelerazione Unità di misura Newton (N): forza che applicata al chilogrammo

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE Lavoro svolto da Laura Bianchettin - Flavio Ciprani Premessa Il campo magnetico terrestre è rappresentato da un vettore generalmente

Dettagli

1. DEFINIZIONE DI VETTORE

1. DEFINIZIONE DI VETTORE 1. DEFINIZIONE DI VETTORE 486 PRIMO INCONTRO COI VETTORI Un segmento si dice orientato quando è specificato quale dei due estremi sia da considerarsi come il primo estremo e quale come il secondo estremo

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

PROGRAMMA di FISICA Classe 2^ I a.s. 2013/14 Docente: Marcella Cotroneo

PROGRAMMA di FISICA Classe 2^ I a.s. 2013/14 Docente: Marcella Cotroneo PROGRAMMA di FISICA Classe 2^ I a.s. 2013/14 Docente: Marcella Cotroneo RIPASSO di alcune parti del programma svolto l anno scolastico precedente La misura delle grandezze fisiche e la notazione scientifica

Dettagli

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che:

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: A. 4 elettroni orbitano intorno al nucleo che contiene 4 protoni. B. Attorno al nucleo orbitano 8 elettroni. C. Il nucleo è costituito

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

Lezione del F t = componente lungo la tangente della forza lungo il percorso.

Lezione del F t = componente lungo la tangente della forza lungo il percorso. Lezione del 04.03.2016 Lavoro = lo si indica con W. Il lavoro prodotto da una forza F produce uno spostamento dal punto A al B punto lungo la linea γ. Il lavoro da A ad B è diverso da quello fatto da B

Dettagli

LAVORO ENERGIA POTENZA Domande Esercizi. 1. Cosa significa dire che un sistema fisico possiede energia utile?

LAVORO ENERGIA POTENZA Domande Esercizi. 1. Cosa significa dire che un sistema fisico possiede energia utile? 1. Cosa significa dire che un sistema fisico possiede energia utile?. Come si definisce la grandezza fisica Lavoro? 3. Qual è l unità di misura del lavoro nel SI e come si definisce? 4. Cosa significa

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

COMPITI DELLE VACANZE (FISICA)

COMPITI DELLE VACANZE (FISICA) COMPITI DELLE VACANZE (FISICA) Istituto Siai Marchetti A.S. 2008-2009 Gli esercizi proposti dovranno essere svolti su un quaderno e consegnati alla ripresa delle attivitá scolastiche per essere valutati

Dettagli

PROGRAMMA SVOLTO. Classe 1 a C a.s Materia MATEMATICA prof.ssa ANNA GATTO

PROGRAMMA SVOLTO. Classe 1 a C a.s Materia MATEMATICA prof.ssa ANNA GATTO Classe 1 a C a.s. 2015-2016 Materia MATEMATICA prof.ssa ANNA GATTO Testo di riferimento: Bergamini Trifone Barozzi, MatematicaMultimediale.Bianco, vol. 1, ed. Zanichelli Insiemi, numeri naturali e numeri

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

I vettori: brevissime note

I vettori: brevissime note I vettori: brevissime note F. Demontis Corsi PAS 2014 Trovate in queste pagine le poche nozioni sul calcolo vettoriale che vi ho presentato durante le lezioni. Tutto il materiale è stato scritto molto

Dettagli